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Abstract. Our objective is to count (and localize) object instances in an image
interactively. We target the regime where individual object detectors do not work
reliably due to crowding, or overlap, or size of the instances, and take the ap-
proach of estimating an object density.

Our main contribution is an interactive counting system, along with solutions
for its main components. Thus, we develop a feature vocabulary that can be effi-
ciently learnt on-the-fly as a user provides dot annotations – this enables densities
to be generated in an interactive system. Furthermore, we show that object den-
sity can be estimated simply, accurately and efficiently using ridge regression –
this matches the counting accuracy of the much more costly learning-to-count
method. Finally, we propose two novel visualization methods for region counts
that are efficient and effective – these enable integral count regions to be displayed
to quickly determine annotation points for relevance feedback.

The interactive system is demonstrated on a variety of visual material, includ-
ing photographs, microscopy and satellite images.

Keywords: Interactive vision systems, object counting, relevance feedback, vi-
sual recognition, biomedical image analysis.

1 Introduction

Counting instances of an object in crowded scenes is a tedious task frequently encoun-
tered in biology, remote sensing and surveillance data analysis. Towards this goal, sev-
eral computer vision approaches that use machine learning in order to automate such
tasks have been suggested [5, 8, 10, 12]. These methods are however limited to the sce-
narios where it is possible to collect and to manually annotate a representative set of
training images. Systematic differences in the visual appearance or in the geometrical
patterns between the training and the test images pose challenges for these methods and
may result in systematic counting biases. This can be a serious limitation for practition-
ers, as e.g. any change of experimental protocol/conditions in a biological experiment
might require reannotation and retraining.

Here, we present a system that addresses the counting task through interactive ma-
chine learning. In our case, the user annotates (i.e. with dots) the objects that belong to
a representative but potentially small part of an image and the system propagates the
annotations to the rest of the image. The results are then presented to the user, who then
has the option to annotate another part of the image where the system has made signifi-
cant errors. When the user is satisfied with the result, the system provides the count of
the objects in the image. Our unoptimized MATLAB implementation takes at most a
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few seconds for each iteration of the relevance feedback that includes recomputation of
the features, discriminative (re)training, and visualization.

The approaches that cast the counting problem as one of object density estima-
tion [5, 8, 10, 12] have so far been more accurate and also faster than approaches that
detect individual instances. For this reason, we base our system around object den-
sity estimation. Counting through density estimation works by learning a mapping
F : X �→ Y between local image features X and object density Y , which then allows
the derivation of an estimated object density map for unseen images (or non-annotated
parts of an image in our case). If the learning is successful, integrating over regions in
the estimated density map provides an object count within such regions. The accuracy
of the density estimation depends crucially on the choice of local image features. An-
other important aspect of density-based counting is that density per se is not informative
for a human user and cannot be used directly to verify the accuracy of the counting (and
to provide feedback).

To address this aspect, and to achieve the processing speed demanded by the interac-
tive scenario, we make the following three contributions. First, we propose a simplified
approach for supervised density learning based on ridge regression (i.e. simple linear
algebra operations). We show that even in the traditional batch mode (i.e. when learn-
ing from a set of annotated images and applying to a number of similar images) this
approach achieves similar counting accuracy to the constraint-generation based learn-
ing in [12] (using the same features), while being dramatically faster to train, which is
crucial for an interactive system. Furthermore, we propose two ways to visualize the
estimated density, so that counting mistakes are easily identifiable by the user. This al-
lows our system to incorporate user feedback in an interactive regime according to the
user’s own criterion of goodness. Finally, we propose an online codebook learning [20]
that, in real-time, re-estimates low-level feature encoding as the user annotates progres-
sively larger parts of an image. Such feature re-estimation (together with fast supervised
density estimation) allows our system to avoid severe under- or over-fitting, whenever
a small or a large part of an image is annotated.

In summary, this work presents a system for counting multiple instances of an object
class in crowded scenes that (i) can be used interactively as it is fast to compute and
can re-use the results from previous iterations, (ii) uses the simplicity and ease of com-
putation of ridge regression, and (iii) presents the density estimation results in intuitive
ways such that it is easy to know where further annotations may be required. We show
the performance of the method in some of the typical applications for counting and
detection methods such as counting cells in microscopy images, and various objects of
interest in aerial images.

1.1 Related Work

Interactive Computer Vision: To the best of our knowledge, this is the first time an
interactive counting system has been proposed. Nevertheless, interactive learning meth-
ods have been popular in computer vision as they provide the users with tools that can
immediately and significantly alleviate tedious and time-consuming tasks, without the
need to carefully prepare training datasets. The most common examples are the general
purpose image segmentation methods [4, 16] which are still widely used today in real
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Fig. 1. (Interactive Framework Overview) Given an input image (or set of images) containing
multiple instances of an object, our framework learns from regions with dot-annotations placed
by the user in order to compute a map of object density for the non-annotated regions. The left
column shows the annotated pixels provided by the user – all regions in the annotation images
outside the green mask (i.e. with or without dot-annotations) are used as observations in the
regression. The right column shown the intuitive visualization tool of the density estimation that
allows the user to inspect the results and add further annotations where required in order to refine
the output of the counting framework.
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applications. Interactive image segmentation methods have also been widely adopted
in medical imaging [9, 19, 20] where not only is it difficult to prepare datasets, but also
users need to have the possibility of refining results in real-time. More recently, inter-
active methods have been applied to object detection [25] and learning of edge models
for image partitioning [21], which is also highly relevant for biological image analysis.
We expect this paper to bring the general benefits of interactive learning to counting
problems.

Counting through Object Density Estimation: Counting objects in images without
explicit object detection is a simplified alternative for cases where only the number of
objects is required; it has proved to be especially useful in those tasks too challeng-
ing for object detectors such as crowded scenes. Initial efforts in this class of methods
attempted to learn global counts through regressors from image-level [6, 11] or region-
level [5, 13, 17] features to the total number of objects in it. However, these approaches
ignored the local arrangements of the objects of interest. Towards this end, [12] pro-
posed learning pixel-level object density through the minimization of the MESA dis-
tance, a cost function specially tailored for the counting problem. Following [12], [8]
proposed a simplified version of the object density estimator based on random forest,
which represented an improvement in training time. Generating a pixel-level object den-
sity estimation not only has the advantage of estimating object counts in any region of
the image, but can also be used to boost the confidence of object detectors as shown
in [15]. Our approach follows the ideas in [8, 12] and further simplifies the learning to
a few algebraic operations using a ridge regression, thus enabling an interactive appli-
cation. Note that the learning approach proposed here should not be confused with the
ridge regression used as baseline in [12], which belongs to the category of image-level
regressors.

2 Interactive System Overview

Given an image I, the counting proceeds within a feedback loop. At each iteration,
the user marks a certain portion of an image using a freehand selection tool (we refer
to pixels being included into such regions as annotated pixels). Then the user dots the
objects, by clicking once on each object of interest within this annotation region. In the
first iteration, the user also marks a diameter of a typical object of an image by placing
a line segment over such a typical object.

At each iteration, given the set of dotted pixels P placed by the user on top of objects
of interest in I, our system aims to (1) build a codebook X of low-level features, (2)
learn a mapping F : X �→ Y from the entries in the codebookX to an object density Y ,
(3) use the learned mapping F to estimate the object density in the entire image I, and
(4) present the estimated object density map to the user through an intuitive visualiza-
tion. The estimated object density map produced is such that integrating over a region of
interest gives the estimated number of objects in it (e.g. integrating over the entire map
gives an estimate of the total number of objects of interest in I). By using the density
visualization, the user can easily spot significant errors in the object density estimate, and
can proceed to provide further annotations to refine the results in a next iteration of the
process. An example with three iterations is shown in Figure 1. In practice, only a small
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portion or few small portions of a potentially large image have to be inspected in order
to validate the correctness of the learned model or to identify parts with gross errors.

The first design requirement for an interactive counting system, such as the above, is
that the codebook needs to be fast to compute, and adapt its size according to the amount
of annotations in order to prevent under- or over-fitting. To address these problems, we
propose in Section 3 a simple progressive codebook learning procedure, which builds a
kd-tree that can grow from its current state as the user provides further annotations. The
second requirement is a fast computation of the mapping F . Our proposal is a pixel-
level ridge regression presented in Section 4, which has a closed-form solution. Thus,
the mapping F can be computed extremely fast through a few algebraic operations on
sparse matrices. Finally, the system needs to present its current estimates to the user in
such a way that identifying errors can be done through a quick visual inspection, which
is not possible with the raw object density map and/or the global count. Therefore, we
propose in Section 5 two methods to visualize object density maps by generating local
“summaries” of it.

We show the performance of the interactive counting system through a series of
examples in the experimental section, and videos of the interactive process are provided
in [1].

3 Progressive Codebook Learning

Initially, we represent each pixel p of an image I with a d-dimensional real-valued
vector zp ∈ Rd. The idea of building a codebook on top of these low-level features
is to subdivide the feature space into k cells, so that the typical density for appearance
patterns falling into each cell is roughly constant. Ideally, we want to strike a balance
between two conflicting goals. Firstly, we want to partition the feature space finely
enough to avoid underfitting. Secondly, we want each of the partitions to have at least
several pixels that belong to the area annotated by the user in order to avoid overfitting.
The latter requirement leads to the idea of interactive re-estimation of the feature space
partition as more annotations become progressively available. This can be done very
efficiently with the following algorithm.

We initialize the feature space partitioning by assigning all image pixels to the same
partition. We then proceed recursively by splitting the partitions that contain more than
N “annotated” pixels assigned to them (“annotated” here means belonging to the user-
annotated area). Here, N is a meta-parameter selected by the user, which we set to 200
in our experiments. In more detail, the algorithms proceed as follows:

1. In the i-th iteration, find the partitions with more than N descriptors zp assigned to
it (only annotated pixels are taken into account).

2. For each of those partitions, find the feature dimension t of maximum variance
(among the d dimensions), as well as the median of the values of all annotated
pixels corresponding to this dimension.

3. Split such a partition into two according to whether a pixel value at the dimension
t is greater or smaller then the median.

4. Repeat until every partition has less than N annotated pixels assigned to it.
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The proposed algorithm thus constructs the kd-tree (w.r.t. the annotated pixels). Note,
however, that we also maintain the partition assignments of the unannotated pixels (and
the resulting partitions can be unbalanced w.r.t. the unannotated pixels). We finally note
that there is no need to store the resulting kd-tree explicitly because the algorithm main-
tains the assignments of pixels to the leaves of the kd-tree (i.e. partitions). The parti-
tioning algorithm is resumed whenever new annotations are added by the user. At this
point, the codebook can grow from its current state by continuing the splitting (and is
not re-learned from scratch).

Once the codebook has been learned, each pixel p in the image I is represented by a
sparse k-dimensional vector xp, where all entries are zero except the one corresponding
to the partition to which the image descriptor zp was assigned (“one-hot” encoding).
The representation xp is then used as the pixel features within the learning framework
proposed in Section 4. Once again, we emphasize that the vector xp changes (and be-
comes more high-dimensional) between the learning rounds as more user annotations
become available.

4 Counting with Ridge Regression

We now introduce our simple alternative to [12] for learning an object density estimator.
Our method here is similar to (and, arguably, simpler than) [8]. Most importantly, com-
pared to [12], our approach reduces the training time from several dozens of seconds to
a few seconds (for heavily annotated images), thus enabling the interaction.

Similarly to [8, 12], we define the ground truth density from the set of user dot-
annotations P as the sum of delta functions centred on each of the annotation dots:

F 0(p) =
∑

p′∈P
δ(p− p′) , (1)

where p is the (x, y) position of a pixel.
We want to learn the mapping F : X �→ Y from local image features to a ground

truth object density using ridge regression. Let us assume that each pixel p in a training
image I is represented with a sparse vector xp ∈ Rk from a learned codebook. At the
same time, each pixel is associated with a real-valued ground truth object density yp ∈
R according to F 0(p). The ridge regression finds a k-dimensional vector of coefficients
w that minimizes the following objective:

||Xw − Y ||2 + λ||w||2 → min
w

(2)

Here, X is the matrix of predictors (feature vectors) with each row containing xp,
Y is a vector of corresponding density values from the ground truth density F 0 and λ
controls the balance between prediction error and regularization of w. Although com-
putationally simple and efficient, the fitting procedure (2) tries to match the ground
truth density values exactly in every pixel, which is unnecessary and leads to severe
overfitting. Instead, as was argued in [12], the estimated densities Xw should match
the ground truth densities Y when integrated over extended image regions (i.e. we do
not care about very local deviations between Xw and Y as long as these deviations are
unbiased and sum approximately to zero over extended regions).
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Based on this motivation, [12] replaces the L2-distance between Xw and Y in (2)
by the so called MESA-distance which looks at integrals over all possible box regions.
While this change of distance dramatically improves the generalization, the learning
with MESA-distance is costly as it employs constraint generation and has to solve a
large number of quadratic programs. Here, we propose another, much simpler, alterna-
tive for the L2-distance in (2). Namely, we minimize a smoothed version of the objective
by convolving the difference between the ground truth density and the estimated density
with a Gaussian kernel:

||G ∗ (Xw − Y )||2 + λ||w||2 → min
w

(3)

Here, G∗ denotes (with a slight abuse of notation) the Gaussian smoothing over the
image plane (i.e. the column vector has to be reshaped back to the image dimensions and
smoothed spatially). Typically, we use a sufficiently large isotropic covariance to ensure
that the local unbiased deviations between Xw and Y are smoothed (so that “excesses”
and “deficits” cancel each other). We found that the performance of the estimated w on
the test set is not sensitive to large variation in the covariance (as long as the covariance
parameter σ within G is greater than say half a typical object diameter). As we will
show below, such smoothing is crucial for good performance of the counting.

Because of the linearity of the convolution, we can rewrite (3) as:

||(G ∗X)w −G ∗ Y )||2 + λ||w||2 → min
w

, (4)

where (G ∗X) denotes Gaussian smoothing applied to each column of X .
Importantly, (4) can be regarded as ridge regression between the smoothed version

of the feature maps G∗X and the smoothed ground truth density. The latter can be seen
as the sum of Gaussian kernels centered on the user annotations:

F 0(p) =
∑

p′∈P
N (p′, σ) (5)

Similarly, the smoothed (but still sparse) matrix of predictors G ∗ X can be obtained
by convolving independently each dimension of the feature vectors (i.e. each column of
X), that is, spatially blurring each of the feature channels.

Using the vertically concatenated smoothed maps Xs = [G ∗X ] and Ys = [G ∗ Y ]
respectively, w can be expressed using a standard ridge regression solution formula:

w = (XT
s Xs + λΓ TΓ )−1XT

s Ys , (6)

where Γ denotes the identity matrix and λ is a regularization parameter.
Finally, for a non-annotated region of image I, the density value at pixel p can be

obtained using the estimated w through a simple linear transform of the non-smoothed
feature vectors xp (i.e. in the same way as in [12]):

F (p) = wTxp (7)

It can be seen that learning the mapping vector w only involves simple matrix op-
erations (mostly on sparse matrices) and Gaussian smoothing. Thus, w can be learned
on-the-fly and with a low memory footprint.
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We have found that the generalization performance is improved slightly if the non-
negativity of the estimated w is enforced (which for non-negative xp results in physi-
cally meaningful non-negative object densities at test time). Since it is computationally
more expensive to include a non-negativity constraint within ridge regression in a prin-
cipled manner (compared to the closed-form solution provided by unconstrained ridge
regression), we use a simple trick of iteratively re-running ridge regression, while clip-
ping the components of w having negative values to zero after each iteration.

4.1 Experimental Validation of Ridge Regression Counting

We now evaluate the counting method based on ridge regression and determine how it
compares to previous work in the area that uses traditional batch processing (i.e. non-
interactive). In particular, we compare to the most related approach [12] (using the same
features, the same datasets, and the same experimental protocols as in [12]).

Table 1 shows the experimental results on the USCD pedestrian dataset [5], which
consists of 2000 frames of dot-annotated pedestrians from a surveillance camera video.
Table 2 shows the results on the synthetic cell dataset presented in [12]. The dataset

Table 1. Mean absolute errors for people counting in the UCSD surveillance cam-
era video [5]. The columns correspond to four training/testing splits of the data (‘maxi-
mal’,‘downscale’,‘upscale’,‘minimal’) proposed in [17]. The average number of people per im-
age in each of the testing sets is shown in brackets on the top row. � indicates the methods tested
with the same set of features. The proposed method (bottom line) matches on average the perfor-
mance of the previous best method for the same features.

‘max’ [28.25] ‘down’ [24.35] ‘up’ [29.68] ‘min’ [28.25]
Global count [11] 2.07 2.66 2.78 N/A
Segment+Count [17] 1.53 1.64 1.84 1.31
Density estimation (MESA) [12] � 1.70 1.28 1.59 2.02
Density estimation (RF) [8] 1.70 2.16 1.61 2.20

Density estimation (proposed) � 1.24 1.31 1.69 1.49

consists of 200 synthetic images of cells in fluorescence microscopy, with an average
of 174 ± 64 cells per image. Between 1 and 32 images are used for training and val-
idation,while testing is performed on a set of 100 images. The procedure is repeated
for five different sets of N images, and the mean absolute counting errors and standard
deviations are reported for different values of N . We additionally include the result of
the method that does not blur the feature channels, and thus uses (2) rather than (3)
as a learning criterion (in the special case of one-hot encoding and λ = 0, it simply
corresponds to averaging the GT density value corresponding to each codeword in the
dictionary). The inferior performance of this baseline highlights the importance of the
smoothing in (3).

It can be seen from Table 1 and Table 2 that using simple ridge regression never
results in a significant drop in performance compared to the more complex approach
in [12], and thus, we use it as part of our interactive system (described next) without
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Table 2. Mean absolute errors for cell counting in the synthetic cell dataset [12]. The columns
correspond to the different sizes of the training and validation sets. � indicates the methods that
use the same features. The proposed method (bottom line) matches the performance of the previ-
ous best method for the same features. The version that does not smooth the difference between
the estimated and the GT density when evaluating the solution, performs considerably worse.
The method [8] achieves lower counting error in this case, however it uses different and much
stronger features learned in a supervised fashion.

N = 1 N = 2 N = 4 N = 8 N = 16 N = 32
Img-level ridge reg. [12] � 67.3± 25.2 37.7± 14.0 16.7± 3.1 8.8± 1.5 6.4± 0.7 5.9± 0.5

Dens. estim. (MESA) [12] � 9.5± 6.1 6.3± 1.2 4.9± 0.6 4.9± 0.7 3.8± 0.2 3.5± 0.2

Dens. estim. (RF) [8] N/A 4.8± 1.5 3.8± 0.7 3.4± 0.1 N/A 3.2± 0.1

Dens. estim. (no smooth) � 13.8± 3.6 11.3 ± 3.1 10.6± 2.3 9.9± 0.7 10.6± 1.1 10.2± 0.4

Dens. estim. (proposed) � 9.6± 5.9 6.4± 0.7 5.53± 0.8 4.5± 0.6 3.8± 0.3 3.5± 0.1

any compromise on the counting accuracy. Crucially for sustaining interactivity, our
simplification yields a dramatic speedup of the learning procedure.

To avoid confusion, we note again that ridge regression was proposed as a baseline
for counting in [12], as shown in Table 2, and tested with the same set of features we
have used, but resulting in much poorer performance. This is because, the regression in
that baseline was learned at the image level, i.e. it treated each of the training images as
a single training example, which resulted in a severe overfitting due to a limited number
of examples. This differs from learning w to match the pixel-wise object densities (it
can be seen as an extreme case of infinitely wide Gaussian kernel G). Finally, we note a
connection between the proposed approach and [8] that also performs smoothing of the
output density function (at the testing stage) using structured-output random forests.

5 Object Density Visualizations

The visualization of the object density estimate plays a key role in our interactive count-
ing system as it assists the user to identify the parts of the image where the system has
estimated the counts with large errors, and thus, where to add further annotations. While
the predicted densities are sufficient to estimate the counts in any region, the accuracy
of these densities cannot be controlled by the user without further post-processing due
to the mismatch between the continuous nature of the densities and the discrete nature
of the objects. To address this problem, we propose two density visualization methods,
which convert the estimated density into representations that are intuitive for the user.
The first method is based on non-overlapping extremal regions and is algorithmically
similar to [3], and aims to localize the objects from the density estimate. The second
method is based on recursive image partitioning, and aims to split the image into a set
of small regions where the number of objects can be easily eyeballed and compared to
the density-based estimates.

For both visualization techniques, we start by generating a set of candidate regions
with a nestedness property such that two regions Ri and Rj are either nested (i.e. Ri ⊂
Rj or Rj ⊂ Ri) or they do not overlap (i.e. Ri ∩ Rj = ∅). Therefore, the set of candi-
date regions in each case can be arranged into trees [2]. Both visualization approaches
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represent the densities by showing summations over a subset of those candidate regions
and both approaches optimize the choice of this subset. In particular, each region Ri

has a score Vi associated to it that indicates the integrality of the region, or how well the
region encloses an entire object or a cluster of objects. The idea is that we want to show
the user the regions that have near-integer integrals of the density over them. Given the
integrality scores, both approaches compute the final representation by picking a non-
overlapping subset of regions that maximize the sum of such integrality-driven scores.

In more detail, we begin by defining Si to be the integral of the estimated density
map over the region Ri, and Ii to be the approximation of Si to its nearest integer. The
score Vi for region Ri is then defined as:

Vi = (1 − (Si − Ii))
2 (8)

For N candidate regions, we introduce the indicator variables y = {y1, y2, ..., yN},
where yi = 1 implies that Ri has been selected. Additionally, y must satisfy the con-
straint of only containing non-overlapping regions. That is, y ∈ Y , where Y is the set
of all sub-sets of non-overlapping regions such that if Ri ∩Rj 	= ∅ then yi.yj = 0.

The global maximization objective is defined as follows:

F (y) = max
y∈Y

N∑

i=1

yi(Vi + λ) (9)

where λ is a constant that prevents from selecting the trivial solution (one biggest region
containing the whole image) and biases the solution towards a set of small regions. The
objective (9) is optimized efficiently by using dynamic programming due to the tree
structure of the regions as in [3]. We now discuss the details of the two approaches and
the difference between them.
Visualization Using Non-overlapping Extremal Regions. Extremal regions are the
connected components on the binary images resulting from thresholding a gray image I
with any arbitrary threshold τ . A key property of the extremal regions is the nestedness
as described above. Therefore, the set of extremal regions of an image can be arranged
into a tree (or a forest) according to the nestedness.

Following [3], we use extremal regions as candidates for object detection. In this
case, extremal regions are extracted from the estimated object density map, and the
ones selected by the optimization (9) should delineate entire objects or entire clusters
of objects (Figure 2-c).

In practice, we collect these candidate regions using the method of Maximally Stable
Extremal Regions (MSER) [14]. This method only keeps those extremal regions that are
stable in the sense that they do not change abruptly between consecutive thresholds of
the image (i.e. on regions with strong edges). During the inference, we exclude the
regions which have an integral of density smaller than 0.5 from consideration as we
have found that allowing any extremal region to be selected can result in very cluttered
visualizations. Instead, this visualization aims to show only regions containing entire
objects.
Visualization Using Hierarchical Image Partitioning. In this approach, we build a
hierarchical image partition driven by the density. To obtain the partition, we iteratively
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apply spectral graph clustering, dividing image regions into two (akin to normalized
cuts [18]). Unlike the extremal region visualization and unlike the traditional use of
normalized cuts, we encourage the boundaries of this partition to go through regions of
low density, thus creating a tile of regions that enclose entire objects (Figure 2-d). To
achieve this, we build a 4-connected weighted graph G = (V,E) with the adjacency
matrix W defining the weights of the edges based on the estimated density map F (p)
as wp,q=0.5 (F (p)+F (q)) for (p, q)∈E.

The normalized cuts then tend to cut through the parts of the image where the den-
sity is near-zero, and also as usual have a bias towards equal-size partitions (which is
desirable for our purpose).

Once the tree-structured graph is built, the inference selects the set of non-overlapping
regions through the maximization of the sum of the integrality scores of the regions, as
explained above. Additionally, we enforce at inference time that every pixel in the es-
timated density map must belong to one of the selected regions (i.e. that the selected
subset of regions represent a cover). Therefore, the entire density distribution is “ex-
plained”. Accordingly, all regions from the hierarchical partitioning of the image are
considered, including those with near zero density integrals.

Compared to the visualization using the extremal regions, the visualization based
on recursive partition does not tend to outline object boundaries, but represents the
underlying ground truth density with greater fidelity due to the fact that the whole image
ends up being covered by the selected regions (Figure 2).

(a) Input (b) Density estimation
Total count = 180

(c) ER-visualization
Total count = 163

(d) SC-visualization
Total count = 185

Fig. 2. (Density Visualization) In order to assess the density estimation (b) of the original im-
age (a), we propose two visualization methods. The first method (c) is based on non-overlapping
extremal regions (ER) and aims to localize objects in the estimated density map (more intuitive
but biased towards undercounting). The second method (d) is based on hierarchical image parti-
tioning with spectral clustering (SC) and aims to explain the distribution of the density estimate
across the entire image (higher fidelity but less intuitive visualization of the density). See text for
details. In (c) and (d), the numbers indicate the objects contained within the region. Green regions
contain a single object, but the number has been omitted for clarity. Non-outlined regions in (d)
have zero counts.
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(a) Synthetic cells. Number of dot-annotations = 16. Estimated count/GT = 476/484. Ref-
erence results from [24] = 482/500.

(b) Red cars. Number of dot-annotations = 19. Estimated count/GT = 220/230.

(c) Stomata. Number of dot-annotations = 37. Estimated count/GT = 655/676. Reference
results from [24] = 716/676.

Fig. 3. (Example results) For the experiments shown, a large image (first column) is annotated in-
teractively (second column) until qualitatively reasonable results are produced (fourth column).
For all examples, the green masks on the annotation images (second column) indicate regions
that have not been annotated by the user. All regions outside the green mask, with or without dot-
annotations, are used as observations in the regression (Section 4). Annotated regions without
dots can be seen as zero annotations. As expected, the number of annotations required increases
with the difficulty of the problem. In cases where the background is complex, such as in aerial
images (b), residual density tends to appear all over the image, which can be seen in the visu-
alization. However, this can be easily fixed interactively using zero annotations, which are very
fast and simple to add. Many more examples, as well as videos of the interactive process, are
provided at [1].
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6 Interactive Counting Experiments

We show the qualitative performance of the interactive counting system. The aim is to
give a sense of the amount of annotations (and effort) required to obtain an object count
that would closely approximate the ground truth (i.e. with an approximate absolute
counting error of 10% or less). This section is complemented with [1], where a video
of the system in use is shown, as well as additional example results including counting
elongated objects using a scribble variant of the annotation. Note that, though results
are shown here using the same images as input and output, it is possible to propagate
the density estimation to other similar images in a batch.

Figure 3 shows example results of the interactive counting system, indicating the
number of annotations added and the estimated object count for that amount of annota-
tion. Part of the examples (Figures 3-a,c) have been taken from the benchmark dataset
of [24], and we use their results as reference in Figure 3. We do not attempt to do a direct
comparison of performance with [24] due to the fact that for the cases where a single
image is given, our interactive method requires annotations on this image in order to
produce results, and thus, disrupts the possibility of a fair comparison of performance.
Moreover, due to the nature of the low-level features, our system crops the borders of
the image by half the size of the texture patches (see implementation details), resulting
in a possible difference of the ground truth count w.r.t. the original image. The addi-
tional examples (Figure 3-b and examples in [1]) correspond to aerial images extracted
from Google Maps.

The same set of parameters have been used for all the examples shown, with the most
relevant ones indicated in the implementation details. Due to space limitations, we use
a single visualization method for each of the examples in Figure 3, but it can be seen
that they are complementary. Nevertheless, depending on the image, one visualization
can be more convenient than the other.

6.1 Implementation Details

Low-Level Features. We compute the initial (low-level) pixel descriptor zp based on
two types of local features on the Lab color-space. First, we use the contrast-normalized
lightness values (L channel) of the pixels in a patch of size n × n centered at p [22].
The patches are rotated such that their dominant gradients are aligned in order to be
invariant to the object’s rotation in the image. Secondly, we collect the raw L, a and
b values of the center pixel. The descriptor zp ∈ Rd is the concatenation of the two
local features. Therefore, the dimensionality d of the pixel descriptor for a color image
is n2 + 3. In the case of grayscale images, we do the feature computation on the given
intensity channel, which results in d = n2 + 1.
Collecting Extremal Regions. Extremal regions are extracted from the estimated den-
sity map using the MSER implementation from VLFeat [23]. In order to collect enough
candidate regions for the inference to select from, we set a low stability threshold in the
MSER algorithm.
Building a Binary Tree with Spectral Clustering. Computing the traditional spectral
clustering as in [18] can be too slow for our interactive application, and the reason is the
expensive computation of eigenvectors. Therefore, in practice we use the method from
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Dhillon et al. [7] which solves the equivalent problem of weighted kernel k-means thus
greatly reducing the computation time. We use the implementation from the authors
of [7].
Setting Object-Size Dependent Parameters. Some of the parameters used in the im-
plementation of the interactive counting system are better set with respect to the size of
the object of interest. These are the size n× n of the patches for the low level features
and the standard deviation σ for the Gaussian kernel used to smooth the dot-annotations
and feature channels for the ridge regression. As discussed in Section 2, we chose to
request an additional input from the user, where the approximate diameter of the object
of interest is input by drawing a line segment over a single object in the image. The
image is then rescaled with the scale factor of the object. For the experiments of the in-
teractive system shown in the experimental section, we use an object size of 10 pixels,
patches of 9× 9 pixels and σ = 3 pixels.
Region Visualization. The boundaries of the regions that are chosen to visualize the
density are superimposed on top of the original images. Alongside the boundaries, we
show the density integrals over the highlighted regions rounded to the nearest integer
(recall that regions are chosen so that such integrals tend to be near integer). We also
color code the boundaries according to the counts (e.g. green for objects containing one
object, blue for two objects, etc.).

7 Summary and Discussion

This paper is a first foray into enabling counting, previously treated as a traditional
batch learning problem, to be handled interactively. To do this we have proposed a
solution that speeds up the learning of object densities and overcomes the challenge of
efficient density visualization. The result is an agile and flexible system which enables
quite disparate visual material (spanning both microscopy images of cells and satellite
imagery) to be annotated and counted in a matter of seconds.

There is certainly room for improvement: firstly, the features used can be extended
to enable more local and contextual information to be captured. Secondly, our current
system does not handle perspective geometry and cannot be directly applied to images
with objects on a slanted ground plane. The latter, however, can easily be fixed by
allowing a projective transformation to be imported or by the user providing additional
object size annotations.
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