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Abstract. We propose a novel method to find approximate convex 3D
shapes from single RGBD images. Convex shapes are more general than
cuboids, cylinders, cones and spheres. Many real-world objects are near-
convex and every non-convex object can be represented using convex
parts. By finding approximate convex shapes in RGBD images, we ex-
tract important structures of a scene. From a large set of candidates
generated from over-segmented superpixels we globally optimize the se-
lection of these candidates so that they are mostly convex, have small
intersection, have a small number and mostly cover the scene. The opti-
mization is formulated as a two-stage linear optimization and efficiently
solved using a branch and bound method which is guaranteed to give the
global optimal solution. Our experiments on thousands of RGBD images
show that our method is fast, robust against clutter and is more accurate
than competing methods.

1 Introduction

Finding 3D structures from RGBD images is an important computer vision task.
Instead of finding shape primitives such as planes, cuboids, spheres or cylinders,
we extract shapes that are roughly convex from a single RGBD image. A RGBD
image provides the information of a scene surface from a specific view. Each
point on the surface has not only x, y and z coordinates but also a RGB color.
The motivation to extract approximate convex structures in RGBD images is
that most objects in both indoor and outdoor environments are roughly convex
and all complex objects can be modeled as the composition of a set of convex
shapes. By finding approximate convex shapes from RGBD images, we extract
important structures of a scene. Fig. 1 illustrates finding approximate convex
shapes in single RGBD images using the proposed method. As shown in the
figure, we find a set of near-convex shapes, each corresponding to a set of 3D
points in the point cloud of a RGBD image.

Finding approximate convex shapes in RGBD images is different from approx-
imate convex decomposition [5,10] of mesh graphics models. Previous convex
decomposition methods have been mainly used to simplify complex 3D graphics
objects into approximate convex parts for easier collision control in animation.
These convex decomposition algorithms usually require the input 3D mesh mod-
els to be noise free and represent a complete object scan, which has no inter-
or intra-object occlusion and reveals the look of the object from each different

D. Fleet et al. (Eds.): ECCV 2014, Part III, LNCS 8691, pp. 582–596, 2014.
c© Springer International Publishing Switzerland 2014



Finding Approximate Convex Shapes in RGBD Images 583

−1 0 1−1

−0.5

0

0.5

1

1.5

−4−3.5−3−2.5

x

y

z

−1
0

1

−1

−0.5

0

0.5

1

1.5

−4−3.5−3−2.5

y

x

z

Fig. 1. Finding approximate convex shapes in single RGBD images. Row one shows a
color image, its depth map, the convex hulls of the found shapes in two different views
and the masks of the shapes on the image plane from the proposed method. Rows 2-3
show more example results of the proposed method (each result is a pair of color image
and the approximate convex shape map).

view point. In this paper, we tackle the problem of finding approximate convex
structures from a single view of the scene. There are usually heavy occlusions
and data is missing in different places. The 3D point cloud is also quite noisy.
This makes the problem of finding convex shapes in RGBD images challeng-
ing. Another difference of our shape finding task to previous pure geometric
data decomposition is that apart from geometry structure we also have color
information which helps disambiguate some object level boundaries. Moreover,
instead of decomposing a 3D point cloud into roughly convex parts, our task
is to find the approximate convex shapes and these shapes are not necessarily
completely disjoint. This enables us to build a more efficient method that di-
rectly works on shape selection and is able to use shape proposals from different
methods. To our knowledge, finding roughly convex shapes in RGBD images has
not been attempted before.

In this paper we propose a global optimization method to find the approx-
imate convex shapes in RGBD images by using surface patch candidates (3D
superpixels). These candidates can be obtained from different methods by using
both color and 3D shape information. The optimization selects shapes from the
large set of candidates so that the overall convex fitting error is small, shapes
have small overlaps, there is a small number of shapes and the extracted shapes
mostly cover the RGBD image. We formulate the optimization problem as a
two-stage mixed integer linear program. We find the globally optimal solution
using a branch and bound method. Experiments show that our proposed method
is more accurate than competing methods and at the same time is more efficient.

1.1 Related Methods

Finding geometric primitives such as planes, spheres, cones, cylinders [1,2] in a
point cloud has been intensively studied. Representing objects in RGBD or stereo
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images using cuboids has been studied in [12,17,18]. Methods that use geometric
primitives tend to represent a scene with many small components if the scene
contains objects with complex shapes. In [3], a greedy method is proposed to find
superquadratics in clutter-free range data. In this paper, we detect approximate
convex shapes, which provide a more compact representation of scene structure
in cluttered RGBD images. Compared to shape models such as planes, cuboids
etc., approximate convex shape model is more general and has more grouping
power. With properly constructed energy function, the optimal grouping is able
to give near-object level shapes or small number of object parts. When finding
approximate convex shapes, we do not simply judge the result by the convexity of
each component. For instance, a convex representation using single points is not
desirable because it is not a minimum number representation. We are interested
in the representation that satisfies overall low local concavity, small intersection,
max-covering and min-number constraints. Convexity is one soft constraint in
the formulation. Such a setting enables our method to group 3D object regions
even with holes or other types of non-convexity.

The proposed method is related to approximate convex decomposition. Differ-
ent methods have been proposed to decompose a 2D shape or a 3D mesh object
to approximate convex components. Delaunay triangulation is a simple method
of convex shape decomposition. However, decomposing a polyhedron into mini-
mum number of convex components is NP-Hard [4]. A quadratic bound exists for
an approximation algorithm [4]. Fortunately, exact convex decomposition is of-
ten not necessary and also not desirable in computer vision applications because
very few objects are perfectly convex. A fast greedy merging method has been
proposed in [5] for approximate convex decomposition. In [9], methods of finding
good concavity cuts are proposed and as an extension in [10], a dynamic pro-
gramming method is further used to optimize the cuts for the decomposition.
Other global optimization methods have also been used in [8,6,7] to optimize
these cuts with different extra constraints. These previous methods have been
mostly targeted at graphics applications on clean 3D models. In computer vision,
their application is mostly limited to 2D shape representation. Different from the
previous shape decomposition approach, in this paper, we directly optimize the
selection of a set of approximate convex shapes in RGBD images. Ideally, these
shapes should represent whole objects that are roughly convex or the convex
parts of concave objects. Finding convex objects is different from previous de-
composition approaches: we allow small overlaps between shapes due to noisy
observations. To our knowledge, there is no previous works that tackle convex
object finding in RGBD images. We propose a fast and reliable solution.

Point cloud segmentation is also related to the proposed method. These meth-
ods either cluster the points using the affinity of point color and 3D coordi-
nates or rely on semantic classifiers to categorize each point into an object class
[13,14,15]. Object supporting relations are further estimated in [11]. A method
that uses object bounding box spatial and supporting relations for object re-
gion segmentation in stereo images has been proposed in [12]. Different from
these previous methods, the proposed method is more about shape finding than
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segmentation and we allow small overlaps between shape detections. Our method
also does not need to recognize the surface point classes in shape detection.

In summary, the contribution of the paper includes: we tackle the new problem
of convex shape finding in RGBD images; we propose a new method to extract
a set of roughly convex shape candidates from RGBD images; and, we propose a
novel two-stage linear optimization method to find approximate convex shapes.

2 Methods

2.1 Overview

Our proposed method first extracts 3D shape candidates. There is no restric-
tion that in these 3D shape candidates there is a disjoint set to partition the
scene. We thus can use different candidate generation approaches to increase the
success rate of shape detection. In this paper, to illustrate the concept, we use
two low-complexity superpixel merging procedures to generate the candidates.
Region proposals from other methods can be included to further improve the
performance. Each shape candidate is represented as a 3D superpixel on the
surface of a scene. Our goal is to select a subset of shape candidates that best
describe the RGBD data and satisfy the geometrical constraints.

In more details, let x be the indicator vector of these shape candidates. Each
binary element in the vector x indicates whether the corresponding shape can-
didate is selected. We try to optimize the following energy function.

min
x

{U(x) + αN(x) + βI(x) − λP (x)}

s.t. x is a valid shape candidate selection. (1)

Here U(.) quantifies the costs of the selected candidates. This is a unary term.
U(.) measures the concavity of the shapes. By minimizing U(.), the optimization
tends to select roughly convex candidates. Term N(.) penalizes the number of
selected candidates; we try to select a small number of candidates to represent
the scene. I(.) is the intersection term that quantifies the intersection volume be-
tween the convex hulls of neighboring shapes and the intersection area of their
projections on the image plane. Term P (.) encourages the selected shapes to
spread out and cover a large area of the 3D scene surface. Term P is critical;
without it, the optimization gives a trivial all zero solution. P is a high order
term that couples everything together. Constants α, β and λ control the weight
among the terms. By optimizing the above energy function, we select an optimal
set of shape candidates so that they are roughly convex, have little 2D and 3D
intersection, have a small number and cover a large region of the 3D scene sur-
face. In fact, our optimization contains two stages, each having slightly different
objective function and constraints. The first stage is used to deal with the shapes
whose convexity is within a range and the second stage is used to handle the
rest of the shapes. The optimization contains high order term and is hard to
solve directly. Naive exhaustive search is infeasible because we have a large set
of candidates. In the following, we study how the formulation can be linearized
and how we can solve the problem using an efficient branch and bound method.
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2.2 Candidate Extraction

We first find a set of approximate convex shape candidates from the RGBD
images. The candidates are essentially composed of a group of 3D points in the
original point cloud. We use several different methods to generate these candi-
dates to increase the chance that we include all the approximate convex shapes.
Note that we do not require that these candidates all have high quality. The im-
portant factor is that the good ones are hopefully included in the candidate set
if we generate enough candidate shapes. Through optimization, we make a more
accurate final decision. We partition the 3D point clouds into over-segmented
superpixels using both the geometry and color information. By merging these
3D superpixels iteratively using the convexity constraints, we generate a set of
candidate approximate convex shapes.

The over-segmented superpixels are preferably small planar patches. We use
two different approaches to generate these superpixels. The first one is a mod-
ification of the graph based segmentation method [16]. Instead of using color
alone, we use both color and depth when computing the affinity of neighboring
pixels. The x, y and z maps of a RGBD image are normalized to range [0,1]. The
color image’s three channels are also in the range [0,1]. The distance between
two points is defined as the summation of the point and the color distance. With
the combined distance, we obtain the superpixels using the graph based seg-
mentation method [16]. Apart from the superpixels generated using the above
method, we also use a k-means method to generate over-segmented patches.
Each image pixel corresponds to a vector (nx, ny, nz, d, z̄), where (nx, ny, nz) is
the normalized normal vector of the 3D scene surface at point (x, y, z). Here
d = xnx + yny + znz, the signed distance of the plane passing (x, y, z) with nor-
mal (nx, ny, nz) to the origin. z̄ is the normalized z in range [0,1]. The k-means
clustering on the 5D vectors generates K clusters, e.g. K = 20. Note that the
number of clusters is different from the number of generated superpixels. Since a
cluster from k-means may contain multiple disconnected components, the effec-
tive superpixels after we extract connected components are many more than the
number of clusters. An example in Fig.3 (c,d) shows the superpixels generated
using these two approaches. As shown in the figure, over-segmented superpixels
are able to capture the object boundaries quite well. The k-means method essen-
tially clusters image pixels into flat 3D patches. The graph segmentation method
uses both the color and the geometric information in the clustering. These over-
segmented image patches are usually not able to yield masks for heterogeneous
large targets. We therefore successively merge the superpixels to generate more
shape candidates. If properly implemented, the merging procedure has a high
chance to capture these bigger convex structures.

The merging procedure is built on top of the concavity measurement. Different
from a complete mesh model, our mesh model is an incomplete surface that has
a “front” side and a “back” side. A 3D superpixel is roughly convex if the shape
extrudes towards the front, otherwise it is roughly concave. We define the front
and back side of the surface using a ray starting from the camera center: (0,0,0)
in the camera coordinate system. The segment of the ray from (0,0,0) to a point
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Fig. 2. (a): 3D point set with pushed-away boundaries. Here boundary points are scaled
by two. (b): The convex hull. (c): The 3D points on the shape with the frontal hull.
(d)-(f) show another concave shape example of measuring the concavity.

in the 3D point cloud is the front and the rest part of the ray is the back of the
surface. Note that the seemingly simple way of defining the front and back using
an orthographic projection is wrong; there is no guarantee that a ray parallel
to the optical axis would have only a single intersection point with the scene
surface.

The convexity measurement is obtained as follows. We first extend the bound-
ary points of a 3D superpixel further away from the camera projection center
(0,0,0). This can be easily implemented by multiplying a large scaling factor, e.g.
10, to the x, y and z of these boundary points. We then compute a 3D convex
hull of this modified 3D superpixel. The next step is to remove the 3D triangles
on the convex hull with at least one vertex on the modified boundary points. By
removing these patches, we are left with an frontal hull of the 3D superpixel.
Fig. 2 shows the procedure. As shown in Fig. 2, if a 3D superpixel is roughly
convex, the mean distance of the points to the frontal hull is small; otherwise as
shown in Fig. 2 (f), the mean distance of the points to the frontal hull is large.
The mean distance of points to the frontal hull is thus used as the measurement
of the convexity/concavity of a 3D superpixel. Apart from the 3D concavity, we
also measure the concavity of the projected 2D superpixel on the image plane.
The 2D concavity is defined as 1−Nf/Nc, where Nf is the number of foreground
pixels on the 2D superpixel and Nc is the number of pixels on the convex hull
of the 2D superpixel. Both of the two measurements are used in the final shape
selection.

With the 3D concavity measurement, we successively merge the neighboring
superpixels. Two 3D superpixels are deemed as neighbors if their minimum 3D
point distance is less than some threshold. In the merging procedure, two neigh-
boring 3D superpixels that have the smallest concavity if combined is merged
into a single superpixel. This procedure continues until there is only one super-
pixel left or all the superpixels are isolated. The shape candidates are composed
of the 3D superpixels from the two partition methods and the new superpixels
generated in the merging procedure. Since there is no sub-optimal condition for
either of the merging process, we cannot just set a stopping criterion and get the
optimal set of convex shapes using the simple merging procedure. Even though
there is no optimal guarantee, there is still a high chance that the good convex
shapes that should appear in the final shape selection exist in the merging pro-
cedure. In fact, there is no guarantee that the concavity score increases as the
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patches become bigger. We thus select these shapes to form the approximate
convex representation to minimize the energy function defined in Eq. (1).

2.3 Formulation

The formulation in Eq. (1) is a hard combinatorial problem due to the high order
term that couples the candidate selection. Here we propose a two-stage linear
formulation that can be efficiently solved using a branch and bound method. In
the following, we show how each term can be linearized. Recall that we use a vec-
tor of binary variables (x1, x2, ..., xn) to indicate the selection of each candidate
shape, where n is the number of 3D shape candidates.

Unary Term. Let ui = agiNi + bhi + cgi, where a, b and c are constant
coefficients, gi and hi are the 3D concavity and 2D concavity and Ni is the
number of points in the shape candidate i. Recall that gi is the average distance of
the points on the 3D superpixel to the frontal hull; giNi is the total distance of the
points to the frontal hull. We define the overall convexity term as

∑
i=1..n uixi.

When we minimize the unary term, we minimize the total distance of the points
on the selected candidates to the local frontal hull, and the selected shapes also
should have small concavity individually in both 2D and 3D.

We deal with the shape candidates with concavity higher than some threshold
differently from those with lower concavity. Essentially, we want to assign the
shape candidates whose concavity is within the range first and then determine
the selection of the rest of the candidates. Due to camera distortion, large flat
shape candidates such as wall and floor often appear curved (concave shaped)
when they are far away from camera. These shape candidates may have large
concavity measurement in RGBD images. When this happens, a single stage
optimization has a hard time to balance the local shape cost and the global
constraint costs no matter how we set the parameters in the energy function.
We thus use a two-stage optimization to alleviate this problem. At the first stage
optimization ui is defined above, and at the second stage we only use giNi in
the unary term.

Binary Term. A physically feasible selection of 3D shape candidates should
have small intersection to each other. Here we use the 3D convex hull inter-
sections of these candidates to quantify how the 3D shapes interact to each
other at the first stage of optimization. The intersection of two convex hulls
is another convex hull. We represent the convex hull as a polytope: a convex
hull can be represented as the intersection of a set of half spaces (the space
on one side of a plane). Computing the exact intersection of two polytopes has
high computational complexity. Since we only need a ratio to measure the inter-
section, we obtain the intersection ratio using the following space quantization
method. We discretized the 3D finite visible volume in the camera frame of the
RGBD image. Let {Aiw ≤ bi, i ∈ Ip} represent the polytope of shape can-
didate p and {Aiw ≤ bi, i ∈ Iq} the polytope of candidate q. Then the 3D
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convex hull intersection ratio rp,q =
∑

w∈V s((∩i∈Ip (Aiw ≤ bi)) ∩ (∩i∈Iq (Aiw ≤
bi)))/

∑
w∈V s((∩i∈Ip(Aiw ≤ bi)) ∪ (∩i∈Iq (Aiw ≤ bi))), where V contains all

the discretized voxel centers; s(X) = 1 if X is true and otherwise 0. The in-
tersection constraint can be formulated as the following binary energy term∑

{p,q}∈N rp,qxpxq, where N is the set of all neighboring 3D superpixels. We de-
fine two 3D superpixels are neighbors if their minimum point distance is less than
a threshold. The intersection term is quadratic. We use a linear programming
trick to linearize it. Since the assignment variable x is binary, we let yp,q = xpxq

with the constraint that yp,q ≥ 0, yp,q ≥ xp + xq − 1, yp,q ≤ xp, yp,q ≤ xq. It is
easy to verify that yp,q is 1 if and only if xp and xq are both 1, and otherwise 0.
Therefore, by introducing the auxiliary variable yp,q the intersection term can be
converted to linear term

∑
{p,q}∈N rp,qyp,q with the constraints on y. We also re-

quire that the intersection does not exceed some hard threshold R, i.e., yp,q = 0
if rp,q > R.

The 3D convex hull intersection constraint is only used at the first stage of
optimization. At the second stage, we use the intersection ratio of the projected
2D superpixels on the image plane, rp,q = lp,q = A(Sp ∩ Sq)/A(Sp ∪ Sq), where
A(.) is the area of a region and Sp and Sq are the projected 2D superpixel regions
of the 3D shapes on the image plane.

Global Term. It is not enough to use the above unary and binary terms alone.
Since all the coefficients in the unary and binary terms are positive, zero vector
is a trivial solution. We need a global term to enforce that enough shapes should
be selected. We cannot constrain the number of the selection because in most of
the cases this number is unknown. A natural choice is to enforce that the set of
chosen shape candidates should cover most of the image plane if projected. This
in fact is equivalent to let the shapes cover as much of the 3D points as possible
since each 3D point corresponds to a single 2D pixel in the image. Note that the
seemingly simpler constraint that each point of the image should belong to a
selected shape is not always feasible. The max-covering constraint is necessary.

The problem size would be too big if we model the covering term at the point
level. Instead, we quantize the image plane into small rectangle patches. For
480×640 images, 20×20 tile is sufficient. A shape candidate covers a tile if the
projection of the shape candidate on the image plane has an intersection with
the tile. We introduce auxiliary variable zk to indicate whether tile k is covered:
zk = 1 if tile k is covered by at least one shape candidate. The tile covering
variable z is related to the candidate selection variable x by:

∑
i∈Fk

xi ≥ zk, 0 ≤
zk ≤ 1, where Fk is the set of shape candidates that cover tile k. To encourage
max-covering, we just need to maximize the overall covering

∑
k∈T zk, where

T contains indexes of all the small tiles. In fact, we do not have to constrain z
to be binary. We can verify that if at least one selected shape candidate covers
tile k, zk has to be 1 to maximize the covering term; if all the shape candidates
that cover tile k are not selected, zk has to be 0.

∑
k∈T zk indeed quantifies the

amount of covering.
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Number Term. By enforcing the max-covering term, we avoid the trivial zero
solution problem. However, there is still a bias for the algorithm to select many
small shape candidates. Notice that since we multiply the number of points to
concavity, we in fact tend to select many small shape candidates to represent the
whole scene and this may result in a smaller overall point distance to the local
frontal hulls. The other two terms in the convexity term can relieve the problem
a little bit. Along with these two terms, we explicitly introduce another number
term

∑
i xi to the objective function to penalize the selection of a large number

of shape candidates. By adjusting the weight of this term, we are able to select
a relatively small number of large shape candidates to explain the whole scene.

The complete two-stage linear formulation is as follows. At the first stage, we
optimize:

min
∑

i

(agiNi + bhi + cgi + α)xi + β
∑

{p,q}∈N
rp,qyp,q − λ

∑

k∈T
zk

s.t. yp,q ≥ 0, yp,q ≥ xp + xq − 1, yp,q ≤ xp, yp,q ≤ xq , ∀{p, q} ∈ N
yp,q = 0, if rp,q > R
∑

i∈Fk

xi ≥ zk, 0 ≤ zk ≤ 1, ∀k ∈ T

xi = 0, if gi > G or hi > H, xi = 0 or 1

where G and H are thresholds for the 3D and 2D concavity. The first stage of
optimization determines the dominant approximate convex shapes. If we just
use this optimization, some large shapes that are not convex enough due to the
camera distortion will be left unlabeled. The second stage optimization relaxes
the labeling criterion. It assumes the labels on the shape candidates that are
labeled 1 at stage one fixed but only tries to label the rest of the candidates.
The second stage uses a more relaxed 2D intersection measurement and removes
the range constraints on x.

min
∑

i

(a′giNi + α′)xi + β′
∑

{p,q}∈N
lp,qyp,q − λ′

∑

k∈T
zk

s.t. constraints on y and z are the same as stage one

xi = 1 if they are labeled as 1 at the first stage, xi is binary variable

Parameters Training. There are quite a few parameters that need to be deter-
mined in the objective function and constraints. The hard constraint parameters
G and H can be directly obtained from the training data. They are set such that
they are the upper bounds of gi and hi for all the positive training data. The
intersection bound R is set to 0.5. To obtain the parameters a, b, c, α, β, λ in the
objective function, we optimize a linear program. The idea is that we need to
select a set of parameters such that the objective value is less than that of the
sub-optimal shape candidate selection. We solve the following linear program to
obtain a good set of parameters.
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min
a,b,c,α,β,λ

M

J∑

j=1

(aξja + bξjb + cξjc + αξjα + βξjβ − λξjλ)−

J∑

j=1

M∑

m=1

(aφj,m
a + bφj,m

b + cφj,m
c + αφj,m

α + βφj,m
β − λφj,m

λ )

s.t. a, b, c, α, β, λ,≥ 0, a+ b+ c+ α+ β + λ = 1.

Here ξ are the coefficients of a, b, c, α, β, γ in objective function for ground truth
data; we have J RGBD images with ground truth approximate convex shape
selections. φ are the corresponding coefficients in the objective function using
randomly generated shape candidate selections in RGBD images; random label-
ing is repeated M times for each RGBD image. By optimizing the above energy
function, we select a set of parameters that give low objectives on the ground
truth labeling and high values on the negative samples. Note that we need to
optimize the coefficients for both the first stage and second stage linear formu-
lation. We sequentially find these coefficients for stage one and then stage two.
The linear program can be solved efficiently using the simplex method or the
interior-point Method.

2.4 Optimization

By converting the shape candidate selection into a linear formulation, we can
efficiently solve the optimization using a branch and bound procedure. Our for-
mulation is a mixed integer linear program, in which x is binary and the rest
of the variables are floating point variables. We first solve the linear program
by discarding the integral constraints. If all x are integral, we obtain the global
optimal solution. Otherwise, we select xi that is closest to 0.5 and generate two
branches: left branch with xi = 0 and right branch with xi = 1. From the floating
point solution of the linear program, we obtain the first guess of the all integer
solution for x by rounding x to the closest integer. Other variables’ value can be
obtained from x. If xi = 0.5 a random selection of 0 or 1 is used to break the tie.
Using this first guess, we obtain the first upper bound of the objective function.
For each branch, we re-solve the linear program and obtain a lower bound for
each branch. If the lower branch is greater than the current upper bound, the
branch is pruned. If there is still floating point x, we keep the current branch
active. We use the rounding method to re-estimate the upper bound. If the esti-
mated upper bound is lower than the current one, we update the upper bound.
Among all the active branches, we choose the one with the lowest lower bound
and branch on the most ambiguous x variable. This procedure continues until
the lowest lower bound of active branches equals the current upper bound or
some pre-defined tolerance gap is achieved. In this paper, the ratio of the toler-
ance gap to the upper bound is set to be 10−6. For a typical problem with the
number of shape candidates around 500. The branch and bound procedure is
surprisingly fast: it takes one or two seconds to converge to the global optimal
solution for each stage of the candidate selection.
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Fig. 3. An example. (a): Color image. (b): The aligned depth map. (c): Superpixels
from k-means. (d): Superpixels from graph method [16] using both the color and depth
image. (e): Sample candidate masks. (f, g): The convex shapes from the proposed
method in two different view points. (h): The masks of the shapes on the image plane.

3 Experiments

Fig. 3 shows an example about how the proposed method works in finding ap-
proximate convex shapes in a RGBD image. The test image is from NYU RGBD
dataset [11] and we captured our 100 sample images using Kinect sensor for
parameter training. The parameters are fixed in all the following tests. The pro-
posed method first converts the RGBD image into a color point cloud. As shown
in Fig. 3, two over-segmented superpixel maps are extracted using both the color
and depth maps. The two maps contain 82 and 162 candidates respectively. The
superpixels are then merged successively based on their convexity from the view
point to generate a total of 486 candidate shape masks. The optimal set of shape
candidates is then chosen using the proposed two-stage linear method. The first
stage optimization has 44192 rows (constraints) and 15209 columns (variables).
The relaxed linear programs takes 973 steps to converge. The search tree branch
and bound only takes one more step since the linear program gives a tight lower
bound. The first stage optimization takes 1.3 seconds in a 2.8GHz machine. The
second stage optimization has 59463 rows and 20565 columns; it takes just one
step to find the global optimum. The convex hulls of these shapes and the shape
masks on the image plane are shown in Fig. 3. Our proposed method reliably
finds the approximate convex shapes in RGBD images. It is also efficient. The
whole procedure takes few seconds.

We further compare the proposed method with HACD (Hierarchical Approxi-
mate Convex Decompose) [5], a greedy approach that successively merges regions
until some concavity tolerance is reached. HACD is a typical implementation of
approximate convex decomposition. HACD is open-source and has been shown
to work very well on different graphical mesh models. Its concavity measurement
makes it also suitable for finding convex objects on a surface that is a single view
of the scene. We adjust the parameters for HACD to achieve the best results.
Fig. 4 shows the comparison results of the proposed method against HACD.
HACD makes quite a few mistakes in convex decomposition of RGBD meshes:
many large objects such as a table and a floor have been split into parts and
some convex parts are not separated out. Our proposed method greatly improves
the results. In terms of computational complexity, our method is also hundreds
of times faster than HACD.
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Fig. 4. Comparison between the proposed method and HACD [5]. Row 1: Color images.
Row 2: Near-convex 3D shapes found by the proposed method. We show the projections
of these shapes to the image plane. Row 3: Near-convex shapes found by HACD [5].

Beyond qualitative results, we further quantify the results by comparing
against the ground truth. The original object region ground truth labeling in
the NYU dataset [11] is not quite suitable because it contains many non-convex
shapes and the labeling often decomposes objects into plane surfaces instead of
the convex parts we are most interested in. We labeled 538 images in the NYU
dataset and 1471 approximate convex shapes in these images. Some samples of
the ground truth shape masks on the images are shown in Fig. 5. With the
ground truth labeling, we quantify the performance of different convex shape
finding methods using matching score distributions and detection curves. For
each ground truth convex shape mask, we go through all the convex shapes
found by different methods and if the overlap between the ground truth mask
and the shape mask detected is above a threshold we have a successful detection.
The overlap between two masks is defined as the ratio of the intersection mask
area to the union mask area. Fig. 5 shows the overlap score distributions and
the detection curves of the proposed method and HACD. Two criteria are used:
one is the per-object overlap score distribution and detection rate, and the other
one is the per-frame overlap score distribution and detection rate. The per-frame
mask matching score is defined as the average overlap score for all the ground
truth objects in an image. If the per-frame overlap score is above a threshold,
we deem the frame correctly processed. For better performance, overlap score
distribution should have large portion of the curve focused on the right and small
tail on the left; the better detection curve gives higher detection rate for each
fixed region overlap threshold. Our proposed method gives significantly better
results in both the per-object and per-frame test cases than HACD. We also test
using just the first stage of the optimization in our method. As shown in Fig. 5,
the proposed two-stage approach gives much better result than the one-stage
method.

Our method belongs to the class of methods that are based on region propos-
als. We further compare the proposed method with other methods that are based
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(i)
This Paper OneStage HACD [5] CIOP [20] CPMC [19]

Per-frame mean detection rate 0.7816 0.7282 0.5835 0.7104 0.7477
Per-obj mean detection rate 0.7641 0.7109 0.5729 0.7150 0.7537

Mean # of per-frame detections 11.35 10.72 21.84 448.6 467.8

Fig. 5. Row one and two show sample ground truth labeling of approximate convex
objects in the RGBD images from the NYU RGBD dataset [11]. OneStage is the
method that uses only the first stage optimization of the proposed method. (a): Per-
object shape matching score distribution. (b): Per-object detection rate. (c): Mean
shape matching score per-frame distribution. (d): Per-frame detection rate. (e)-(i):
The per-frame detection number histograms of different methods.

on the region candidates using category independent object proposals (CIOP)
[20] or CPMC [19]. These methods’ detection rate limit is set by the region
candidate proposals. We compare the proposed method with the limit detection
rates of competing methods using shape candidates generated from [20] or [19]:
if proposal candidate matches the ground truth we deem it is a successful detec-
tion. For fair comparison, we modified the code of CIOP and CPMC to use both
color image and the depth image for more reliable proposal generation in RGBD
images. The per-object and per-frame comparisons of the overlap score distribu-
tions and the detection rates are shown in Fig. 5. The per-object detection rate
limit of CPMC based methods is a bit higher than the proposed method if the
threshold is lower than 0.75. However, the detection rate with threshold greater
than 0.75 is what we really care about. Our method gives better results in all
the other test cases. The average detection rate of the proposed method is also
the highest as shown in Fig. 5.

We have applied the proposed method to find approximate convex objects in
all the 1449 RGBD images in the NYU dataset. Fig. 6 shows sample results. Our
method reliably detects approximate convex targets in cluttered RGBD images.
Failure cases are due to holes and noisy depth data on some object surfaces.
The unreliable and noisy data may confuse the convexity estimation and causes
missing the true candidate proposal. By further improving the region proposal
generation against noise or using sensors with low noise we are able to further
improve the results.
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Fig. 6. Random sample results of the proposed methods on the NYU RGBD dataset
[11]. Odd columns show the color images and even columns show the approximate
convex object regions projected to the image plane. Our proposed method reliably
detects approximate convex objects in cluttered RGBD images.

4 Conclusion

Finding approximate convex shapes in RGBD images is a new task. In this
paper, we propose a novel global method to tackle the problem. We formulate the
optimization into a two-stage mixed integer program that selects the shapes from
a large set of candidates. An efficient branch and bound method is applied to
solve the two-stage optimization. Our evaluation results on thousands of RGBD
images show that the proposed method is reliable, fast and more accurate than
the competing methods.
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