
Consensus of Regression for Occlusion-Robust

Facial Feature Localization

Xiang Yu1, Zhe Lin2, Jonathan Brandt2, and Dimitris N. Metaxas1

1 Rutgers University, Piscataway, NJ 08854, USA
2 Adobe Research, San Jose, CA 95110, USA

Abstract. We address the problem of robust facial feature localization
in the presence of occlusions, which remains a lingering problem in facial
analysis despite intensive long-term studies. Recently, regression-based
approaches to localization have produced accurate results in many cases,
yet are still subject to significant error when portions of the face are
occluded. To overcome this weakness, we propose an occlusion-robust
regression method by forming a consensus from estimates arising from a
set of occlusion-specific regressors. That is, each regressor is trained to
estimate facial feature locations under the precondition that a particular
pre-defined region of the face is occluded. The predictions from each re-
gressor are robustly merged using a Bayesian model that models each re-
gressor’s prediction correctness likelihood based on local appearance and
consistency with other regressors with overlapping occlusion regions. Af-
ter localization, the occlusion state for each landmark point is estimated
using a Gaussian MRF semi-supervised learning method. Experiments
on both non-occluded and occluded face databases demonstrate that our
approach achieves consistently better results over state-of-the-art meth-
ods for facial landmark localization and occlusion detection.

Keywords: Facial feature localization, Consensus of Regression, Occlu-
sion detection, Face alignment.

1 Introduction

Facial feature localization is a longstanding active research topic due to its wide
applicability in computer vision and graphics [2,4,8,20,26,33]. Accurate local-
ization is crucial for many applications, including automated face editing, face
recognition, tracking, and expression analysis. Recent state-of-the-art methods
such as [2,26] have achieved impressive results, not only on near-frontal faces but
also faces in the wild. Despite these advances, the problem remains challenging
due to large viewpoint variation, severe illumination conditions, various types of
occlusions, etc.

Early successes in facial feature localization, epitomized by the Active Shape
Model(ASM) [7] and Active Appearance Model(AAM) [6,17], are characterized
by a parametric template that is fit to a given image by optimizing over the
template’s parameter space. Although effective for many cases, these parametric

D. Fleet et al. (Eds.): ECCV 2014, Part IV, LNCS 8692, pp. 105–118, 2014.
c© Springer International Publishing Switzerland 2014



106 X. Yu et al.

Fig. 1. Sample visual results from Helen, LFPW and COFW databases. Landmarks
estimated by proposed method with occlusion detection (red: occluded, green: non-
occluded).

approaches tend to break down under extreme pose, lighting and expression,
due to lack of flexibility in the representation. Recently, regression-based meth-
ods [4,8,10,26] have been shown to overcome some of these difficulties, and have
achieved high accuracy, largely due to their greater flexibility as compared to
parametric methods, as well as effective sub-pixel localization capability. Despite
these successes, a major weakness of the regression-based approach is occlusions,
which occur often in faces in the wild (see, for example, Fig. 1). Regression-baded
methods depend heavily on local appearance to obtain reliable feature location
estimates. Occluded regions produce noisy features and result in erroneous lo-
cation updates that not only affect the predicted locations of the occluded land-
marks, but result in biased estimates of the visible landmarks as well.

In this paper, we propose to overcome the occlusion problem and improve
the regression-based approach for facial feature localization. Our approach is
based on the “consensus of experts” concept in machine learning. In our case,
the “experts” are regressors that are each trained specifically to predict facial
feature locations under the precondition that a particular region of the face is
occluded. The occlusion region for each regressor is different from, yet overlap-
ping with others. This enables a robust consensus to be formed using Bayesian
inference. Note that regressor training requires no occlusion ground truth infor-
mation because occlusion information is not used for each specific regressor. Once
the landmark locations are determined, we employ a semi-supervised Gaussian
MRF to smoothly propagate occlusion state labels from high-confident areas to
the rest of the face.

Our contributions are as follows: 1) We propose a new regression-based fa-
cial feature localization method using a consensus of occlusion-specific regressors
that effectively resists occlusions and achieves consistently better performance
compared to state-of-the-art methods. The occlusion-specific regressors can be
trained on standard landmark datasets without occlusion labels. 2) We propose a
semi-supervised method using local occlusion detectors and a Gaussian MRF for-
mulation to robustly identify coherent occluded regions. The resulting occlusion
labels are shown to be competitive with the latest occlusion detection methods.
3) Extensive experiments on non-occlusion databases and occlusion databases
are conducted to demonstrate the effectiveness of the proposed method.
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2 Related Work

Facial landmark localization methods can be roughly divided into two major
categories: parametric vs. non-parametric. Parametric methods are characterized
by a model that attempts to capture facial appearance variations in terms of an
underlying parameter space. Inference amounts to search in parameter space for
the best-fitting model to the given image. In contrast, non-parametric methods
learn to predict the face shape via training on a database, or by directly drawing
exemplars in a data-driven manner.

The Active Shape Model (ASM) [7] and Active Appearance Model (AAM) [6]
are both classical, seminal contributions to the parametric approach, with much
follow-on work. Subsequently, the Constrained Local Model (CLM) [9,21] was
introduced, which combines each local patch’s alignment likelihood and predicts
the optimal solution by maximizing the overall alignment likelihood. Component-
wise ASM was proposed [13] to reduce the alignment error propagated among
components. Le et al. [14] introduced a Viterbi process on facial contour fitting
and user interaction model to improve the accuracy. Recently a fast AAM algo-
rithm was presented for real time alignment [23], and an ensemble of AAM [5]
was proposed to jointly register landmarks for image sequence. The combination
of a part model and CLM [29] was proposed to alleviate pose variations, while
other CLM frameworks focused on local patch expert learning [1].

In the category of non-parametric methods, Belhumeur et al. [2] proposed a
data-driven method that employed RANSAC to robustly fit exemplar landmark
configurations drawn from a database to a set of local landmark detections.
Similar methods [22,31] either considered temporal feature similarity for joint
face alignment or used graph matching to enhance the landmark localization.
Notably, Zhu et al. [33] modeled the landmarks as a tree so that the positions
could be efficiently optimized through dynamic programming.

Regression-based methods represent a significant sub-category of the non-
parametric approach that have recently achieved high accuracy on standard
benchmarks. An early contribution in this domain is Liang et al. [15], who pro-
posed directional classifiers to predict the direction and step size of a landmark’s
update. Cristinacce and Cootes employed boosted regression [10] for local land-
mark alignment. Regression forest voting for accurate shape fitting was proposed
by Cootes et al [8]. Valstar et al. [24] combined boosted regression with a graph
model. Martinez et al. [16] proposed local evidence aggregation for regression
based alignment. Dantone et al. [11] introduced conditional regression forests to
treat faces with different poses separately. Dollar et al. [12] proposed cascaded
pose regression to approximate 2D pose of objects. Rivera and Martinez [18]
use kernel regression to handle low resolution images. Cao et al. [4] proposed
a real-time explicit holistic shape regression method with robust shape indexed
features. Xiong and De la Torre [26] proposed an efficient supervised descent
method for regression training and inference. Yang et al. [28] employed dense
interest points detection with sieving regression forests to obtain good results
on faces in the wild.
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In general, the regression-based approaches provide good accuracy with fast
runtime. However, these methods suffer from the presence of occlusion due to
the global nature of the regression which relies on the appearance around all
the landmarks. To overcome this shortcoming, some researchers have proposed
methods to cope with occlusion handling. For example, Roh et al. [19] used
a large amount of facial feature detectors to provide over-sufficient landmark
candidates and a RANSAC-based hypothesis and test method to robustly deter-
mine the whole shape. This method relies heavily on the facial feature detectors
and is consequently computationally demanding. In [27], occlusion is modeled
as a sparse outlier and the sparse constraint is applied during the optimization
process. The sparse error could be from either occluded landmarks or perturba-
tion of visible landmarks. Supervised occlusion detection methods are also pro-
posed [25,30]. However, if a particular occlusion case is missing from the training
set,these methods may fail. A recent work on face alignment with occlusion [3]
attempts to use regression to predict the occlusion likelihood of landmarks. They
divide the facial area into 3 by 3 blocks and use one non-occluded block each
time to predict the landmark positions. The approach shows its positive effects
but the statistical prior of each block’s occlusion condition is fixed. In contrast,
our approach uses all the features from the non-occluded regions. Though there
is no occlusion prior, the proposed method applies Bayesian consensus over all
the regressors to handle the occlusion.

3 Localization through Occlusion-Robust Regression

Linear regression has proven its effectiveness in facial landmark localization [4,26].
In order to tackle occlusion, we design a set of regressors which are designed spe-
cific to different occlusion conditions. For instance, a right eye regressor extracts
features over all the landmarks except the landmarks of right eye, which we note
as an occlusion-specific regressor. Then a Bayesian inference framework is intro-
duced to predict the landmark positions by jointly considering all the regressor
outputs and evidence of low-level appearance models. Encouraged by the regres-
sion results, we further apply SVM and Gaussian MRF regularization to identify
the occluded landmarks.

3.1 Occlusion-Specific Regressors

As defined in [26], a linear regression based framework models the relationship
between landmark displacementΔs and the local appearance Φ, shown in Eqn. 1.

Δs = AΦ+ b, R = (A, b) (1)

where A is a regression matrix and b is the intercept. Φ is a feature vector
concatenated by n feature vectors extracted at each fiducial point (x̃i, ỹi), which
indicates that each facial landmark’s displacement is related to all other fiducial
points’ appearance.
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Fig. 2. Illustration of occlusion-specific regressors. Color blocks are regression weights
for different components, i.e. left profile, mouth, etc. For different occlusion states,
i.e. right eyebrow and right eye occlusion, the regressors are designed not to use the
features from the occluded region. Those occlusion states are defined to have occlusion
overlap with each other, e.g. mouth occlusion and mouth chin occlusion have overlap
on the mouth area.

Based on this observation, we propose to train an ensemble of regressors,
each of which handles one type of occlusions. The occlusions are combinations
of different facial components, i.e. eyebrow, nose, left profile etc. The illustra-
tion is shown in Fig. 2. The training is almost the same as supervised descent
method (SDM) [26]. The difference is that here we only extract features at those
non-occluded landmarks, i.e. for training the mouth occlusion regressor, we only
extract features at non-mouth landmarks. For robustness, the layouts of land-
marks between different regressors overlap with each other. In this way, it is
expected to be more than one regression result approaching optimal solution,
which provides potential to conduct consensus of regressors.

Suppose there are T such regressors. (We define those T regressors as right-
eyebrow-eye, right-eyebrow, right-eye, right-contour, left-eyebrow-eye, left-eye
brow, left-eye, left-contour, chin, both-eyebrow, all-contour, both-eyes,
chin-mouth, nose-mouth andmouth respectively). All of them are visually differ-
ent because they are designed for different occlusions. In the training part, the
goal is to minimize the regression error over all the training faces and all initial-
ized landmark positions skt , t = 1, ..., T, k = 1, ...,K. The superscript k means
the kth iteration of regressor Rt in the training. Advantageous to other occlu-
sion detection methods, our method needs no occlusion information because the
occlusion-specific regressors do not take the occlusion region into consideration.
For instance, to train left-eye occlusion regressor, based on general non-occluded
facial images, we only consider the features from all other areas except left eye,
no matter left eye is occluded or not. Thus the general face image database is suf-
ficient for training our method. As in SDM, practically four to five linear regres-
sion steps are needed to reach the convergence. We learn T regressors R1, ..., RT ,
each of which consists of K cascaded single regressor Rt =

{
R1

t , ..., R
K
t

}
.

3.2 Consensus of Regression on Local Response Maps

Given the multiple landmark predictions resulting from the T cascaded re-
gressors, it is necessary to select which of these is uncorrupted by occluded
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features, and thereby determine the optimal landmark positions. To achieve this,
we propose a Bayesian inference framework based on the local response maps
M = {Mj}, j = 1...n. The generation of response map Mj for a landmark is
illustrated in Fig. 3. Firstly, a local region is cropped out as shown in Fig. 3,
which is formed by bounding the estimated points (denoted as green dots) from
all the regressors. For each point inside the local region, its likelihood of be-
ing the true landmark is evaluated by support vector regression trained off-line.
After all points are calculated, the response map is formed as in Fig. 3.

Given the response maps, our objective function can be probabilistically for-
mulated as Eqn. 2.

argmax
s

p(s|ŝ1, ŝ2, ..., ŝT ,M), (2)

where ŝ1, ŝ2, ..., ŝT denote the shape predictions from the T regressors.
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Fig. 3. Illustration of response map

To handle occlusion, we introduce
vi, i = 1, ..., T , which is a binary
variable that is true if regressor Ri’s
landmarks are non-occluded. Thus, the
probability that the regression result ŝi
approximates the true position can be rep-
resented as p(vi = 1|ŝ1, ŝ2, ..., ŝT ). Sup-
pose there are sufficient such regressors,
weighted mean is a straight forward way
to estimate the optimum. But this naive
method ignores the cue from the response
maps. Our Bayesian framework takes the
response maps into consideration by com-
puting p(s|vi,M). Consequently, Eqn. 2
can be rewritten as:

p(s|ŝ1, ŝ2, ..., ŝt,M) =

T∑

i=1

∑

vi={0,1}
p(s|vi, ŝi,M)p(vi|ŝ1, ŝ2, ..., ŝT ), (3)

where the second term models the deviation of regressor Ri’s output from the
majority, which can be expressed as:

p(vi = 1|ŝ1, ŝ2, ..., ŝT ) = exp(−η‖ŝi − s̄‖22). (4)

In the above model, we define s̄ as the reference shape, which is obtained by an
iterative outlier removal and averaging algorithm based on the T observations.
The goal is to compute a robust mean while excluding the effect of outliers
caused by none-compatible regressors.

Given conditional independence assumption of individual landmarks, the shape
alignment probability (the first term) in the objective function can be modeled as:

p(s|vi, ŝi,M) =

n∏

j=1

p(xj |x̂i
j ,M) (5)
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where s = (x1, x2, ..., xn) and ŝi = (x̂i
1, x̂

i
2, ..., x̂

i
n), xj denotes a landmark pre-

diction and x̂i
j denotes a landmark observation.

Each landmark’s alignment probability can be modeled as a response map
update problem:

p(xj |x̂i
j ,M) =

∑

y∈φ⊂M
p(xj |y)p(y|x̂i

j). (6)

Given the current estimate x̂i
j , we consider all the neighboring points y which

forms neighborhood φ ⊂ M of x̂i
j to indicate the alignment likelihood of the

next update position xj . The posterior p(xj |y) is assumed Gaussian distribution
p(xj |y) ∼ N(xj ; y, σjI).

The probability map p(y|x̂i
j) is obtained from the response map which is

modeled by SVM from training data. Consequently, the response map update
can be achieved by fitting a Mixture of Gaussian (MoG) model:

p(xj |x̂i
j ,M) =

∑

y∈φ⊂M
γi
yN(xj ; y, σjI) (7)

where γi
y = p(y|x̂i

j). The overall objective function now becomes:

argmax
s

T∑

i=1

p(vi|ŝ1, ŝ2, ..., ŝT )
n∏

j=1

∑

y∈φ⊂M
γi
yN(xj ; y, σjI) (8)

For optimization, we take an alternating scheme: fixing p(xk|x̂i
k,M) for all land-

marks k �= j, and optimize for the jth landmark via the Expectation Maximiza-
tion (EM) algorithm. We can iterate this alternating process multiple times until
convergence.

3.3 Occlusion Inference

Compared to fully visible facial images, occluded faces are with one or several
facial parts that are sheltered by obstacles. As we know, occlusion of landmarks is
highly pose-dependent. The same landmark with different head poses may have
different appearance. The head pose can be inferred by Procrustes Analysis over
the predicted landmarks and the 3D reference face shape [29]. Then our inference
process starts with classifying each landmark as occluded or non-occluded under
different poses. By extracting pyramid SIFT descriptor h(x), a standard linear
SVM framework is applied to provide the detection score, f(h(x)) = ωTh(x)+β.
In the training part, well-aligned landmark appearance and occluded appearance
are collected with respect to three head poses, left head pose (−45◦,−15◦),
near-frontal head pose (−15◦, 15◦) and right head pose (15◦, 45◦). The testing
examines the head pose first and apply the pose-dependent occlusion classifier.

Usually the classification might be sensitive and not consistent among land-
marks. But we can obtain some detections with high confidence. These highly
confident detections are labeled with occlusion state labels. We use a graph-based
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0 +   

Fig. 4. Visualization of weights for label propagation. The size of a landmark is pro-
portional to its weight. Yellow triangle is the central landmark being processed. Red
landmarks are with positive weights which are similar to the central landmark while
green landmarks are with negative weights which are dissimilar to the central landmark.

method to jointly infer the occlusion status for all the landmarks. Motivated by
the work from Zhu et al. [32], assuming there arem labeled points x1, ..., xm, and
n−m unlabeled points xm+1, ..., xn, which constitutes the node set V . All those
points are fully connected, which forms the edge set E. The weights between
edges are defined by Eqn. 9.

wij = exp
(
−‖xi − xj‖2Σ−1

d

− λ‖h(xi)− h(xj)‖2Σ−1
h

)
(9)

The first term in the exponential represents the spatial distance, Σd is the co-
variance matrix of all the landmark positions. The second term measures the
similarity of feature vectors, h denotes the feature extractor and Σh is the co-
variance matrix of all the features. λ is a balancing factor between the two terms.
The similarity between different landmarks is visualized in Fig. 4.

Given such graph G = (V,E), with the edges defined by the weights wij , the
task becomes a label propagation problem on Graph G. By assuming the joint
probability of the graph nodes a Gaussian distribution, we can use the closed
form solution in [32] to predict occlusion confidence for all the landmarks jointly.

4 Results and Discussions

Our method is mainly focused on facial landmark localization under both non-
occluded and occluded conditions. We evaluate our method on two challenging
benchmarks, non-occluded images in Labeled Facial Parts in theWild (LFPW) [2]
and Helen facial feature database [14]. Moreover, we evaluate occluded images
from both LFPW and Helen databases, denoted as LFPW-O and Helen-O. To-
gether with Caltech Occluded Faces in the Wild (COFW) [3], we evaluate our
method on the three occlusion datasets and compare with several state-of-the-
art algorithms. We also evaluate the occlusion detection performance on COFW
and compare it to [3].

4.1 Experimental Setup

In the experiments, we use the 66 points annotation from 300 Faces in-the-
Wild challenge [20] for both training and testing, omitting two inner mouth
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corner points. The annotation is consistent across different databases, e.g. LFPW
and Helen. Since COFW uses the 29 points annotation same as the original
annotation of LFPW, when evaluating on COFW, we use the overlapped 19
points which are defined by both 66 points annotation and 29 points annotation.

LFPW consists of face images under wild conditions. The images vary sig-
nificantly in pose, illumination and occlusion. There are 811 training images
and 224 testing images in this database. We selected all occluded images, which
is 112 out of 224 testing images to form LFPW-O. Helen is another wild face
database, consisting of faces under all kinds of natural conditions, both indoor
and outdoor. Most of the images are of high resolution. The training set con-
tains 2000 images and testing set contains 330 images. We randomly selected
290 occluded face images out of 2330 images to form Helen-O. In the training
of our regressors, we select 402 Helen training images which are not included in
Helen-O and 468 LFPW training images.

We compare our method Consensus of Regression (CoR) with 4 state-of-the-
art methods, Supervised Descent Method (SDM) [26], Robust Cascaded Pose
Regression (RCPR) [3], Discriminative Response Map Fitting (DRMF) [1] and
Optimized Part Mixture with Cascaded Deformable Shape Model (CDSM) [29].
These methods report the top performance among the literature. SDM and
RCPR are non-parametric methods while DRMF and CDSM are parametric
methods. The codes used for this experiments are downloaded from internet pro-
vided by the authors. The DRMF and CDSM are 66 points annotation. RCPR’s
annotation is flexible since it provides the training code in which the annotation
can be defined by users. To compare on Helen and LFPW, we re-trained RCPR
model with the same training set which we used to train our occlusion-specific
regressors. SDM only provides 49 points annotation, omitting 17 profile and jaw-
line fiducial points. To make the comparison consistent, on LFPW and Helen,
we adopt 49 points evaluation over all the methods. On COFW, we adopt the
intersected 19 fiducial points which are defined by all the methods.

4.2 Evaluation on Facial Feature Localization

Non-occlusion Datasets:We compare the alignment accuracy on non-occluded
images from LFPW and Helen databases with 4 state-of-the-art methods as
shown in Fig. 5. The measurement is Cumulative Distribution Function (CDF).

Almost all methods encounter failure during testing. It may be from the failure
of face detection, improper initialization and the algorithm itself. For fairness,
we compare on the images that encounter no failure by all the methods. In
Fig. 5 (a), SDM and CoR (the proposed method) perform almost the same,
which significantly outperform other methods with at least 10% proportion gap.
In Fig. 5 (b), the proposed CoR method achieves better results than all other
methods. Nevertheless, considering the failure cases, besides the face detection
failure, our method achieves 9.7% and 33.3% failure rate on LFPW and Helen
while SDM achieves 10.2% and 36.6% respectively. The non-occlusion evaluation
over LFPW and Helen demonstrates that CoR is among the top level while
marginally better than those methods.
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Fig. 5. Relative error Cumulative Distribution Function curves for landmark localiza-
tion on LFPW and Helen (non-occlusion images), comparing the proposed method
CoR in Red curve with other state-of-the-art methods. (a) Error cumulative distri-
bution tested on LFPW database. (b) Error cumulative distribution tested on Helen
database.

Occlusion Datasets: When evaluating on occluded faces, traditional methods
may have problems, i.e. SDM extracts every landmark’s local appearance in-
formation for regression. The occluded landmarks’ appearance which brings in
error degrades the regression results significantly. We compare all the methods
on the LFPW-O, Helen-O and COFW in Fig. 6.
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Fig. 6. Relative error Cumulative Distribution Function curves for landmark localiza-
tion on LFPW-O, Helen-O and COFW, comparing the proposed method CoR in Red
curve with other state-of-the-art methods. (a) Error cumulative distribution tested on
all occluded images from LFPW database. (b) Error cumulative distribution tested on
occluded images selected from Helen database. (c) Error cumulative distribution tested
on COFW database.

From all the plots, our method accomplishes significantly better accuracy than
the rest of the methods especially on LFPW-O and Helen-O. For the COFW
dataset, our method approaches the performance of RCPR and is significantly
better than other methods. The RCPR result on COFW is trained based on
COFW. But our method is trained on part of LFPW and Helen images. When
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RCPR is trained on the same training set part of LFPW and Helen, the perfor-
mance of RCPR on Helen, LFPW as well as Helen-O and LFPW-O is not as good
as our method. Compared to non-occlusion results, the margin between the pro-
posed method and SDM is larger when evaluating on LFPW-O and Helen-O. It
is because our method is particularly designed with occlusion-specific regressors
which shows the effectiveness in handling occlusion.

Quantitative results are evaluated in terms of Average RMSE in Table 1. CoR
provides the most consistent and accurate performance against other methods on
Helen, Helen-O and LFPW-O. It is very competitive to the state-of-the-arts on
LFPW and COFW. As we know, the profile and jawline parts suffer the largest
variance in face shape. The 49-point annotation in SDM omits the profile and
jawline, which imports less variance. While in our method, we consider the profile
and jawline and simultaneously optimize all the facial components, which needs
to overcome more regression variance than SDM. Even so, CoR achieves the
same while sometimes better performance than SDM.

Table 1. Average Root Mean Square Error (in pixels) of CDSM, DRMF, RCPR, SDM
and proposed method CoR on LFPW, Helen, LFPW-O, Helen-O and COFW databases

Method LFPW Helen LFPW-O Helen-O COFW

CDSM 6.33 9.57 5.81 10.28 5.17
DRMF 4.90 9.59 5.40 10.23 4.50
RCPR 5.49 8.75 6.32 10.62 3.38
SDM 3.84 8.16 4.62 8.93 3.80
CoR 3.96 7.23 3.49 7.18 3.51

4.3 Evaluation on CoR Framework

In this section, we investigate the effectiveness of the proposed CoR framework.
We look into the comparison of CoR, wm-agg and gm-agg. In Table 2, wm-
agg represents the weighted mean aggregation over all T regressors and gm-
agg represents geometric mean over all regressors. The table shows that CoR
consistently outperforms wm-agg and gm-agg with a significant margin, which

Table 2. Average Root Mean Square Error (in pixels) of CoR, weighted mean aggre-
gation (wm-agg) and geometric mean aggregation (gm-agg) methods on LFPW, Helen,
LFPW-O, Helen-O and COFW databases.

Method LFPW Helen LFPW-O Helen-O COFW

CoR 3.96 7.23 3.49 7.18 3.51
wm-agg 4.32 7.34 3.61 7.41 3.63
gm-agg 4.43 7.66 3.65 7.53 3.66
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indicates that the Bayesian consensus of regression scheme is a more robust and
effective way in optimizing the positions.

4.4 Evaluation on Occlusion Detection

Among the previous methods, only RCPR detects occlusion. Thus, we compare
the performance of occlusion detection with RCPR. Since other databases do
not provide occlusion ground truth, we only focus on COFW for evaluation. For
RCPR, as the code published by the authors, we do not tune any parameter and
simply use the default settings. In our method, we also fix the parameters for
testing. The parameters are tuned via 3-fold cross validation. Fig. 7 shows some
visual results on occlusion detection. Compared to ground truth, the RCPR
results seem to miss out many occluded landmarks while our method hit more
occluded ones.

Quantitatively, by holding the false alarm at the same level, our method
achieves 41.44% accuracy while RCPR is with 34.16%. Since the annotations
of the two methods are different, if we count the component occlusion condi-
tion in which the component is labeled occluded if at least one landmark in a
component is occluded,(landmarks are categorized into 7 components, left/right
eyebrow, left/right eye, nose, mouth and chin), our method is with 47.18% and

(a) Ground truth landmarks of COFW

(b) Localization and occlusion detection result by RCPR

(c) Localization and occlusion detection result by proposed CoR

Fig. 7. Occlusion detection comparison of CoR and RCPR on COFW database (Red
dots: occlusion, green dots: non-occlusion). (a) The first row shows ground truth from
COFW. (b) The second row shows the results of RCPR with default parameters. (c)
The third row shows the results of proposed CoR method.
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RCPR is with 37.43%, which reveals that our method improves the detection
precision by about 10%.

5 Conclusions

We proposed a new consensus of regression based approach which trains an
ensemble of occlusion-specific regressors to handle occluded faces in the wild.
Due to the non-existence of occlusion priors, we conduct the consensus of the
occlusion-specific regressors under a Bayesian framework to optimize the infer-
ence. A graph-based semi-supervised learning is also utilized to explicitly de-
tect the occlusion. Our method shows consistent improvement of facial feature
localization on both non-occlusion and occlusion face databases. Additionally,
our method demonstrates improvement on occlusion detection compared to the
state-of-the-art.
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