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Abstract. In this work, we present a scalable least-squares solution for
computing a seven degree-of-freedom similarity transform. Our method
utilizes the generalized camera model to compute relative rotation, trans-
lation, and scale from four or more 2D-3D correspondences. In particu-
lar, structure and motion estimations from monocular cameras lack scale
without specific calibration. As such, our methods have applications in
loop closure in visual odometry and registering multiple structure from
motion reconstructions where scale must be recovered. We formulate the
generalized pose and scale problem as a minimization of a least squares
cost function and solve this minimization without iterations or initializa-
tion. Additionally, we obtain all minima of the cost function. The order
of the polynomial system that we solve is independent of the number of
points, allowing our overall approach to scale favorably. We evaluate our
method experimentally on synthetic and real datasets and demonstrate
that our methods produce higher accuracy similarity transform solutions
than existing methods.

1 Introduction

The problem of determining camera position and orientation given a set of corre-
spondences between image observations and known 3D points is a fundamental
problem in computer vision. This set of problems has a wide range of applica-
tions in computer vision, including camera calibration, object tracking, simul-
taneous localization and mapping (SLAM), structure-from-motion (SfM), and
augmented reality. In the case of a calibrated camera, several minimal methods
exist to determine the camera pose from three correspondences (P3P) [9, 13].
The Perspective-n-Point (PnP) problem determines the pose for a single cali-
brated camera from n 2D-3D observations [10,16]. These methods, however, are
all designed for localization of a single perspective camera and there are few
methods that are able to jointly utilize information from many cameras simulta-
neously. As illustrated in Figure 1a, multiple cameras (or multiple images from a
single moving camera) can be described with the generalized camera model [20].
However, the internal scale of each generalized camera is not guaranteed to be
consistent, so the relative scale between the generalized cameras must be recov-
ered in addition to the rotation and translation.

In this paper, we propose a new solution for the seven degree-of-freedom
(d.o.f.) generalized pose-and-scale problem for multiple cameras. The generalized
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(a) SLAM motion. (b) Two SfM reconstructions of
Dubrovnik [17] (one red, one blue)
are accurately aligned with our
method.

Fig. 1. (a) The generalized camera model represents a set of image rays that do not
need to share a common origin. This allows for multiple cameras, or multiple images
from a single camera in motion to be modeled with the generalized camera model.
We use the generalized camera model to solve the generalized pose-and-scale problem.
(b) Our scalable method can be used to accurately align two SfM reconstructions
containing millions of points.

pose-and-scale problem is equivalent to the problem of estimating a similarity
transform between two coordinate systems. Our method is a generalization of
the PnP problem to multiple cameras which are represented by a generalized
camera; we recover the position and orientation as well as the internal scale of
the generalized camera with respect to known 3D points.

The generalized pose-and-scale problem is one that frequently arises in SLAM
and SfM. It is impossible to recover scale from images alone. Scale may be re-
covered in special cases, for instance, when observing an object with known
metric dimensions or with the aid of sensor measurements, but these cases are
not common. As a result, the relative scale must be reconciled, for example,
during loop closure for SLAM or when registering multiple reconstructions from
SfM (see Figure 1b). The generalized pose-and-scale problem aims to compute
a similarity transform that will align two coordinate systems from 2D-3D corre-
spondences.

The solution proposed in this paper solves the generalized pose-and-scale
problem, estimating rotation, translation, and scale directly given n 2D-3D ob-
servations. Our approach is O(n) in the number of observations, making it useful
for real-time applications, and does not require initialization. Additionally, we
solve for all minima of our least squares cost function simultaneously instead of
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a single local minimum. Experiments on synthetic and real data show that our
method is more accurate and scalable than other alignment methods.

The rest of the paper is as follows: Section 2 provides an overview of related
work. We present the generalized pose-and-scale problem in Section 3, and our
approach is described in detail in Section 4. We describe synthetic and real data
experiments with comparisons to alternative approaches in Section 5, before
providing concluding remarks in Section 6.

2 Related Work

There is much recent work on solving for the camera pose of calibrated cameras
[2,9,13–15]. However, these methods only handle the case of solving for the pose
of a single calibrated camera.

We solve a problem in the family of Non-Perspective-n-Point (NPnP) prob-
lems. Minimal solutions to the NP3P problem were proposed by Nı́ster and
Stéwenius [19] and Chen and Chang [3] for generalized cameras. Nı́ster and
Stéwenius reduce the NP3P problem to the solution of an octic polynomial which
can be solved efficiently with root finding schemes. Chen and Chang propose an
iterative solution to the NPnP problem, deriving a solution to the NP3P problem
as a special case. Other iterative solutions have been proposed [21, 23], though
they are computationally expensive and depend heavily on a good initialization.
Ess et al . [8] presented a non-iterative method, however, the complexity is at
least quadratic in the number of points. Lepetit et al . [16] propose the EPnP al-
gorithm that is O(n) by representing the 3D points as a sum of 4 virtual control
points, reducing the problem to estimating the positions of the control points.
This method, however, is only applicable for a single perspective camera. The
gPnP algorithm of Kneip et al . [12] is an extension of the EPnP algorithm [16]
to generalized cameras. By utilizing Gröbner basis computations, they solve the
NPnP problem in O(n). However, the gPnP algorithm does not estimate scale.
Ventura et al . [26] presented the first minimal solution to the similarity transfor-
mation problem. They use the generalized camera model and employ Gröbner
basis computations to efficiently solve for scale, rotation, and translation using
4 2D-3D correspondences. They call this minimal problem the gP+s or NP4P+s
problem. We are solving for scale, rotation, and translation using n ≥ 4 points
and thus call our problem the gPnP+s, or NPnP+s problem.

Our work is closely related to the Direct Least Squares (DLS) PnP algorithm
of Hesch and Roumeliotis [10]. In this work, a modified least squares cost function
is used to first solve for the rotation estimation as the solution to a set of third-
order polynomials, then solve for translation with back-substitution. We derive a
generalization of the DLS PnP algorithm that allows for multiple cameras while
additionally recovering scale. As such, we call our algorithm gDLS. The solution
proposed in this paper requires solving a polynomial system of exactly the same
scale as DLS PnP, despite the additional complexity of our problem. This allows
our solution to remain O(n) in the number of points.

The proposed algorithm is especially useful in applications like loop closure
in visual odometry, SLAM, and SfM. Various strategies for loop closure ex-
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ist [5–7, 11, 24, 27], most of which involve either computing the absolute ori-
entation to align landmarks, or PnP algorithms used to localize each camera
individually. Iterative Closest Point (ICP) [1, 28] methods may also be used to
align two 3D point clouds, though they are extremely sensitive to initialization
and are often slow to converge. In contrast, our method uses 2D-3D correspon-
dences. Additionally, these methods do not directly estimate relative scale, but
rather estimate it as a preprocessing step by, for instance, using the distance
between cameras or the depth of 3D points to estimate relative scale [4, 27].
Estimating similarity transformations from 2D-2D correspondences is currently
an open problem in computer vision. Our proposed algorithm is a replacement
for the aforementioned loop-closing algorithms and can estimate the similarity
transformation directly and efficiently even for a large number of correspon-
dences.

3 Problem Statement

Our aim is to solve the generalized pose-and-scale problem given n 2D-3D cor-
respondences. That is, we would like to determine the pose and internal scale of
a generalized camera with respect to n known 3D points. This is equivalent to
aligning the two coordinate systems that define the generalized camera and the
3D points. The generalized camera model jointly considers image observations
from multiple cameras such that each observation i has a ray origin at point qi
and a unit direction r̄i. The corresponding world point is denoted ri. We want
to find a rotation R, translation t and scale s such that the image rays coincide
with the world points:

sqi + αir̄i = Rri + t, i = 1, . . . , n (1)

where αi is a scalar which stretches the image ray such that it meets the world
point ri such that αi = ||Rri+ t− sqi||. We use the Cayley-Gibbs-Rodriguez pa-
rameterization of the rotation matrix such that R can be formed with just three
unknowns. When considering all n correspondences, there exists 7+ n unknown
variables (3 for rotation, 3 for translation, 1 for scale, and 1 unknown depth per
observation). The gPnP+s problem can be formulated from Eq. (1) as a non-
linear least-squares minimization such that the sum of squared measurement
errors is minimized. Thus, we aim to minimize the cost function:

C(R, t, s) =

n∑

i=1

||r̄i − 1

αi
(Rri + t− sqi)||2. (2)

This non-linear least squares problem can be solved with iterative methods such
as Gauss-Newton, however, these techniques are sensitive to initialization and
only converge to a single local minimum. In Section 4, we describe our method
for directly solving for all minima of a slightly modified cost function without the
need for initialization. We call our method the generalized Direct Least Squares
(gDLS) solution, as it is a generalization of the DLS algorithm presented in [10].



20 C. Sweeney et al.

4 Solution Method

The geometric constraint equation of Eq. (1) leads to a non-linear system of
equations that can be minimized by a least squares solver that minimizes Eq.
(2). We would instead like to rewrite this system of equations in terms of fewer
unknowns. Specifically, we can rewrite this equation solely in terms of the un-
known rotation, R. When we relax the constraint that αi = ||Rri + t− sqi|| and
treat each αi as a free variable, αi, s, and t appear linearly and can be easily
reduced from Eq. (2). Note that this relaxation is reasonable since solving the
optimality conditions results in α∗

i = z�i (Rri + t− sqi) where zi is r̄i corrupted
by measurement noise.

We begin by rewriting our system of equations from Eq. (1) in matrix-vector
form:

⎡

⎢⎣
r̄1 q1 −I

. . .
...

...
r̄n qn −I

⎤

⎥⎦

︸ ︷︷ ︸
A

⎡

⎢⎢⎢⎢⎢⎣

α1

...
αn

s
t

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

=

⎡

⎢⎣
R

. . .

R

⎤

⎥⎦

︸ ︷︷ ︸
W

⎡

⎢⎣
r1
...
rn

⎤

⎥⎦

︸ ︷︷ ︸
b

(3)

⇔ Ax = Wb, (4)

where A and b consist of known and observed values, x is the vector of unknown
variables we will eliminate from the system of equations, and W is the block-
diagonal matrix of the unknown rotation matrix. From Eq. (3), we can create a
simple expression for x:

x = (A�A)−1A�Wb =

⎡

⎣
U
S
V

⎤

⎦Wb. (5)

We have partitioned (A�A)−1A� into constant matrices U , S, and V such that
the depth, scale, and translation parameters are functions of U , S, and V re-
spectively. Matrices U , S, and V can be efficiently computed in closed form by
exploiting the sparse structure of the block matrices (see Appendix A for the
full derivation). Note that αi, s, and t may now be written concisely as linear
functions of the rotation:

αi = u�
i Wb (6)

s = SWb (7)

t = VWb, (8)

where u�
i is the i-th row of U . Through substitution, the geometric constraint

equation (1) can be rewritten as:

SWb︸ ︷︷ ︸
s

qi + u�
i Wb︸ ︷︷ ︸
αi

r̄i = Rri + VWb︸ ︷︷ ︸
t

. (9)
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This new constraint is quadratic in the three unknown rotation variables given
by the Cayley-Gibbs-Rodriguez representation.

4.1 A New Least Squares Cost Function

The new geometric constraint equation (9) assumes noise-free observations. We
assume that each observation is noisy, with a zero mean noise ηi. We can denote
our noisy observations as z̄i = r̄i+ηi. We can rewrite our measurement constraint
in terms of our noisy observation:

SWbqi + u�
i Wb(z̄i − ηi) = Rri + VWb (10)

⇒ η′i = SWbqi + u�
i Wbz̄i −Rri − VWB, (11)

where η′i is a zero-mean noise term that is a function of ηi (but whose covariance
depends on the system parameters, as noted by Hesch and Roumeliotis [10]).
We evaluate ui, S, and V at r̄i = z̄i without loss of generality. Observe that ui

can be eliminated from Eq. 11 by noting that:

UWb =

⎡

⎢⎣
z̄i

�

. . .

z̄n
�

⎤

⎥⎦Wb−

⎡

⎢⎣
z̄1

�q1
...

z̄n
�1n

⎤

⎥⎦SWb+

⎡

⎢⎣
z̄1

�
...

z̄n
�

⎤

⎥⎦VWb (12)

⇒ u�
i Wb = z̄i

�Rri − z̄i
�qiSWbqi + z̄i

�VWb. (13)

Through substitution, Eq. (11) can be refactored such that:

η′i = (z̄iz̄i
� − I3)(Rri − SWbqi + VWb). (14)

Eq. (14) allows the gPnP+s problem to be formulated as an unconstrained
least-squares minimization in 3 unknown rotation parameters. We formulate our
new least squares cost function, C′, as the sum of the squared constraint errors
from Eq. (14):

C′(R) =

n∑

i=1

||(z̄iz̄i� − I3)(Rri − SWbqi + VWb)||2 (15)

=
n∑

i=1

η′�i η′i. (16)

Thus, we have reduced the number of unknowns in our system from 7 + n to 3.
This is an important part of our formulation, as it allows the size of the system
we solve to be independent of the number of observations and thus scalable.

4.2 Macaulay Matrix Solution

We have reduced our original geometric constraint of Eq. (1) to a least-squares
minimization as a function of only the three unknown rotation parameters in
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Fig. 2. Histograms of numerical errors in the computed similarity transforms based
on 105 random trials with the minimal 4 correspondences

Eq. (15). That is, we wish to find unknown rotation parameters v1, v2, v3 such
that C′ is minimized. This polynomial is of the same form and order as the
DLS PnP algorithm [10], but with different coefficients. Thus, we can solve our
least squares system of Eq. (15) with the same technique without modification.
For a full explanation, see [10]. We will briefly summarize the technique in this
section. The cost function of Eq. (15) may be minimized with the Gröbner basis
technique; however, we found that the technique of [10] produced more accurate
results at nearly the same efficiency.

We employ the Macaulay matrix [18] to determine the solution to our poly-
nomial system. This matrix is formed from the partial derivatives of our cost
function C′ with respect to the three unknown rotation parameters. These three
equations each equal zero when C′ is minimal, so the roots of these polynomials
produce the solution to our system. We consider one additional linear equation
of the form F0 = u0 + u1v1 + u2v2 + u3v3 for random coefficients u0, . . . , u3.
This equation is generally non-zero at the roots of our polynomial system. The
Macaulay matrix, M , formed from the three partial derivatives and the addi-
tional linear equation forms an extended polynomial system as a 120×120matrix
that contains coefficients to 120 monomials of the polynomial system.

Using the Schur complement trick, the Macaulay resultant matrix can be
reduced to a 27× 27 matrix whose eigenvectors correspond to the monomials of
our cost function. The unknown rotation variables appear in these monomials,
and can be directly extracted from the eigenvectors. This leads to 27 real and
imaginary critical points, though the number of solutions can be reduced by
considering only real solutions that place points in front of cameras. In practice,
when using n ≥ 6 points there exists only one valid minimum. After obtaining all
minima, we evaluate the cost function Eq. (15) to determine the best orientation
and compute the corresponding scale and translation through back substitution.

5 Experiments

5.1 Numerical Stability

We tested the numerical stability of our solution over 105 random trials. We
generated random camera configurations that placed cameras (i.e., ray origins)
in the cube [−1, 1]× [−1, 1]× [−1, 1] around the origin. 3D points were randomly
placed in the volume [−1, 1]×[−1, 1]×[2, 4]. Ray directions were computed as unit
vectors from camera origins to 3D points. An identity similarity transformation
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Fig. 3. We compared similarity transform algorithms with increasing levels of image
noise to measure the pose error performance: the absolute orientation algorithm of [25],
P3P+s, PnP+s, gP+s [26], and our algorithm, gDLS. Each algorithm was run with
the same camera and point configuration for 1000 trials per noise level. Our algorithm
has mean better rotation, translation, and scale errors for all levels of image noise.

was used (i.e., R = I, t = 0, s = 1). For each trial, we computed solutions using
the minimal 4 correspondences. We calculated the angular rotation error, the
translation error, and the scale error for each trial, and plot the results in Figure
2. The errors are very stable, with 98% of all errors less than 10−12.

5.2 Simulations with Noisy Synthetic Data

We performed two experiments with synthetic data to analyze the performance
of our algorithm as the amount of image noise increases and as the number
of correspondences increases. For both experiments we use a focal length of
800 and [640, 480] resolution. Two cameras are placed randomly in the cube
[−1, 1]× [−1, 1]× [−1, 1] around the origin with three 3D points randomly placed
in the volume [−1, 1]× [−1, 1]× [2, 4]. Both cameras observe each 3D point, so
there are six total 2D-3D observations. Using the known 2D-3D correspondences,
we apply a similarity transformation with a random rotation in the range of
[−30, 30] degrees about each of the x, y, and z axes, a random translation with
a distance between 0.5 and 10, and a random scale change between 0.1 and 10.
We measure the performance of the following similarity transform algorithms:

– Absolute Orientation: The absolute orientation method of Umeyama [25]
is used to align the known 3D points to 3D points triangulated from 2D
correspondences. This algorithm is only an alignment method and does not
utilize any 2D correspondences.

– P3P+s: The P3P algorithm of Kneip et al . [13] is used to localize the first
camera and the corresponding rotation and translation is used for the simi-
larity transformation. The scale is then estimated from the median estimate
from triangulated point matches. This process is repeated for all cameras,
and the camera localization and scale estimation that yields the largest num-
ber of inliers is used as the similarity transformation.

– PnP+s: The similarity transformation is computed the same way as P3P+s,
but the DLS PnP algorithm of Hesch and Roumeliotis [10] is used to localize
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Fig. 4. We measured the accuracy of similarity transformation estimations as the
number of correspondences increased. The mean of the log rotation, translation, and
scale errors are plotted from 1000 trials at each level of correspondences used. A Gaus-
sian image noise of 0.5 pixels was used for all trials. We did not use P3P+s in this
experiment because P3P only uses 3 correspondences. Our algorithm has better accu-
racy for all number of correspondences used and a runtime complexity of O(n), making
it ideal for use at scale.

each camera instead of P3P1. PnP+s uses n ≥ 3 2D-3D correspondences,
whereas P3P+s can only use 3.

– gP+s: The minimal solver of Ventura et al . [26] is used with 2D-3D corre-
spondences from all cameras. While the algorithm is intended for the minimal
case of n = 4 correspondences, it can compute an overdetermined solution
for n ≥ 4 correspondences.

– gDLS: The algorithm presented in this paper, which uses n ≥ 4 2D-3D
correspondences from all cameras.

After running each algorithm on the same camera and point configuration, we
calculate the rotation, translation, and scale errors with respect to the known
similarity transformation.

Image Noise Experiment: For our first experiment, we evaluated the sim-
ilarity transformation algorithms under increased levels of image noise. Using
the configuration described above, we increased the image noise from 0 to 10
pixels standard deviation, and ran 1000 trials at each level. Our algorithm out-
performs each of the other similarity transformation algorithms for all levels of
image noise, as shown in Figure 3. The fact that our algorithm returns all min-
ima of our modified cost function is advantageous under high levels of noise as
we are not susceptible to getting stuck in a bad local minimum. This allows our
algorithm to be very robust to image noise as compared to other algorithms.

Scalability Experiment: For the second experiment, we evaluate the rotation,
translation, and scale error as the number of 2D-3D correspondences increases.
We use the same camera configuration described above, but vary the number of
3D points used to compute the similarity transformation from 4 to 1000. Each

1 We found that DLS [10] performed comparably to alternative algorithms such as
OPnP [29] in the context of PnP+s.
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Fig. 5. In our real data experiments we compute the similarity transformation that
aligns cameras from a SLAM system (blue) to a preexisting SfM reconstruction using
2D-3D correspondences. The ground truth positions (green) were recorded with a high-
accuracy ART-2 tracker.

3D point is observed by both cameras. We ran 1000 trials for each number of
correspondences used with a Gaussian noise level of 0.5 pixels standard devi-
ation for all trials. We did not use the P3P+s algorithm for this experiment
since P3P is a minimal solver and cannot utilize the additional correspondences.
Although gP+s is a minimal solver, it can utilize all n correspondences in an
overdetermined solution. The accuracy of each similarity transformation algo-
rithm as the number of correspondences increases is shown in Figure 4. Our
algorithm performs very well as the number of correspondences increases, and
is more accurate than alternative algorithms for all numbers of correspondences
tested. Further, our algorithm is O(n) so the performance cost of using addi-
tional correspondences is favorable compared to the alternative algorithms (see
Section 5.4 for a full runtime analysis).

5.3 SLAM Registration with Real Images

We tested our solver for registration of a SLAM reconstruction with respect to
an existing SfM reconstruction using a dataset from [26]. This dataset consists
of an indoor reconstruction with precise 3D and camera position data obtained
with an ART-2 optical tracker. Several image sequences in this environment
were run through a real-time keyframe-based SLAM system to obtain a local
tracking sequence that can be registered to the ground-truth environment via
a similarity transform (see Figure 5). SIFT keypoints were used to establish
2D-3D correspondences using approximate nearest-neighbor techniques and a
ratio test. We compare our method to several other techniques for registering
SLAM maps to a global point cloud. We compare our algorithm to the absolute



26 C. Sweeney et al.

Table 1. Average position error in centimeters for aligning a SLAM sequence to a
pre-existing SfM reconstruction. An ART-2 tracker was used to provide highly accurate
ground truth measurements for error analysis. Camera positions were computed using
the respective similarity transformations and the mean camera position error of each
sequence is listed below. Both the minimal version of our solver, gDLS4, and the
nonminimal gDLS10 (both shown in bold below) outperform the alternative methods.

Sequence # Images Abs. Ori. [25] P3P+s PnP+s gP+s [26] gDLS4 gDLS10

office1 9 6.37 6.14 4.38 6.12 3.97 3.04
office2 9 8.09 7.81 6.90 9.32 5.89 5.80
office3 33 8.29 9.31 8.89 6.78 6.08 4.69
office4 9 4.76 4.48 3.98 4.00 3.81 3.35
office5 15 3.63 3.42 3.39 4.75 3.39 3.09
office6 24 5.15 5.23 5.01 5.91 4.51 4.45
office7 9 6.33 7.08 7.16 7.07 4.65 3.21
office8 11 4.72 4.85 3.62 4.59 2.85 2.45
office9 7 8.41 8.44 4.08 6.65 3.19 2.33
office10 23 5.88 6.60 5.73 5.88 4.94 4.87
office11 58 5.19 4.85 4.80 6.74 4.77 4.65
office12 67 5.53 5.20 4.97 4.86 4.81 4.75

orientation algorithm [25], P3P+s, PnP+s (using 10 correspondences), and gP+s
[26] as described in Section 5.2. All algorithms are used in a PROSAC loop ex-
cept for the absolute orientation algorithm which is used in a RANSAC loop.
The absolute orientation algorithm does not use feature matches (it only aligns
3D point clouds) and thus cannot utilize matching scores in a PROSAC loop. We
compare these algorithms to two versions of our solver: one using the minimal 4
correspondences (gDLS4) inside a PROSAC loop, and an over-determined solu-
tion using 10 correspondences (gDLS10) inside a PROSAC loop. No refinement
is performed after RANSAC/PROSAC for any of the algorithms.

We compute the average position error of all keyframes with respect to the
ground truth data. The position errors, reported in centimeters, are shown in
Table 1. Both the minimal and non-minimal versions of our solver give higher
accuracy results for every image sequence tested compared to alternative algo-
rithms. By using the generalized camera model, we are able to exploit 2D-3D
constraints from multiple cameras at the same time as opposed to consider-
ing only one camera (such as P3P+s and PnP+s). This allows the similarity
transformation to be optimized for all cameras and observations simultaneously,
leading to high-accuracy results.

5.4 Runtime Analysis

In this section we present a runtime analysis of each similarity transformation
algorithm when registering n points and m cameras. The absolute orientation
algorithm requires aligning sets of 3D points, making it O(n). In theory, the
covariance matrix used to compute the least-squares solution has a lower bound
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Fig. 6. (a) We plot the mean execution time while increasing the number of 2D-3D
correspondences used and keeping the number of cameras constant at 2. Our gDLS
method is slightly slower than gP+s [26] though our method is much more accurate at
scale (Figure 4). (b) The number of cameras was increased while using the 100 2D-3D
correspondences (each point is seen in every camera). The runtimes of the absolute
orientation method [25], gP+s [26], and our gDLS method are independent of the
number of cameras.

of O(n), however, in practice it is often slower. The P3P+s algorithm relies
on the extremely efficient P3P algorithm (which can be considered to run in
constant time), however, in order to recover scale it must triangulate points
across all cameras, leading to O(n) complexity. Further, P3P+s computes the
similarity transformation by localizing each camera and estimating scale. Thus,
for m cameras the expected runtime is O(mn). The PnP+s algorithm operates
the same way as P3P, though the PnP algorithm is at best O(n), resulting in an
overall runtime of O(mn2). In practice, the PnP+s algorithm outperforms the
P3P+s algorithm as the number of points increases as shown in Figure 6. This
is because the P3P algorithm returns 4 solutions, while the DLS PnP algorithm
returns only 1 solution in most cases. All n points must be triangulated for
each solution, leading to an increased runtime for P3P+s. The gP+s algorithm
requires computing the null space of a matrix that is of size 2n, which is O(n)
in theory though efficient in practice even for large n. The gP+s algorithm is
roughly 2− 8× faster than our algorithm, however, as shown in Sections 5.2 and
5.3 it is less accurate than our algorithm.

As described in Section 4.1, our algorithm is O(n) in the number of points,
making the runtime favorable as the number of points increases. Additionally, our
algorithm is independent of the number of cameras, as shown in Figure 6b. In our
experiments conducted on a 2.26 GHz Quad-Core Mac Pro, we observed a mean
runtime of roughly 0.842 milliseconds over 105 trials when using 4 points. When
using 10 points, the mean runtime increased to roughly 0.863 milliseconds. The
timing results as the number of correspondences and cameras increases is shown
in Figure 6. This efficiency allows our method to be used in real-time within a
RANSAC loop. Additionally, the fact that our method can be used with only
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4 correspondences allows for the theoretical convergence rate of RANSAC to
remain low compared to algorithms that require more correspondences.

6 Conclusion

In this work, we proposed a new solution to the pose-and-scale problem for gen-
eralized camera models with n 2D-3D correspondences. This problem is equiv-
alent to computing a similarity transformation. Our method, gDLS, is flexible,
accurate, and efficient. It can handle the minimal case of n = 4, as well as the
overdetermined case of n > 4. We formulate a least squares cost function that
can be solved efficiently as a system of third degree polynomials, resulting in
a system that is O(n) in the number of correspondences. This makes it appli-
cable for real-time frameworks and is useful, for example, for loop closure with
SLAM and visual odometry. We have evaluated our method on synthetic data to
show the numerical stability, accuracy under image noise, and scalability of our
method. We validated our method with experiments using real data which shows
that our method is more accurate than other methods when computing the sim-
ilarity transformation for registering reconstructions. Our gDLS algorithm has
been made publicly available as part of the open source library Theia2 [22].

Experiments have shown our method to be extremely accurate and efficient
even at scale. Our method can be used on thousands of correspondences when
the ground truth correspondences are known, or as a refinement step on inliers
from a minimal estimation. However, as with all non-minimal pose solvers, it
is difficult to make use of a large number of correspondences because of the
likelihood of false features matches when using many correspondences. For future
work, we plan to explore ways to increase robustness to false correspondences by
incorporating feature distances into the similarity transform estimation process
so that our method can be more readily used with thousands of correspondences.
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N00014-09-1-113.

Appendix

A Computing Matrices U, S, and V for Depth, Scale,
and Translation

The constant matrices U, S, and V are used to recover depth, scale, and trans-
lation from the solution for the rotation matrix. These matrices are constructed
2 http://cs.ucsb.edu/~cmsweeney/theia

http://cs.ucsb.edu/~cmsweeney/theia
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as a function of known measurements from the matrix (A�A)−1A�. Using the
expression for A from Eq. (3), we have:

A�A =

⎡
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where solid lines represent the block-matrix boundaries. Through block matrix
inversion, we can conveniently solve for the inverse:
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(18)
Finally, we can compute U , S, and V from Eq. (18). Many of the terms can be
simplified because of multiplications involving r̄i

�r̄i = 1. This leaves us with a
greatly simplified expression for U, S, and V:
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