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Abstract. A graph theoretic approach is proposed for object shape
representation in a hierarchical compositional architecture called Com-
positional Hierarchy of Parts (CHOP). In the proposed approach, vocab-
ulary learning is performed using a hybrid generative-descriptive model.
First, statistical relationships between parts are learned using a Mini-
mum Conditional Entropy Clustering algorithm. Then, selection of de-
scriptive parts is defined as a frequent subgraph discovery problem, and
solved using a Minimum Description Length (MDL) principle. Finally,
part compositions are constructed using learned statistical relationships
between parts and their description lengths. Shape representation and
computational complexity properties of the proposed approach and algo-
rithms are examined using six benchmark two-dimensional shape image
datasets. Experiments show that CHOP can employ part shareability
and indexing mechanisms for fast inference of part compositions using
learned shape vocabularies. Additionally, CHOP provides better shape
retrieval performance than the state-of-the-art shape retrieval methods.

1 Introduction

Hierarchical compositional architectures have been studied in the literature as
representations for object detection [7], categorization [10,19,21] and parsing
[25]. A detailed review of the recent works is given in [26].

In this paper, we propose a graph theoretic approach for object shape rep-
resentation in a hierarchical compositional architecture, called Compositional
Hierarchy of Parts (CHOP), using a hybrid generative-descriptive model. Unlike
hierarchical compositional architectures studied in the literature, CHOP enables
us to measure and employ generative and descriptive properties of parts for the
inference of part compositions in a graph theoretic framework considering part
shareability, indexing and matching mechanisms. We learn a compositional vo-
cabulary of shape parts considering not just their statistical relationships but
also their shape description properties to generate object shapes. In addition,
we take advantage of integrated models for utilization of part shareability in
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Fig. 1. The information flow of Compositional Hierarchy of Parts (CHOP)

order to construct dense representations of shapes in learned vocabularies for
fast indexing and matching.

A diagram expressing the information flow in CHOP is given in Fig. 1. At the
first layer l = 1 of CHOP, we extract Gabor features from a given set of images.
We define parts as random graphs and represent part realizations as the instances
of random graphs observed on in some dataset. At each consecutive layer, l ≥
1, we first learn the statistical relationships between parts using a Minimum
Conditional Entropy Clustering (MCEC) algorithm [16] measuring conditional
distributions of part realizations. For this purpose, we compute the statistical
relationship between two parts by measuring the amount of information needed
to describe a part realization Ri of a part Pi given the part realization Rj of
another part Pj , for all parts represented in a learned vocabulary, and for all
realizations observed on images. Using the learned statistical relationships, we
represent compositions of object parts as object graphs. Second we define the
contribution of a part Pi to the representation of a shape by measuring the
conditional description length of the compositional representation of the shape
given the part Pi, using the Minimum Description Length (MDL) principle. In
order to select the parts which represent compositional shapes with minimum
description lengths, we solve a frequent subgraph discovery problem. Then, part
compositions are inferred considering learned statistical relationships between
parts and their description lengths. Finally, the inferred part compositions are
used to construct shape vocabularies. The steps are recursively employed until
no more compositions are inferred.

The paper is organised as follows. Related work and the contributions of the
paper is summarized in the next section. The proposed Compositional Hierarchy
of Parts (CHOP) algorithm is given in Section 3. Experimental analyses are given
in Section 4, and Section 5 concludes the paper.
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2 Related Work and Contribution

In [8] and [15], shape models are learned using hierarchical shape matching algo-
rithms. Kokkinos and Yuille [13] first decompose object categories into parts
and shape contours using a top-down approach. Then, they employ a Mul-
tiple Instance Learning algorithm to discriminatively learn the shape models
using a bottom-up approach. However, part-shareability and indexing mecha-
nisms [11] are not employed and considered as future work in [13]. Fidler, Boben
and Leonardis [11] analyzed crucial properties of hierarchical compositional ap-
proaches that should be invoked by the proposed architectures. Following their
analyses, we develop an unsupervised generative-descriptive model for learning
a vocabulary of parts considering part-shareability, and performing efficient in-
ference of object shapes on test images using an indexing and matching method.

Fidler and Leonardis proposed a hierarchical architecture, called Learned Hi-
erarchy of Parts (LHOP), for compositional representation of parts [10]. The
main difference between LHOP and the proposed CHOP is that CHOP employs
a hybrid generative-descriptive model for learning shape vocabularies using in-
formation theoretic methods in a graph theoretic framework. Specifically, CHOP
first learns statistical relationships between varying number of parts, i.e. compo-
sitions of K-parts instead of the two-part compositions called (duplets) used in
LHOP [10,11]. Second, shape descriptive properties of parts are integrated with
their statistical properties for inference of part compositions. In addition, the
number of layers in the hierarchy are not pre-defined but determined in CHOP
according to the statistical properties of the data.

MDL models have been employed for statistical shape analysis [5,24], specif-
ically to achieve compactness, specificity and generalization ability properties
of shape models [5] and segmentation algorithms [6]. We employ MDL for the
discovery of compositions of shape parts considering the statistical relationships
between the parts, recursively in a hierarchical architecture. Hybrid generative-
descriptive models have been used in [12] by employing Markov Random Fields
and component analysis algorithms to construct descriptive and generative mod-
els, respectively. Although their proposed approach is hierarchical, they do not
learn compositional vocabularies of parts for shape representation.

Although our primary motivation is constructing a hierarchical compositional
model for shape representation, we also examined the proposed algorithms for
shape retrieval in the Experiments section. For this purpose, we compare the sim-
ilarity between shapes using discriminative information about shape structures
extracted from a learned vocabulary of parts and their realizations. Theoretical
and experimental results of [20,22,23] on spectral properties of isomorphic graphs
show that the eigenvalues of the adjacency matrices of two isomorphic graphs are
ordered in an interval, and therefore provide useful information for discrimina-
tion of graphs. Assuming that shapes of the objects belonging to a category are
represented (approximately) by isomorphic graphs, we can obtain discriminative
information about the shape structures by analyzing spectral properties of the
part realizations detected on the shapes.

Our contributions in this work are threefold:
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1. We introduce a graph theoretic approach to represent objects and parts
in compositional hierarchies. Unlike other hierarchical methods [7,13,25],
CHOP learns shape vocabularies using a hybrid generative-descriptive model
within a graph-based hierarchical compositional framework. The proposed
approach uses graph theoretic tools to analyze, measure and employ geomet-
ric and statistical properties of parts to infer part compositions.

2. Two information theoretic methods are employed in the proposed CHOP
algorithm to learn the statistical properties of parts, and construct compo-
sitions of parts. First we learn the relationship between parts using MCEC
[16]. Then, we select and infer compositions of parts according to their shape
description properties defined by an MDL model.

3. CHOP employs a hybrid generative-descriptivemodel for hierarchical compo-
sitional representation of shapes. The proposed model differs from frequency-
based approaches in that the part selection process is driven by the MDL
principle, which effectively selects parts that are both frequently observed and
provide descriptive information for the representation of shapes.

3 Compositional Hierarchy of Parts

In this section, we give the descriptions of the algorithms employed in CHOP
in its training and testing phases. In the next section, we first describe the
preprocessing algorithms that are used in both training and testing. Next, we
introduce the vocabulary learning algorithms in Section 3.2. Then, we describe
the inference algorithms performed on the test images in Section 3.3.

3.1 Preprocessing

Given a set of images S = {sn, yn}
N
n=1, where yn ∈ Z

+ is the category label of
an image sn, we first extract a set of Gabor features Fn = {fnm(xnm) ∈ R}

M
m=1

from each image sn using Gabor filters employed at location xnm in sn at Θ

orientations [10]. Then, we construct a set of Gabor features F =
N

⋃

n=1
Fn. In this

work, we compute the Gabor features at Θ = 6 different orientations. In order to
remove the redundancy of Gabor features, we perform non-maxima suppression.
In this step, a Gabor feature with the Gabor response value fnm(xnm) is removed
from Fn if fnm(xnm) < fna(xna), for all Gabor features extracted at xna ∈

ℵ(xnm), where ℵ(xnm) is a set of image positions of the Gabor features that
reside in the neighborhood of xnm defined by Euclidean distance in R

2. Finally,

we obtain a set of suppressed Gabor features F̂n ⊂ Fn and F̂ =
N

⋃

n=1
F̂n.

3.2 Learning a Vocabulary of Parts

Given a set of training images Str, we first learn the statistical properties of
parts using their realizations on images at a layer l. Then, we infer the compo-
sitions of parts at layer l + 1 by minimizing the description length of the object
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descriptions defined as Object Graphs. In order to remove the redundancy of
the compositions, we employ a local inhibition process that was suggested in
[10]. Statistical learning of part structures, inference of compositions and local
inhibition processes are performed by constructing compositions of parts at each
layer, recursively, and the details are given in the following subsections.

Definition 1 (Parts and Part Realizations).
The ith part constructed at the lth layer P l

i = (G
l
i,Y

l
i) is a tuple consisting of a

directed random graph Gli = (V
l
i ,E

l
i), where V

l
i is a set of nodes and E li is a set of

edges, and Y l
i ∈ Z

+ is a random variable which represents the identity number or
label of the part. The realization Rl

i(sn) = (G
l
i(sn), Y

l
i (sn)) of P

l
i is defined by 1)

Y l
i (sn) which is the realization of Y l

i representing the label of the part realization
on an image (sn), and 2) the directed graph Gl

i(sn) = {V
l
i (sn),E

l
i(sn)} which

is an instance of the random graph Gli computed on a training image (sn) ∈ S
tr,

where V l
i (sn) is a set of nodes and El

i(sn) is a set of edges of Gl
i(sn), ∀n =

1,2, . . . ,Ntr.
At the first layer l = 1, each node of V1

i is a part label Y1
i ∈ V

1
i taking values

from the set {1,2, . . . ,Θ}, and E1i = ∅. Similarly, E1
i (sn) = ∅, and each node

of V 1
i (sn) is defined as a Gabor feature f i

na(xna) ∈ F̂
tr
n observed in the image

sn ∈ S
tr at the image location xna, i.e. the ath realization of P l

i observed in
sn ∈ Str at xna, ∀n = 1,2, . . . ,Ntr. In the consecutive layers, the parts and
part realizations are defined recursively by employing layer-wise mappings Ψl,l+1

defined as
Ψl,l+1 ∶ (P

l,Rl,Gl) → (P
l+1,Rl+1

),∀l = 1,2, . . . , L, (1)

where P l
= {P

l
i}

Al

i=1, Rl
= {Rl

i(sn) ∶ sn ∈ Str
}

Bl

i=1, P
l+1
= {P

l+1
j }

Al+1

j=1 , Rl+1
=

{Rl+1
j (sn) ∶ sn ∈ S

tr
}

Bl+1

j=1 and Gl is an object graph which is defined next. ◻

In the rest of this section, we will use Rl
j(sn) ≜ Rl

j , ∀j = 1,2, . . . ,Bl, ∀l =

1,2, . . . , L, ∀sn ∈ S
tr, for the sake of simplicity in the notation.

Definition 2 (Receptive and Object Graph).
A receptive graph of a part realization Rl

i is a star-shaped graph RGl
i = (V

l
i ,E

l
i),

which is induced from a receptive field centered at the root node Rl
i. A directed

edge eab ∈ E
l
i is defined as

eab =

⎧

⎪
⎪

⎨

⎪
⎪

⎩

(al, bl, φl
ab), if xnb ∈ ℵ(xna), a = i

∅, otherwise
, (2)

where ℵ(xna) is the set of part realizations that reside in a neighborhood of a part
realization Rl

a in an image sn, ∀R
l
a,R

l
b ∈ V

l
i , b ≠ i and ∀sn ∈ S

tr. φl
ab defines the

statistical relationship between Rl
a and Rl

b, as explained in the next subsection.
The structure of part realizations observed at the lth layer on the training set

Str is described using a directed graph Gl = (Vl,El), called an object graph, where
Vl = ⋃

i
V l
i is a set of nodes, and El = ⋃

i
El

i is a set of edges, where Vi and Ei is

the set of nodes and edges of a receptive graph RGi, ∀i, respectively. ◻
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Learning of Statistical Relationships between Parts and Part Realiza-
tions.We compute the conditional distributions P

P
l
i
(Rl

a∣P
l
j = R

l
b) for each i = Y l

a

and j = Y l
b between all possible pairs of parts (P l

i ,P
l
j) using Str at the lth layer.

However, we select a set of modes Ml
= {Mij ∶ i = 1,2, . . . ,Bl, j = 1,2, . . . ,Bl},

where Mij = {Mijk}
K
k=1 of these distributions instead of detecting a single mode.

For this purpose, we define the mode computation problem as a Minimum Con-
ditional Entropy Clustering problem [16] as

Zijk ∶= argmin
πk∈C

H(πk,R
l
a∣R

l
b), (3)

H(πk,R
l
a∣R

l
b) = − ∑

∀xl
na∈ℵ(x

l
nb
)

K

∑

k=1

P (πk,R
l
a∣R

l
b) logP (πk,R

l
a∣R

l
b). (4)

The first summation is over all part realizations Rl
a that reside in a neighborhood

of all Rl
b such that xl

na ∈ ℵ(x
l
nb), for all i = Y l

a and j = Y l
b , C is a set of

cluster ids, K = ∣C ∣ is the number of clusters, πk ∈ C is a cluster label, and
P (πk,R

l
a∣R

l
b) ≜ PPl

i
(πk,R

l
a∣P

l
j = R

l
b).

The pairwise statistical relationship between two part realizations Rl
a and Rl

b

is represented as Mijk = (i, j,cijk , Zijk), where cijk is the center position of the
kth cluster. In the construction of an object graphGl at the l

th layer, we compute
φl
ab = (cijk, k̂), ∀a, b as k̂ = argmink∈C ∥dab − cijk∥2, where ∥ ⋅ ∥2 is the Euclidean

distance, i = Y l
a and j = Y l

b , dab = xna −xnb, xna and xnb are the positions of Rl
a

and Rl
j in an image sn, respectively.

Inference of Compositions of Parts Using MDL. Given a set of parts P l,
a set of part realizations Rl, and an object graph Gl at the lth layer, we infer
compositions of parts at the (l+1)st layer by computing a mapping Ψl,l+1 in (1).
In this mapping, we search for a structure which best describes the structure of
parts P l as the compositions constructed at the (l+1)st layer by minimizing the
length of description of P l. In the inference process, we search a set of graphs
G

l+1
= {G

l+1
j }

Al+1

j=1 which minimizes the description length of Gl as

G

l+1
= argmin

G
l+1
j

value(Gl+1j ,Gl), (5)

where

value(Gl+1j ,Gl) =
DL(Gl+1j ) +DL(Gl∣G

l+1
j )

DL(Gl)
. (6)

is the compression value of an object graph Gl given a subgraph Gl+1j of a re-

ceptive graph RGl
j , ∀j = 1,2, . . . ,Bl. Description length DL of a graph G is

calculated using the number of bits to represent node labels, edge labels and ad-
jacency matrix, as explained in [3]. The inference process consists of two steps:

1. Enumeration: In the graph enumeration step, candidate graphs Gl+1 are
generated from Gl. However, each G

l+1
j ∈ Gl is required to include nodes
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(a) Gl+1
1 (Valid) (b) Gl+1

2 (Valid) (c) Gl+1
3 (Invalid) (d) Gl+1

4 (Invalid)

Fig. 2. Valid and invalid candidates

Input : Gl = (Vl,El): Object graph, beam, numBest, bestPartSize.
Output: Parts P l+1, realizations Rl+1.

1 parentList ∶= null; childList ∶= null; bestPartList ∶= null;
where childList,bestPartList are priority queues ordered by MDL scores.

2 Initialize parentList with frequent single node parts;
3 while parentList is not empty do
4 Extend parts in parentList in all possible ways into childList;
5 Evaluate parts in childList using (6);
6 Trim childList to beam top parts;
7 Merge elements of childList and bestPartList into bestPartList;
8 parentList ∶= null;
9 Swap parentList and childList;

end
10 Trim bestPartList to maxBest top parts;

11 P
l+1
∶= bestPartList;

12 R
l+1
∶= bestPartList.getInstances();

Algorithm 1: Inference of new Compositions

V

l+1
j and edges E l+1j from only one receptive graph RGl

i, ∀i. This selective

candidate generation procedure enforces Gl+1j to represent an area around
its centre node. Examples of valid and invalid candidates are illustrated in
Fig. 2. Gl+11 and Gl+12 are valid structures since each graph is inferred from
a single receptive graph, e.g. RGl

1 and RGl
2, respectively. Invalid graphs

G

l+1
3 and Gl+14 are not enumerated since their nodes/edges are inferred from

multiple receptive graphs.

2. Evaluation: Once we obtain Gl+1 by solving (5) with Gl+1 subject to con-
straints provided in the previous step, we compute a set of graph instances of
part realizations Gl+1

= {Gl+1
i }

Bl+1

i=1 such that Gl+1
i ∈ iso(Gl+1j ) and Gl+1

i ⊆ Gl,

where iso(Gl+1j ) is a set of all subgraphs that are isomorphic to Gl+1j . This
problem is defined as a subgraph isomorphism problem [4], which is NP-
complete. In this work, the proposed graph structures are acyclic and star-
shaped, enabling us to solve (5) in P-time. In order to obtain two sets of
subgraphs Gl+1 and Gl+1 by solving (5), we have implemented a simplified
version of the substructure discovery system, SUBDUE [4] which is em-
ployed in a restricted search space. The discovery algorithm is explained in
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Algorithm 1. The key difference between the original SUBDUE and our im-
plementation is that in Step 4, childList contains only star-shaped graphs,
which are extended from parentList by single nodes. The parameters beam,
numBest, bestPartSize are used to prune the search space.

The label of a part P l+1
j is defined according to its compression value μl+1

j ≜

value(Gl+1j ,Gl) computed in (6). We sort compression values in ascending order,
and assign the part label to the index of the compression value of the part.

After sets of graphs and part labels are obtained at the (l + 1)st layer, we
construct a set of parts P l+1

= {P

l+1
i }

Al+1

i=1 , where P l+1
i = (G

l+1
i ,Y l+1

i ). We call
P

l+1 a set of compositions of the parts from P l, constructed at the (l + 1)st

layer. Similarly, we extract a set of part realizations R̂l+1
= {Rl+1

j }
Bl+1

j=1 , where

Rl+1
j = (Gl+1

j , Y l+1
j ). In order to remove the redundancy in R̂l+1, we perform local

inhibition as in [10] and obtain a new set of part realizations Rl+1
⊆ R̂l+1.

Incremental Construction of the Vocabulary

Definition 3 (Vocabulary). A tuple Ωl = (P
l,Ml

) is the vocabulary con-
structed at the lth layer using the training set Str. The vocabulary of a CHOP
with L layers is defined as the set Ω = {Ωl ∶ l = 1,2, . . . , L}. ◻

We construct Ω of CHOP incrementally as described in the pseudo-code of
the vocabulary learning algorithm given in Algorithm 2. In the first step of
the algorithm, we extract a set of Gabor features Fn = {fnm(xnm)}

M
m=1 from

each image sn ∈ S
tr using Gabor filters employed at location xnm in sn at Θ

orientations. Then, we perform local inhibition of Gabor features using non-
maxima suppression to construct a set of suppressed Gabor features F̂n ⊂ Fn

as described in Section 3.1 in the second step. Next, we initialize the variable l
which defines the layer index, and we construct parts P1 and part realizations
R1 at the first layer as described in Definition 1.

In steps 5 − 11, we incrementally construct the vocabulary of the CHOP. In
step 5, we compute the sets of modesMl by learning statistical relationships be-
tween part realizations as described in Section 3.2. In the sixth step, we construct
an object graph Gl usingM

l as explained in Definition 2, and we construct the
vocabulary Ωl = (P

l,Ml
) at the lth layer in step 7. Next, we infer part graphs

that will be constructed at the next layer Gl+1 by computing the mapping Ψl,l+1.
For this purpose, we solve (5) using our graph mining implementation to obtain
a set of parts P l+1 and a set of part realizations Rl+1 as explained in Section
3.2. We increment l in step 10, and subsample the positions of part realizations
Rl

i by a factor of σ, ∀n,Rl
i in step 11, which effectively increases the area of the

receptive fields through upper layers. We iterate the steps 5 − 11 while a non-
empty part graph Gli is either obtained from the training images at the first layer,
or inferred from Ωl−1, R

l−1 and Gl−1 at l > 1, i.e. Gl ≠ ∅, ∀l ≥ 1. As the output
of the algorithm, we obtain the vocabulary of CHOP, Ω = {Ωl ∶ l = 1,2, . . . , L}.
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Input :
– Str

= {sn}
N
n=1: Training dataset,

– Θ: The number of different orientations of Gabor features,
– σ: Subsampling ratio.

Output: Vocabulary Ω.

1 Extract a set of Gabor features F tr
=

N

⋃
n=1

F tr
n , where F tr

n = {fnm(xnm)}
M
m=1 from

each image sn ∈ S
tr;

2 Construct a set of suppressed Gabor features F̂ tr
⊂ F tr (see Section 3.1);

3 l ∶= 1;

4 Construct P1 and R1 (see Definition 1);

while Gl
≠ ∅ do

5 Compute the sets of modesMl (see Section 3.2);

6 Construct Gl usingM
l (see Definition 2);

7 Construct Ωl = (P
l,Ml

);

8 Infer part graphs Gl+1 by solving (5) (see Section 3.2);

9 Construct P l+1 and Rl+1 (see Section 3.2);
10 l ∶= l + 1;

11 Subsample the positions of part realizations Rl
i by a factor of σ, ∀n,Rl

i;

end
12 Ω = {Ωt ∶ t = 1,2, . . . , l − 1};

Algorithm 2: The vocabulary learning algorithm of Compositional Hier-
archy of Parts

3.3 Inference of Object Shapes on Test Images

In the testing phase, we infer shapes of objects on test images sn ∈ S
te using

the learned vocabulary of parts Ω. We incrementally construct a set of inference
graphs T (sn) = {Tl(sn)}

L
l=1 of a given test image sn ∈ S

te using the learned
vocabulary Ω = {Ωl}

L
l=1. At each lth layer, we construct a set of part realizations

Rl
(sn) = {R

l
i(sn) = (G

l
i(sn), Y

l
i (sn))}

B′l

i=1
and an object graph Gl = (Vl,El) of

sn, ∀l = 1,2, . . . , L. Algorithm 3 explains the inference algorithm for test images.
The test image is processed in the same manner as in vocabulary learning (steps
1 − 5). In step 6, isomorphisms of part graph descriptions Gl+1 obtained from
Ωl+1 are searched in Gl in P-time (see Section 3.2). Part realizations Rl+1 of the
new object graph Gl+1 are extracted from Gl+1 in step 7. The discovery process
continues until no new realizations are found.

At the first layer l = 1, the nodes of the instance graph G1
i (sn) of a part

realization R1
i (sn) represent the Gabor features f i

na(xna) ∈ F̂ te
n observed in

the image sn ∈ S
te at an image location xna as described in Section 3.2. In

order to infer the graph instances and compositions of part realizations in the
following layers 1 < l ≤ L, we employ a graph matching algorithm that constructs
Gl+1

i (sn) = {H(P
l+1
) ∶ H(P l+1

) ⊆ Gl} which is a set of subgraph isomorphisms
H(P l+1

) of part graphs Gl+1 in P l+1, computed in Gl.
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Input :
– s: Test image,
– Ω: Vocabulary,
– Θ: The number of different orientations of Gabor features,
– σ: Subsampling ratio.

Output: Inference graph T (s).
1 Extract a set of Gabor features F = {fm(xm)}

M
m=1 from image s;

2 Construct a set of suppressed Gabor features F̂ ⊂ F (see Section 3.1);
3 l ∶= 1;

4 Construct R1 from F̂ (see Definition 1);

while Ωl+1 ≠ ∅ ∧R
l
≠ ∅ do

5 Construct Gl usingM
l in Ωl;

6 Find graph instances of part realizations Gl+1
= {Gl+1

j }
B′l+1
j=1 such that

Gl+1
j ∈ iso(Gl+1

) and Gl+1
j ⊆ Gl (see Section 3.2, Evaluation);

7 Construct Rl+1 from Gl+1 (see Section 3.2);
8 l ∶= l + 1;

9 Subsample the positions of part realizations Rl
i by a factor of σ, ∀Rl

i;

end
10 T (s) = {Gt ∶ t = 1,2, . . . , l − 1};

Algorithm 3: Object shape inference algorithm for test images

4 Experiments

We examine our proposed approach and algorithms on six benchmark object
shape datasets, which are namely the Washington image dataset (Washington)
[1], the MPEG-7 Core Experiment CE-Shape 1 dataset [14], the ETHZ Shape
Classes dataset [9], 40 sample articulated Tools dataset (Tools-40) [17], 35 sam-
ple multi-class Tools dataset (Tools-35) [2] and the Myth dataset [2]. In the
experiments, we used Θ = 6 different orientations of Gabor features with the
same Gabor kernel parameters implemented in [10]. We used a subsampling
ratio of σ = 0.5. A Matlab implementation of CHOP is available here1. Addi-
tional analyses related to part shareability and qualitative results are given in
the Supplementary Material.

4.1 Analysis of Generative and Descriptive Properties

We analyze the relationship between the number of classes, views, objects, and
vocabulary size, average MDL values and test inference time in three different
setups, respectively. Vocabulary size and test inference time analyses provide
information about the part shareability and generative shape representation be-
havior of our algorithm. We examine the variations of the average MDL values
under different test sets. In order to get a more descriptive estimate of MDL val-
ues, we use 10 best parts constructed at each layer of CHOP. While a vocabulary

1 https://github.com/rusen/CHOP.git

https://github.com/rusen/CHOP.git
https://github.com/rusen/CHOP.git
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(a) (b) (c)

Fig. 3. Analyses with different number of categories. (Best viewed in colour).

layer may contain thousands of parts, most of the parts constructed with the
lowest MDL scores belong to a single object in the model, and therefore exhibit
no shareability.

The inference time of CHOP is calculated by averaging running times of the
inference algorithm which is employed on test images.

Analyses with Different Number of Categories. In this section we use the
first 30 categories of the MPEG-7 Core Experiment CE-Shape 1 dataset [14].
We randomly select 5 images from each category to construct training sets.

The vocabulary size grows sub-linearly as shown with the blue line in Fig. 3.a.
The higher part shareability observed in the first layers of CHOP is considered as
the main contributing factor which affects the vocabulary size. We observe a sub-
linear growth of the number of parts as the number of categories increases, which
affects the test image inference time as shown in Fig. 3.c. This is observed because
the inference process requires searching every composition in the vocabulary
within the graph representation of a test image. The efficient indexing mechanism
implemented in CHOP speeds up the testing time, and the average test time is
calculated as 0.5-3 seconds depending on the number of categories. Average
MDL values tend to increase after a boost at around 3-4 categories (lower is
better), and converge at 15 categories. The inter-class appearance differences
allow for a limited amount of shareability between categories.

4.2 Analyses with Different Number of Objects

In order to analyze the effect of increasing number of images to the proposed
performance measures, we use 30 samples belonging to the ”Apple Logos” class
in ETHZ Shape Classes dataset [9] for training. Compared to the results obtained
in the previous section, we observe that average MDL values increase gradually
as the number of objects increase in Fig. 4.b. Additionally, the growth rate of
the vocabulary size observed in Fig. 4.a is less than the one depicted in Fig. 3.a.

4.3 Analyses with Different Number of Views

In the third set of experiments, we use a subset of Washington image dataset
[1] consisting of images captured at different views of the same object. Multiple
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(a) (b) (c)

Fig. 4. Analyses with different number of objects. (Best viewed in colour).

(a) (b) (c)

Fig. 5. Analyses with different number of views. (Best viewed in colour).

view images of a cup are used as the training data. Due to the fairly symmetrical
nature of a cup except for its textures and handle, the shareability of the parts in
the vocabulary remains consistent as the training image set grows. Interestingly,
we observe a local maximum at around 15 views in Fig. 5.b. Depending on the
inhibition and part selection (SUBDUE) parameters, less frequently observed
yet valuable parts may be discarded by the algorithm in mid-layers.

4.4 Shape Retrieval Experiments

Following the results of [20,22,23], we employ eigenvalues of adjacency matri-
ces of edge weighted graphs computed using object graphs of shapes as shape
descriptors. For this purpose, we first define edge weights eab ∈ El of an edge
weighted graph Wl = (Vl,El) of an object graph Gl = (Vl,El) as

eab =

⎧

⎪
⎪

⎨

⎪
⎪

⎩

πk, if Rl
a is connected to Rl

b, ∀Rl
a,R

l
b ∈ Vl

0, otherwise
, (7)

where πk is the cluster index which minimizes the conditional entropy (4) in (3).
Then, we compute the weighted adjacency matrix of Wl and use the eigenval-
ues as shape descriptors. We compute the distance between two shapes as the
Euclidean distance between their shape descriptors.

In the first set of experiments, we compare the retrieval performances of
CHOP and the state-of-the-art shape classification algorithms which use inner-
distance (ID) measures to compute shape descriptors which are robust to ar-
ticulation [17]. The experiments are performed on Tools-40 dataset [17] which
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Table 1. Comparison of shape retrieval performances (%) on Tools-40 dataset

Algorithms Top 1 Top 2 Top 3 Top 4

SC+DP [17] 20/40 10/40 11/40 5/40
MDS+SC+DP [17] 36/40 26/40 17/40 15/40
IDSC+DP [17] 40/40 34/40 35/40 27/40

CHOP 37/40 35/40 35/40 29/40

contains 40 images captured using 8 different objects each of which provides 5
articulated shapes. Given each query image, the four most similar matches are
chosen from the other images in the dataset for the evaluation of the recognition
results [17]. The results are summarized as the number of first, second, third
and fourth most similar matches that come from the correct object in Table
1. We observe that CHOP provides better performance than the shape-based
descriptors and retrieval algorithms SC+DP and MDS+SC+DP [17]. However,
IDSC+DP [17], which integrates texture information with the shape informa-
tion, provides better performance for Top 1 retrieval results, and CHOP performs
better than IDSC+DP for Top 4 retrieval results. The reason of this observation
is that texture of shape structures provides discriminative information about
shape categories. Therefore, the objects which have the most similar textures
are closer to each other than the other objects as observed in Top 1 retrieval
results. On the other hand, texture information may dominate the shape infor-
mation and may lead to overfitting as observed in Top 4 retrieval results (see
Table 1).

In the second set of experiments, we use Myth and Tools-35 datasets in order
to analyze the performance of the shape retrieval algorithms [18] and CHOP, con-
sidering part shareability and category-wise articulation. In the Myth dataset,
there are three categories, namely Centaur, Horse and Man, and 5 different im-
ages belonging to 5 different objects in each category. Shapes observed in images
differ by articulation and additional parts, e.g. the shapes of objects belonging
to Centaur and Man categories share the upper part of the man body, and the
shapes of objects belonging to Centaur and Horse categories share the lower
part of the horse body. In the Tools-35 dataset, there are 35 shapes belonging
to 4 categories which are split as 10 scissors, 15 pliers, 5 pincers, 5 knives. Each
object belonging to a category differs by an articulation. Performance values are
calculated using a Bullseye test as suggested in [18] to compare the performances
of CHOP and other shape retrieval algorithms Contour-ID [18] and Contour-HF
[18]. In the Bullseye test, five most similar candidates for each query image are
considered [18]. Experimental results given in Table 2 show that CHOP outper-
forms Contour-ID and Contour-HF [18] which employ distributions of descriptor
values calculated at shape contours as shape features that are invariant to articu-
lations and deformations in local part structures. However, part shareability and
articulation properties of shapes may provide discriminative information about
shape structures, especially on the images in the Myth dataset.
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Table 2. Comparison of shape retrieval performances (%) on Myth and Tools-35

Datasets Contour-ID [18] Contour-HF [18] CHOP

Tools-35 84.57 84.57 87.86

Myth 77.33 90.67 93.33

5 Conclusion

We have proposed a graph theoretic approach for object shape representation in a
hierarchical compositional architecture called Compositional Hierarchy of Parts
(CHOP). Two information theoretic algorithms are used for learning a vocab-
ulary of compositional parts employing a hybrid generative-descriptive model.
First, statistical relationships between parts are learned using the MCEC algo-
rithm. Then, part selection problem is defined as a frequent subgraph discovery
problem, and solved using an MDL principle. Part compositions are inferred con-
sidering both learned statistical relationships between parts and their description
lengths at each layer of CHOP.

The proposed approach and algorithms are examined using six benchmark
shape datasets consisting of different images of an object captured at different
viewpoints, and images of objects belonging to different categories. The results
show that CHOP can use part shareability property in the construction of com-
pact vocabularies and inference trees efficiently. For instance, we observe that
the running time of CHOP to perform inference on test images is approximately
0.5-3 seconds for an image. Additionally, we can construct compositional shape
representations which provide part realizations that completely cover the shapes
on the images. Finally, we compared shape retrieval performances of CHOP and
the state-of-the-art retrieval algorithms on three benchmark datasets. The results
show that CHOP outperforms the evaluated algorithms using part shareability
and fast inference of descriptive part compositions.

In the future work, we will employ discriminative learning for pose estima-
tion and categorization of shapes. In addition, online and incremental learning
will be implemented considering the results obtained from the analyses on part
shareability performed in this work.
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