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Abstract. We present a new image matting algorithm to extract con-
sistent alpha mattes across sub-images of a light field image. Instead of
matting each sub-image individually, our approach utilizes the epipo-
lar plane image (EPI) to construct comprehensive foreground and back-
ground sample sets across the sub-images without missing a true sample.
The sample sets represent all color variation of foreground and back-
ground in a light field image, and the optimal alpha matte is obtained
by choosing the best combination of foreground and background samples
that minimizes the linear composite error subject to the EPI correspon-
dence constraint. To further preserve consistency of the estimated alpha
mattes across different sub-images, we impose a smoothness constraint
along the EPI of alpha mattes. In experimental evaluations, we have cre-
ated a dataset where the ground truth alpha mattes of light field images
were obtained by using the blue screen technique. A variety of exper-
iments show that our proposed algorithm produces both visually and
quantitatively high-quality matting results for light field images.
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1 Introduction

Image Matting aims to extract a soft and accurate alpha matte of foreground
given a trimap of an image. Generally, colors of an image can be expressed as a
linear combination of foreground and background colors as follows:

I = αF + (1− α)B, (1)

where F , B and α represent the foreground, the background, and the mixing
coefficients, respectively. Since most matting algorithms were developed for mat-
ting a single image, it is less effective when facing multiple input images, e.g.
multiple sub-images of a light field image, where consistent alpha mattes across
the multiple images are necessary. In this paper, we introduce a new image mat-
ting algorithm targeting for a light field image.

A light field image consists ofm×n sub-images where each sub-image was cap-
tured from slightly different perspectives. The correlation among the sub-images
are encoded in the epipolar plane image (EPI), and the estimated alpha mattes
across sub-images also need to follow the EPI constraint. Otherwise flickering ar-
tifacts will appear when moving an interpolated view point from one sub-image
to another sub-image.
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By Equation (1), image matting is an ill-posed problem because the number
of unknowns is more than the number of equations that can be derived from
a single image. State-of-the-art matting algorithms can be categorized into two
groups: color sampling based, and alpha propagation based methods. The color
sampling based methods [7,28,21,11,13,24,23] sample foreground and background
colors from the known regions, i.e.the definite foreground and the definite back-
ground regions, to estimate alpha mattes within the unknown region. The al-
pha propagation based approaches [26,17,32,14,18,16,3,4] assumes local/nonlocal
smoothness of alpha values and propagate alpha values from the known regions
to the unknown regions.

In the light field image matting problem, although the number of input im-
ages have increased, the number of unknown have also increased which makes it
also an ill-posed problem. However, because of the EPI correlation among the
sub-images, we can sample foreground and background colors across sub-images.
Even if a true color sample in a sub-image is missing, we can still reliably esti-
mate the true color sample from another sub-image. This allows us to achieve
better performance than existing color sampling matting techniques. In addi-
tion, using the EPI constraint, we can propagate alpha values not only from the
known regions to the unknown regions within a sub-image, but also along EPI of
alpha mattes across sub-images. This provides an accurate and consistent alpha
estimation across sub-images. As demonstrated in our experimental results, our
algorithm reduces weaknesses and maximize strengths of both kinds of image
matting techniques.

We evaluate and compare performance of our proposed algorithm and state-of-
the-art image matting algorithms. To quantitatively compare the performance,
we created a new light field matting dataset where the ground truth alpha mat-
tes are obtained by using the blue screen matting procedures introduced in [22].
Our evaluations show that our algorithm produces both visually and quantita-
tively high-quality matting results for light field images, and have outperformed
existing matting algorithms in term of both accuracy and consistency.

2 Related Works

We review previous works that are the most relevant to our work. In particular,
we discuss the works related to the two categories of image matting and the
works related to light field image processing.

As aforementioned, most image matting techniques can be categorized into
color sampling based and alpha propagation based methods. The color sam-
pling based methods [7,28,21,11,13,24,23] solve the matting problem by finding
color samples from the known foreground and background pixels to estimate
alpha mattes in unknown regions. In [7], the Bayesian matting by Chuang et al.
analyzes unknown pixels using local color distribution by statistical methods.
Robust Matting [28] collects color samples with respect to the color composite
equation and are spatially close to the unknown pixels. Shared matting [11] and
weighted color and texture matting [24] find the best samples by combining spa-
tial, photometric, and probabilistic information measured by color and texture,
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respectively. In [13], He et al. proposed the global sampling matting which uses
all color samples in the known regions to find the best combination of foreground
and background samples for matte estimation. Recently, Shahrian et al.[23] pro-
posed the comprehensive sampling matting which uses Gaussian Mixture Model
(GMM) to cover all color variations in the foreground and background regions
of an image for accurate alpha matte estimation.

The alpha propagation based approaches [26,17,32,14,18,16,3,4] analyze sta-
tistical correlation among pixels to propagate alpha values from the known re-
gions to the unknown regions. The Poisson Matting by Sun et al. [26] estimates
an alpha matte by solving a Possion equation to reconstruct an alpha matte from
gradients subject to the boundary condition of alpha matte in the known regions.
Levin et al. [17] introduced the color line model and propose the matting Lapla-
cian to solve the matte estimation problem in a closed form. This work is later
extended by He et al. [14] who proposed the large kernel matting for matting
high resolution images. Lin et al. [18] introduced motion regularization for mat-
ting motion blurred objects. Based on the nonlocal principle, Lee and Wu [16]
introduced the nonlocal matting which propagate alpha values across nonlocal
neighbor of a pixel. This work is later extended by Chen et al. [3] who proposed
the KNN matting to propagate alpha across the k nearest nonlocal neighbors,
and by Chen et al. [4] who combined local and nonlocal smoothness prior for
alpha propagation.

In light field image processing, since Ng et al. [20] introduce the prototype of
micro lens array light field camera, a lot of follow up works have been proposed.
The work by Dansereau et al. [9] estimates a depth map of the correspond-
ing elements in a scene using gradient vector. Bishop and Favaro [1] estimate
depth map by evaluating aliasing across multiple views. Wanner et al. [29,31]
use epipolar plane images to estimate depth map with consideration of global
and local consistent. The work by Goldluecke and Wanner [12] computes depth
maps by using the local derivative constraint with a convex prior derived from
a 4d light-field image. Recently, Wanner and Goldluecke [30] suggested a depth
map reconstruction method for reflective and transparent surfaces through 4D
light-field image analysis.

Comparing our work with previous works, as far as we are aware, this is the
first work to seriously address the matting problem in light-field images. Utilizing
the additional EPI information, we introduce a method to construct color sample
sets across multiple sub-image, and to encode the EPI smoothness constraint in
the matting Laplacian by introducing nonlocal smoothness term across multiple
sub-images. To facilitate future research in light fieldmatting, we have also created
a dataset to quantitatively evaluate performance of matting algorithms.

3 EPI in Light Field Images

3.1 The EPI Constraint

A light field image is typically represented as a 4D function, L(x, y, s, t), which
records the intensity of a light ray passing through two parallel planes, x − y
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Fig. 1. (a) Parallel plane representation of a light field image. (b) The multiple sub-
images of a light field image after decoding. (c) After stacking the images within the
yellow line region in (b), we have an epipolar plane image in x− s plane with fixed y,t.

and s− t planes, in a 3D space as illustrated in Figure 1(a). To capture a light
field image, one can use a camera array or a consumer level micro lens light
field camera, e.g. Lytro [19]. After decoding [10,5], we can obtain multiple sub-
images where each sub-image represents image captured from slightly different
perspective as illustrated in Figure 1(b).

Since a light field image captures light rays in a 3D space, a light ray from an
object at different distance from a camera would pass through the two parallel
image planes at different angle. This relationship is captured in the EPI of a
light field image. For instance, if we fixed the index of y and t in L(x, y, s, t), we
can plot the EPI of x− s plane as illustrated in Figure 1(c). Mathematically, we
can derive [2,8,29]:

Δx =
f

D
Δs, (2)

where f is the distance between the two parallel image planes and D is the dis-
tance of a object from a camera as illustrated in Figure 1(a). Using Equation (2),
we can obtain pixel correspondences across sub-images in x-direction by mea-
suring the image gradients in the EPI of x − s plane. Similarly, we can obtain
pixel correspondences in y direction through measuring the image gradients in
the EPI of y − t plane. Since colors of correspondent pixels across sub-images
come from the same light ray in 3D, the estimated foreground/background col-
ors as well as the alpha values are expected to be the same across the same EPI
correspondents. This defines the EPI constraint across the multiple sub-images
of a light field image.

3.2 Color Sample Correspondences in EPI

Using the EPI constraint, we can define pixel correspondences across the multiple
sub-images and expect the color values as well as the alpha mattes along the
EPI correspondences to be identical. In practice, because of the mixing effect
in matting areas, the EPI constraint may not hold along the matting boundary
since the measured intensity is the result of alpha blending of two light rays from
different direction as illustrated in Figure 2(a).

In order to utilize the EPI constraint, we assume the EPI of foreground and
background are spatially smooth in the unknown region of a trimap. Intuitively,
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Fig. 2. (a) EPI of matting boundary. (b) Alpha matte of the EPI image. (c) Foreground
and background color sample correspondences of a pixel in the matting area.

we assume the depth of foreground and background within the unknown region
are similar to the depth of foreground and background in the known region. Thus,
we can propagate the EPI constraint from the known region to the unknown re-
gion through extrapolation (details will be described in Section 4.2). Figure 2(c)
illustrates the color sample correspondences of a pixel in a matting area using
the propagated EPI constraint. Note that the foreground and the background
color sample correspondences are defined differently since the foreground and
background EPI have different light ray direction. In the next section, we will
discuss how to use the EPI color sample correspondences to select color samples
for better alpha matte estimation.

4 Consistent Matting for Light Field Images

4.1 Pre-processing: Color Samples Collection

In order to efficiently process color samples from the known regions, we follow the
steps in [23] to construct a comprehensive color sample sets of foreground and
background in a light field image. Specifically, we follow the two-level hierarchical
clustering process by first using colors to estimate the global color distribution of
foreground and background described by the Gaussian mixture models (GMM).
In the second level, we include spatial index of pixels to estimate local color
distribution of foreground and background. This provides us the comprehensive
sample set which covering all possible foreground and background colors in a light
field image. We have also followed the steps to expand trimap regions in color
samples collection. This gives us a more accurate estimation of color distribution.
We refer readers to [23] for further details of these steps in constructing the
comprehensive sample set of foreground and background.

4.2 EPI Estimation and Propagation

Although EPI estimation is not the focus of this paper, the performance of our
algorithm depends on the accuracy of estimated EPI since the EPI defines the
pixel correspondences between sub-images of a light field image. In our imple-
mentation, we use the depth estimation method by [27] to estimate the EPI
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in the definite foreground and the definite background regions. A median filter
is applied to reduce effects of noise in the estimated EPI. In the unknown re-
gions, we propagate the EPI from definite foreground and definite background
regions by assuming the EPI in the unknown regions are spatially smooth. The
propagation is achieved by solving the Poisson equation by setting zero gradient
of EPI in the unknown regions, subject to the boundary constraint of the esti-
mated EPI along the trimap, to extrapolate the EPI in the unknown regions.
The extrapolation of foreground and background EPI are performed indepen-
dently. Thus, two different set of EPI correspondences will be defined within the
unknown regions as illustrated in Figure 2. We note that there are better EPI
estimation algorithms such as the works by [31,12,30]. In experiments, we found
that our EPI estimation and propagation algorithm provides sufficient accuracy
for our examples. In implementation, the center view trimap is provided by user
manually, and we use it to estimate EPIs in definite foreground and definite
background regions, and propagate the EPI propagation to unknown regions
in the center view. After that, the center view trimap is propagated to other
sub-images automatically using the estimated foreground EPI.

4.3 Color Sample Selection

In previous sampling based matting algorithms, color samples are selected to
minimize the linear composite error defined by the matting equation in Equa-
tion (1). A major challenge in this process is that there are multiple pairs of
foreground and background samples that can minimize the error but the esti-
mated alpha values can be totally different. Researches in sampling based mat-
ting algorithm have extensively focused on how to resolve this ambiguity by
using different cues or making different assumptions about the true color sam-
ples. In this section, we describe how to resolve this ambiguity by using the EPI
correspondence defined in the previous section.

Assumption. We assume foreground and background are located at different
depth from camera such that the foreground and the background color sample
correspondences are misaligned as illustrated in Figure 2(c). If foreground and
background are located at the same (or very closed) depth, the observed inten-
sity across multiple sub-images will be identical. In such case, we will apply the
method in [23] to select the optimal color samples based on color similarity,
spatial distance, and distribution of sample sets. We will also assume the EPI
correspondences are accurate.

In a practical scenario, we have two different cases as illustrated in Figure 3
in handling the color sample selection problem:

Case 1: Background Samples along EPI of Foreground Are Known
This case happens when a background sample is partially occluded in one sub-
image, but is disoccluded in another sub-image. The disoccluded background
samples can be detected using the background color sample correspondence de-
fined by the background EPI where pixels along background EPI are not entirely
included in the unknown regions.
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Fig. 3. (a) Case 1: If B1 �= B2, we solve the alpha in a closed form. If B1 = B2, we solve
the alpha using the comprehensive sample set. (b) Case 2: Foreground and Background
samples are solved individually along its EPI, and the median F and B are selected to
solve the alpha.

To estimate the color of a foreground sample with known background colors,
we can derive multiple equations along the foreground color sample correspon-
dence defined by the foreground EPI:

I1 = αF + (1− α)B1,

...

In = αF + (1− α)Bn, (3)

where {I1, . . . , In} are the observed intensity along the foreground color sample
correspondence, and {B1, . . . , Bn} are the known background colors. Thus, we
have number of equations more than or equal to the number of unknown when
n ≥ 2. When n = 2, we can obtain the alpha in a closed form:

α̂ = 1− I1 − I2
B1 −B2

. (4)

When n > 2, we solve the alpha using the least square error method by com-
puting the weighted average α across the solution of all pairs of pixels in the
foreground color sample correspondences with known background color. Weight-
ing factors for each α are determined by the distance between two background
color samples. Larger weight coefficient is given to α with longer distance be-
tween background color samples because it is more reliable to estimate α value
than the inverse case when denominator is close to zero. With the estimated
alpha, α̂ and the known background colors, Bi, the foreground color, F , can be
computed accordingly. In order to avoid errors caused by image noise, we apply
this method only when the number of disoccluded pixels is more than 4 along
the EPI correspondence.

In a degenerated case when colors of all background samples are identical,
e.g. homogeneous background color, we use the comprehensive sample set col-
lected from the known foreground region to estimate the alpha. Specifically, the
observed intensity I and the known background color B form a line constraint
where the true foreground color F must be located along the line extrapolated
from I − B. This line constraint guides the searching of true foreground color



Consistent Matting for Light Field Images 97

sample from the comprehensive sample set. In the case when there are multiple
foreground color samples that satisfied the line constraint, we choose the solu-
tion which produces the minimum differences of alpha value around the solution
within the local neighborhood of a pixel.

Case 2: Background Samples along EPI of Foreground Are Not Known.
When alpha matte area is large, background pixels closed to foreground region
will be occluded/partially occluded in all sub-images. In this case, we apply the
following method to estimate foreground and background samples. Again, we
assume the foreground EPI and the background EPI are misaligned and they
are accurately estimated.

For a pixel with different foreground and background color sample correspon-
dence, we first compute the foreground and background sample pairs for each pix-
els along the foregroundEPI and the backgroundEPI independently. This process
is done by using the method proposed in [23] to select the optimal color samples
from the comprehensive sample set collected from the known foreground and back-
ground regions. Next, assuming that majority of the estimated color samples are
correct, we apply a simple linear regression to fit a line to the estimated foreground
and background samples. Note that when computing the foreground color, only
the estimated foreground samples along the foreground EPI were used. This is the
same case for the background color estimation. After fitting the color line, we sort
the color samples along the estimated color line and choose the median foreground
color and the median background color as the true foreground color and the true
background color respectively. Once the true foreground and background colors
are estimated, the alpha value can be computed as:

α̂ =
(I −B) · (F −B)

||F −B||2 . (5)

While this method is simple, we find that the method robust and reliable.
In a degenerated case where all foreground and background colors along the
two different EPIs are identical, this reduces the problem to the conventional
setting of color sample estimation since the two EPIs do not provide additional
information to assist the color sample selection.

Implementation: Solving Alpha in the Order to Reduce Ambiguity
Since pixels are interconnected by the foreground and the background EPI, and
each pixel in the unknown region have two different set of correspondences,
once the foreground color of a pixel with known background samples (Case 1) is
estimated, the estimated foreground color can be used to estimate background
color of a pixel where its background samples are unknown (Case 2). Using this
strategy, we can significantly reduces the ambiguity in color sample selection
by reducing the Case 2 scenario to the Case 1 scenario using the estimated
color as the known color samples. In our implementation, we use a priority
queue to rank the pixels in the unknown region according to the number of
known color samples along the foreground or background EPI. The priority of a
pixel in the priority queue will be updated once color of a pixel along the EPI
correspondence is solved. Intuitively, using this strategy, alpha value of pixels
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are solved progressively from the boundary of background region towards the
boundary of foreground region.

Due to the small angular resolution of the light-field images, propagation
method on the EPI image has ambiguity. In order to reduce this ambiguity, we
take multiple directional EPI images, 0◦, 45◦, 90◦ and 135◦ and average the
estimated alpha using following confident weighting factor:

Wi =
wi∑
wi

, wi = exp(−‖I − αiFi − (1− αi)Bi‖22)
2σ

),

i = (0◦, 45◦, 90◦, 135◦) (6)

where αi, Fi, Bi and Wi are estimated α, foreground, background samples and
confidence weighting at each direction respectively. By using this weighting strat-
egy, more reliable and accurate alpha and color samples can be estimated.

4.4 Consistent Matting with the EPI Smoothness Term

The previous color sampling step estimates alpha value of each pixel indepen-
dently although the selected color samples is guided by the EPI constraint. In
this section, we describe the process to further improve the alpha matte by
considering smoothness among neighboring pixels. This is also a common post-
processing step in many previous matting algorithms.

Using the results, α̂, from the Equation (4) or Equation (5) as a data term,
and the smoothness term defined by the matting Laplacian matrix L [17], we
can obtain the final alpha by:

α = argminαTLα+ λ(α − α̂)TD(α− α̂) (7)

where λ is a weighting parameter, and D is a diagonal matrix. Its diagonal
element is a large constant for the known pixel, and a confidence c = exp(||I −
(α̂F + (1− α̂)B||2/σ2) for the unknown pixel.

In order to further consider the smoothness constraint along the EPI of the
extracted foreground, we extend Equation (7) to include an additional nonlo-
cal smoothness term in L, and solve the alpha matte of multiple sub-images
simultaneously. In particular, we extend Equation (7) as follows:

α = argminαTLα+ λ(α− α̂)TD(α − α̂), (8)

and

α =

⎡

⎣
α1

α2

α3

⎤

⎦ ,L =

⎡

⎣
L11 L12 L13

L21 L22 L23

L31 L32 L33

⎤

⎦ ,D =

⎡

⎣
D1 0 0
0 D2 0
0 0 D3

⎤

⎦ (9)

where Lii, i = {1, 2, 3}, are the matting Laplacian of the sub-image Ii, and Lij ,
i �= j, are the cross sub-images smoothness term with each entry defined as:

Lij(x, x
′) = exp(−||Ii(x) − Ij(x

′)||2
2σ2

c

),
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Fig. 4. Our dataset for testing

if x and x′ are the foreground EPI correspondence between Ii and Ij , and
Lij(x, x

′) = 0 if otherwise. For a sub-image I1, I2 is the sub-image next to
I1 in horizontal direction, and I3 is the sub-image next to I1 in vertical direc-
tion. Thus, we can solve the alpha matte of three sub-images simultaneously
with consideration of the EPI smoothness of alpha matte across the sub-images.
Although we can solve the alpha matte of sub-images altogether by further ex-
tending Equation (9) to include more sub-images, the computation cost increases
dramatically deal to the large linear system. In experiments, we found that us-
ing more adjacent sub-images does not improve much in accuracy. Thus, we only
solve the alpha matte of three sub-images simultaneously.

5 Experimental Results

5.1 Light Field Matting Dataset

We follow the steps in [22] to create a new dataset to evaluate the performance of
matting algorithms applied on light field images. In order to derive a high-quality
ground truth alpha matte, we placed the matting objects in front of a monitor,
and we displayed four different single-colored background (i.e. black, red, green,
blue). The images are captured with a Lytro camera mounted on a tripod, and
we use the method in [5] to decode the captured light field images from its RAW
image data. This gives us 45 sub-images (7 × 7 without four corners) of a light
field image. Each of the sub-image is of resolution 300×300 with 12-bits per color
channel. With the different monochrome color background, we apply the blue
screen matting [25] to get the ground truth alpha matte by triangulation. To
capture the images for testing, we change the background on the monitor with
natural background images. Finally, the images were cropped at a bounding
box that was casually drawn around the foreground objects, resulting in the
test scenes. Our dataset consists of 5 testing images, and the foreground objects
were chosen to cover different properties with hard and soft boundaries, as well
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Table 1. Quantitative Comparisons in term of RMSE and Consistency

Data01 Data02 Data03 Data04 Data05

RMSE CONS RMSE CONS RMSE CONS RMSE CONS RMSE CONS

GSM 8.259 5.267 15.997 8.567 13.967 5.900 10.341 6.057 13.167 7.498

KNN 10.508 7.681 20.085 5.575 12.822 8.315 13.605 8.597 18.197 11.855

COM 7.776 5.501 16.015 5.375 11.627 6.330 10.347 6.740 13.731 7.761

VIDEO 10.356 5.532 29.253 5.480 19.020 6.383 10.209 5.389 15.314 8.184

OUR 7.870 5.178 14.491 4.595 10.277 5.792 9.897 5.277 11.194 6.929

as translucency. Figure 4 shows our testing images, trimaps and the ground truth
alpha mattes. The center view trimap is provided by user manually, and it is
propagated to other sub-images automatically using the foreground EPI.

5.2 Evaluations

We evaluate the performance of our algorithm in term of RMSE and consistency.
The RMSE is computed as follows:

RMSE(α) =

√
1

N

∑

i

(α∗
i − αi)2, (10)

where α∗ is the ground truth alpha and N is the total number of pixels. The
consistency is evaluated as follows:

CONS(α) =

√
1

N

∑

i

(
1

NEPIi

∑

j∈EPIi

||αi − αj ||2), (11)

where αi and αj are the EPI correspondences defined by the foreground EPI in
x−s plane and y− t plane respectively. The estimated alpha matte of the center
view is used for evaluation.

5.3 Comparisons

We compare the performance of our algorithm with the state-of-the-art mat-
ting algorithms: global sampling matting [13], KNN matting [3], comprehensive
matting [23], and video matting [6]. Table 1 summarizes the comparisons. In
Figure 5, we also show the qualitative comparisons on the results of our dataset.
As presented in the Table 1 and Figure 5, our algorithm achieves the minimum
RMSE in most cases. Also, our results are more consistent across sub-images
deal to the EPI smoothness term in our consistent matting algorithm.

Additionally, we also apply our algorithm to a real world example from UCSD
in [15]. Figure 6 shows the comparisons using UCSD light field data [15] which
are captured by cameras in a row. We use 20 sequential sub-images which include
a pink gorilla as the foreground with the background. Since the sub-images are
arranged horizontally, we have only the x−s plane in EPI. As shown in Figure 6,
our matting result is similar to the results from previous method, but the alpha
matte in EPI is smoother which shows that our result is more consistent.
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Fig. 5. Qualitative comparisons on dataset. We compare our estimated alpha mat-
tes with results from previous methods. (a) Inputs, (b) Results from global sampling
matting [13], (c) Results from KNN matting [3], (d) Results from comprehensive mat-
ting [23], (e) Results from video matting [6], (f) Our results, (g) Ground truth.

6 Limitation and Discussion

In this paper, we assume foreground and background have sufficient distance
such that the directions of foreground EPI and background EPI are very differ-
ent from each other. If this assumption is violated, i.e.the foreground EPI and
background EPI are parallel to each other, our approach is less effective since the
EPI constraint cannot be used to resolve the ambiguity in color sample selection.

Our another assumption is that the EPIs in unknown regions can be smoothly
extrapolated from known regions. If there is significant depth changes in mat-
ting area, the errors in extrapolated EPIs will be propagated to our matting
results since the EPI correspondences are incorrect. Similar to previous matting
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(d)
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Fig. 6. A horizontal light field sub-images form UCSD data [15]. 20 sub-images are
used for consistency. In the example, from the top, (a) input images and (b)-(e) alpha
mattes by Global sampling matting [13], KNN matting [3], comprehensive matting [23],
and our proposed matting. The first two columns are estimated alpha mattes and
the second two columns are the combined image with the green background. In the
righthand column, we provide the EPIs to compare the slopes for the consistency.

algorithms, we also assume noise level is low in the input images. If there is
significant amount of noise, our EPI estimation method may be broken. In such
case, better EPI estimation algorithm should be utilized.

7 Conclusion

In this paper, we have presented a method for light field image matting which
estimates consistent alpha mattes of foreground across multiple sub-images in a
light field image. By using the EPI constraint, we can define different sets of pixel
correspondences for foreground and background. In the color sample selection,
we have presented a method to estimate foreground samples alpha with known
and unknown background samples. We have also introduced a method to include
the EPI smoothness constraint and proposed to solve alpha matte of multiple
sub-images simultaneously. In the experimental evaluations, we have created
a new dataset with ground truth alpha mattes to quantitatively compare the
performance of our algorithm with the performance of state-of-the-art image
matting algorithms. Our algorithm outperforms previous work in term of both
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RMSE and consistency. As for future work, we are interested in extending our
work in other applications that utilize light field image data.
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