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Abstract. Turbulence is studied extensively in remote sensing, astron-
omy, meteorology, aerodynamics and fluid dynamics. The strength of
turbulence is a statistical measure of local variations in the turbulent
medium. It influences engineering decisions made in these domains. Tur-
bulence strength (TS) also affects safety of aircraft and tethered bal-
loons, and reliability of free-space electromagnetic relays. We show that
it is possible to estimate TS, without having to reconstruct instantaneous
fluid flow fields. Instead, the TS field can be directly recovered, passively,
using videos captured from different viewpoints. We formulate this as a
linear tomography problem with a structure unique to turbulence fields.
No tight synchronization between cameras is needed. Thus, realization is
very simple to deploy using consumer-grade cameras. We experimentally
demonstrate this both in a lab and in a large-scale uncontrolled complex
outdoor environment, which includes industrial, rural and urban areas.

1 The Need to Recover Turbulence Strength

Turbulence creates refractive perturbations to light passing through a scene.
This causes random distortions when imaging background objects. Hence, mod-
eling and trying to compensate for random refractive distortions has long been
studied in remote sensing [40], astronomy [34] and increasingly in computer vi-
sion [2,4,10,14,18,35,38,41,52,55]. Nevertheless, these distortion are not necessar-
ily a problem: they offer information about the medium and the scene itself [44].
This insight is analogous to imaging in scattering media (fog [29], haze [19,37],
water [11,30]), where visibility reduction yields ranging and characterizing of the
medium. Similar efforts are made to reconstruct refracting (transparent) solids
or water surfaces [3,16,28,43,46] from images of a distorted background or light
field [50,51]. In turbulence, refraction occurs continuously throughout a volume.

We exploit random image distortions as a means to estimate the spatial (vol-
umetric) distribution of turbulence strength (TS). The strength of turbulence
is a statistical measure of local variations in the medium [20,21]. Often, it is
not necessary to estimate an instantaneous snapshot of air density or refraction
field [32,42]. Rather local statistics is relied upon heavily in many applications.
Meteorologists rely on TS to understand convection (which forms clouds), wind,
and atmospheric stability. This is measured using special Doppler lidars [9,31],
which are very expensive. Turbulence significantly affects the efficiency of wind

D. Fleet et al. (Eds.): ECCV 2014, Part IV, LNCS 8692, pp. 47–60, 2014.
c© Springer International Publishing Switzerland 2014



48 M. Alterman et al.

turbine farms [31], hence optimizing turbines and farms involves measuring TS.
Similarly, the design and performance of other aerodynamic objects (wings,
winglets, jets engines etc.) is tied to the strength of the non-laminar flow around
them. In such cases, the statistics of the flow field are important, as they convey
transfer of energy, loads, correlations and spatiotemporal spectra. The TS is also
an indicator for gliding birds who use convection for lift. Moreover, determining
which areas have stronger or weaker turbulence can optimize free-space optical
relay of communication and power [31].

One might estimate TS using many consecutively recovered instantaneous
refractive fields [33,47,48]. These instantaneous fields may themselves be esti-
mated by multiview tightly-synchronized image sequences. Indeed, several works
recover time-varying 3D gas flows [6,7,52]. However, there are advantages for
measuring the TS directly, without recovering instantaneous fields. Estimating
an instantaneous refractive field may be ill-posed [7] or require more complex
setups involving active light-field probes [17,39]. In addition, direct estimation of
the TS avoids any propagation of errors stemming from inaccurate instantaneous
fields. TS is passively estimated in [54] assuming a path-constant (uniform) TS
rather than a spatially varying field. Another related work is [44]. There, spa-
tially stationary turbulence is exploited to estimate object range.

In this paper, we describe how the TS field can be directly estimated using
only passive multiview observations of a background. The variances in image
projections of background features are computed by tracking those features over
a few hundred frames. The variance at each pixel at each camera viewpoint is
simply a weighted integral of the TS field along the respective pixels’ line of
sight (LOS). The LOSs of all pixels from all viewpoints crisscross the turbulence
field. Estimating the TS’s volumetric distribution is then equivalent to solving
a linear tomography problem. While linear tomography is common in medical
imaging, the specific structure here is different. Thus, our domain and model
form a new addition to the set of tomographic problems, which recently raise
interest in computational photography and vision [1,7,13,26,27,36,46,51].

We demonstrate our model and method using experiments indoors and out-
doors, as well as simulations. Outdoors, we estimate the TS field in a large
scale: a city, in a complex terrain including urban, industrial and rural areas.
We believe this is the first attempt to reconstruct such a large field passively.

2 Theoretical Background

2.1 Turbulence Statistics and Refraction

The refractive index of air n(X, t) at spatial location X = (X,Y, Z) and time
t is a function of various meteorological parameters (air pressure, temperature,
humidity etc.). Due to random spatiotemporal fluctuations of these parameters,
n(X, t) is random in space and time. Temporally stationary atmospheric turbu-
lence is characterized by a structure function for refractive index fluctuations.
The refractive index structure function [22,44] is

Dn(X1,X2) = 〈[n(X1, t)− n(X2, t)]
2〉t. (1)
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Fig. 1. Multiple cameras are placed around a chunk of turbulent air. (a) An object
point of a textured pattern projects to a camera pixel through air having a spatially
varying refractive index. (b) Temporal variance of pixel displacement of a textured
object is associated to a pixel. This yields data for linear tomography of the statistical
field C2

n.

It represents the mean squared difference of refractive indices at different loca-
tions X1 and X2. When the structure function depends only on the distance
ρ = ||X1 −X2||, Kolmogorov [20,21] showed that

Dn(ρ) = C2
nρ

2/3. (2)

Here C2
n is the refractive index structure constant [22,44]. The parameter C2

n

expresses TS. High values of C2
n imply strong turbulence, while C2

n = 0 means
that the air is not turbulent.1 The TS changes spatially, thus we denote it C2

n(X).
There is an LOS between a background object point and a camera at distance

L away. Without turbulence, the LOS has an angle of arrival (AOA) relative to
the optical axis. Fluctuations of the atmospheric refractive index lead to random
refractions of propagating light (see Fig. 1a). Hence turbulence perturbs the LOS.
To gain intuition, consider an object point that radiates to all directions, and
an atmosphere which is not turbulent, other than a single thin phase screen.
A phase screen represents a layer having spatiotemporal n(X, t). At any t the
phase screen randomly deviates the direction of each incoming ray, once. Suppose
the phase screen is just adjacent to the object point. In this case, the direction
of rays emanating from the point are randomly permuted. Nevertheless, overall
rays appear to radiate in all directions, just as a point source without turbulence.
Hence, in this case, the turbulent layer does not affect the image.

On the other hand, suppose the phase screen is adjacent to the camera’s exit
pupil. A ray between the object and the pupil varies its direction as it passes

1 The distance ρ is in units of m. Then, the units of C2
n are m−2/3. Typical values of

C2
n are in the range 10−17 − 10−13 m−2/3.
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the phase-screen. The ray thus enters the camera at a different AOA, leading to
a distorted projection. These two special cases imply that turbulence affects an
image, depending both on the TS value in a voxel, and the distance of the voxel
along any LOS. The entire 3D field can be modeled by a series of phase screens,
each perturbing the propagation direction. This is analogous to a random walk
of any ray between the object and the pupil. For a wide-angle radiating source
(a point source), models established in the literature [22,44] express the variance
σ2
AOA of the AOA by integration along the LOS

σ2
AOA = 2.914D−1/3

∫ L

0

C2
n[X(s)]

( s

L

)5/3

ds, X ∈ LOS. (3)

Here D is the camera aperture diameter, s = 0 corresponds to the background
object location, while s = L corresponds to the lens pupil location.

2.2 Linear Tomography

A linear emission tomography model typically applies to independent emitters,
e.g., fluorescent molecules and radioactive probes used in SPECT. A volumetric
field e(X) of emitters is projected by a camera at some pose. Pixel p then
corresponds to a particular LOS, denoted LOSp. Parameterize a position on
LOSp by s ∈ [0, L]. Set s = 0 at a background point, while s = L corresponds
to the lens pupil. The measured intensity at p is then the line integral

I(p) ∝
∫ L

0

e[X(s)]ds, X ∈ LOSp. (4)

Different LOSs can provide independent linear equations as (4). Based on these
equations, e(X) can be estimated ∀X. The line integral in Eq. (4) is insensitive
to flipping of the coordinate system (counter propagation): if the pupil moves
to s = 0 while the background point is at s = L, Eq. (4) yields the same value.
Hence, in typical linear emission tomography, it suffices to measure I(p) from
half the directional domain.

3 Principle of C2
n Tomography

As seen in Eq. (3), a single LOS is perturbed by a path-averaged C2
n(X). By

utilizing several viewpoints, it may be possible to recover the spatial distribution
C2

n(X) based on Eq. (3). This is a new field for linear tomography. Data on σ2
AOA

can be obtained by analyzing either AOA fluctuations [54] for short exposures
or image blur for long exposures, at scene features of known range. Here too,
pixel p corresponds to LOSp. Using Eqs. (3,4), the measured AOA variance at
p is

σ2
AOA(p) ∝

∫ L

0

C2
n[X(s)]s5/3ds, X ∈ LOSp. (5)



Passive Tomography of Turbulence Strength 51

Fig. 2. An example of an image frame as seen through turbulent air. Notice the dis-
torted edges in the magnified region.

Analogously to Sec. 2.2, different LOSs can provide independent linear equations
as (5), relating the unknown field C2

n, to the measured σ2
AOA. Based on these

equations, C2
n[X(s)] can be estimated ∀X. However, contrary to linear emission

tomography, the line integral in Eq. (5) is sensitive to flipping the coordinate
system (counter propagation): voxels closer to the camera have more weight in
Eq. (5), than distant voxels (for which s → 0). Thus, counter-directions yield
independent measurements.

3.1 Numeric Tomographic Recovery of C2
n

Consider the setup in Fig. 1(a). The background is a textured pattern. Multiple
cameras are placed around a chunk of air. An object point projects to pixel

x = f tanAOA, (6)

where f is the focal length of the camera. Due to turbulence, random image
distortions are observed over time. Each temporal frame is spatially distorted
(in Fig. 2, notice the distorted edges in the magnified region). The image pixel
displacement has variance

σ2
x ≈ f2

[
d tan(AOA)

dAOA

]2
σ2
AOA = f2 1

cos4(AOA)
σ2
AOA. (7)

Later, in Sec. 5.1, we describe an experiment in which air is heated by electric
griddles, creating turbulence that distorts a background texture. Fig. 3 shows
displacement variance maps from different viewpoints. High variance in the map
means that a LOS passes through more turbulence, than at pixels exhibiting low
displacement variance.

As illustrated in Fig. 4, we discretize the volume domain into a 3D grid of
voxels {Vk}Nvoxels

k=1 . Without turbulence, pixel p observes object point O through
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Fig. 3. Sample variance images from an experiment corresponding to Fig. 6. A textured
pattern which is placed behind the stove is shown aligned with its variance image,
from one view. Sample variance images of pixel displacements, in various views, with
corresponding camera indices. Red expresses high variance while blue represents low
variance. High variance regions appear only behind hot stoves.
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Fig. 4. The volume is discretized into voxels. The LOS intersects voxel Vq at points
smin
p,q and smax

p,q . The voxel intersection points Ψp,q ≡ LOSp ∩ Vq are used as weights in
the LOS integration (9).
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LOSp. Let LOSp intersect voxel Vq. The line intersection is Ψp,q ≡ LOSp ∩ Vq.
It is bounded by two points,2 at corresponding distances from O:

smin
p,q = min

X∈Ψp,q

‖X−O‖ smax
p,q = max

X∈Ψp,q

‖X−O‖. (8)

Approximate C2
n as constant in each voxel. Based on Eqs. (3,7,8),

σ2
x(p) = αp

∑
Ψp,q �=∅

C2
n(q)

∫ smax
p,q

smin
p,q

s5/3ds =
3αp

8

∑
Ψp,q �=∅

C2
n(q)[(s

max
p,q )8/3 − (smin

p,q )
8/3]

(9)
where

αp =
2.914f2

D1/3L
5/3
p cos4(AOAp)

. (10)

Here Lp is the length of LOSp and AOAp is the AOA of pixel p. Let Npixels be
the total number of pixels in all viewpoints. Define a Npixels ×Nvoxels matrix A,
whose element (p, q) is

A(k, q) =

{
0 if Ψp,q = ∅
3αp

8 [(smax
p,q )8/3 − (smin

p,q )
8/3] otherwise

. (11)

Matrix A is sparse. Column-stack the measured σ2
x(p) to vector m. Column-

stack the unknown C2
n(k) to vector c. Then, Eqs. (9,11) can be posed in vector

form as

m = Ac. (12)

This linear system of equations can be solved by any standard solver. For ex-
ample, it may be possible to use constrained and/or regularized least-squares:

ĉ = argmin
c

(‖m−Ac‖2 + λ‖∇2c‖2) s.t. c ≥ 0, (13)

where λ weights a spatial smoothness regularizing term. When A is large, we
use the Simultaneous Algebraic Reconstruction Technique (SART) [12] as the
solver. Other priors [19], such as sparsity or a parametric form of c can also be
used.

4 Simulation

We simulated volumetric distributions of C2
n as mixtures of 3D spatial Gaussians

surrounded by 14 cameras across 70×20×70 voxels. The cameras captured sim-
ulated pixel displacement variances, to which white Gaussian noise of standard
deviation 0.05 pixels was added. We examined the reconstruction as a function

2 We used the ray tracing algorithm from [5].
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Fig. 5. Simulation results, for various simulated distributions of TS. NRMSE is plotted
versus the number of cameras.

of the number of views considered, as shown in Fig. 5. The normalized root mean
squared error (NRMSE)

NRMSE =

√
〈(Ĉ2

n − C2
n)

2〉x
maxx(C2

n)
(14)

is plotted as a function of the number of cameras. Here Ĉ2
n is the estimated

TS while C2
n is the true simulated TS. We used the Laplacian operator with

0.01 ≤ λ ≤ 0.6 with low values for large number of cameras and high values for
small number of cameras. As the number of viewpoints increases, the recov-
ery error drops. Errors are larger for large blobs and vice versa, as typical in
tomography.

In addition, we compared two cases: a set of cameras forming a 360o circle
versus 180o half circle. A 360o setting yields a smaller error, for the same number
of cameras. This is expected, given the directional sensitivity described in Sec. 3.

5 Experiments

5.1 Laboratory

The experimental setup is shown in Fig. 6[Left]. Cooking stoves (Brentwood
TS-322 1000W) produced heat, similarly to [44]. We used 11 stoves as shown
in Fig. 6[Left]. Hot air from the stoves results in turbulence above the griddles.
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Fig. 6. [Left] Laboratory experimental setup. Multiple cameras encircle hot electric
cooking stoves which create turbulence. Sample variance images from different view-
points are shown in Fig. 3. [Right] Top view of an estimated C2

n. Red dots indicate the
true locations of hot operating stoves. Camera locations are also shown.

Various turbulence fields can be generated by individually controlling the power
of each stove and its location. As background we placed a high frequency texture
pattern [8], shown at the top of Fig. 3. Thirteen camcorders3 observed the shim-
mering of the background through the turbulence field, at 30 fps. The cameras
were calibrated using the method described in [49].

To use Eq. (12),A is derived by line integrals. We know the path length L from
each camera to the pattern (Fig. 3[Top]). To compute the pixel displacement
variance m, we use dense optical flow [53] implemented in OpenCV. Sample
variance images are shown in Fig. 3. Only voxels which are seen by most of the
cameras are included in the reconstruction. Voxels that are not seen, or only seen
by a few cameras, are excluded, similarly to the visual hull constraint as in [15].
The result of the estimated C2

n is shown in Fig. 6[Right]. Red dots indicate the
true 3D location of stoves that were on during the experiment. Notice ”hot-spots”
of the estimated C2

n in the vicinity of the hot stoves.4

5.2 Outdoors

The outdoor experiment took place on a sunny day around noon, from 11:00AM
until 2:30PM. Around noon, atmospheric turbulence should be the strongest
and stationary over several hours [54]. The scene is Haifa Bay area. It is a valley
with major industrial facilities interleaved by agricultural areas and some towns.
Specifically, the area includes oil refineries with a lot of chimneys. In addition,
Haifa Bay includes a port, an airport and a power station. Refer to Fig. 7 for a
sketch map of the area. We used a Nikon D7100 DSLR camera with a telephoto

3 The cameras are Canon HS-G1s high definition (HD), with F#=3.2 and exposure
time 1/180 sec.

4 The location of the hot stoves was estimated based on stereo triangulation using two
cameras.
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Fig. 7. Map of the Haifa Bay area. It has a valley which includes coastal suburbs
(Kiryat Haim, Kiryat Motzkin and Kiryat Bialik), agricultural zones and heavy indus-
try. The valley is surrounded by higher terrain, including Mt. Carmel (Technion, the
cities of Haifa and Nesher) and hilly towns (Kfar Hasidim, Rechasim, Ibtin, Kiryat
Ata). Red cameras mark locations from which we took image sequences during an
experiment.

lens of f = 300mm, F# = 14 and exposure time of 1/600sec. To gain a wide field
of view (FOV), multiple narrow FOV videos were collected. We shot 30fps HD
videos of ≈100 temporal frames for each narrow FOV. The scene was imaged
from six viewpoints on the surrounding hills (see the red cameras in 7). The
location of each view was recorded using GPS. Sample images of views and a
stitched panorama are shown in Fig. 8.

To compute the line integrals in A, the locations of various scene objects
in the images must be known. We used Google maps to locate the coordinates
of multiple known landmarks in the valley landscape. We located, overall, 360
landmarks across all views. Fig. 9[Left] depicts the outdoor experimental setup.
The rays to the known landmarks are shown by blue lines. The GPS Coordi-
nates (latitude, longitude) were converted to local navigation coordinates (north,
east, up) relative to the camera position in view 2. Our reconstruction area is
essentially the area where rays cross.

Then, pixel displacement statistics (mean and variance) were computed for
these landmarks in each temporal sequence of frames. The Kanade-Lucas-Tomasi
(KLT) [25,45] algorithm implemented in Matlab was used for tracking corner
points. The variance of each trajectory was computed to construct the vector
m. The reconstruction area was divided into 20× 20× 1 voxels. The estimated
turbulence strength parameter (C2

n) is shown in Fig. 9[Right] as a 2D map. We
used the Laplacian regularization with λ = 0.4. The positions of the cameras are
overlayed in green. Notice that a region with strong turbulence was estimated
as the refineries plant (C2

n = 1.7 · 10−14 m−2/3). The second-strongest hot-spot
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Fig. 8. Sample images from an outdoor experiment. Images of different views are
shown. Places of interest are indicated on the images and also on the panorama. [Mid-
dle] The panorama image of view-2 was created using Microsoft image composite editor.
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Fig. 9. [Left] Experimental setup of the outdoor experiment. Black dots indicate view-
points. Any blue line represents a ray between a viewpoint and an object point. Figure
axes are aligned to the compass cardinal directions in our region. [Right] The estimated
TS parameter C2

n shown in a 2D map. Bright areas represent high values while dark
areas represent low values. Regional places of interest are overlayed on the map. Notice
the hottest spot is at the oil refineries.

was near the power station (C2
n = 0.45 · 10−14 m−2/3). A third, diffuse turbulent

region was the town of Kiryat Ata. The agricultural fields around the refineries
have weak turbulence. This agrees with our expectations.

6 Discussion

We describe a passive approach for estimating the volumetric spatially vary-
ing turbulence-strength field. As the approach does not require synchronization
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between instruments, it can use simple hardware deployed in a wide range of
scales. In contrast to a laboratory scenario, the outdoor experiment had no
ground truth to validate. However, the results appear reasonable, at least quali-
tatively, based on the known landmarks in the valley. To quantitatively validate
outdoor results, the estimated TS field might be compared to measurements
using lidars and scintillators. More broadly, webcams observe cities worldwide,
some over long ranges [23]. Their locations and viewing directions [24] can be
used with our framework for potentially large-scale turbulence measurements.
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