
A Non-Linear Filter for Gyroscope-Based Video

Stabilization

Steven Bell1, Alejandro Troccoli2, and Kari Pulli2

1 Stanford University, Stanford, CA, USA
sebell@stanford.edu

2 NVIDIA Research, Santa Clara, CA, USA
{atroccoli,karip}@nvidia.com

Abstract. We present a method for video stabilization and rolling-
shutter correction for videos captured on mobile devices. The method
uses the data from an on-board gyroscope to track the camera’s angular
velocity, and can run in real time within the camera capture pipeline. We
remove small motions and rolling-shutter distortions due to hand shake,
creating the impression of a video shot on a tripod. For larger motions,
we filter the camera’s angular velocity to produce a smooth output. To
meet the latency constraints of a real-time camera capture pipeline, our
filter operates on a small temporal window of three to five frames. Our
algorithm performs better than the previous work that uses a gyroscope
to stabilize a video stream, and at a similar level with respect to current
feature-based methods.

Keywords: video stabilization, rolling-shutter, gyroscopes.

1 Introduction

Cell phones and other mobile devices have rapidly become the most popular
means of recording casual video. Unfortunately, because cell phones are hand-
held and light-weight devices operated by amateurs in the spur of the moment,
most videos are plagued by camera shake. Such shake is at best mildly distract-
ing, and at worst completely unbearable to watch. Additionally, most mobile
cameras use a rolling shutter sensor, where each horizontal scanline of pixels is
sequentially exposed and read out. When the camera moves during the exposure,
each image row captures a slightly different viewpoint, resulting in a distorted
image. Vertical motions cause the image to be squeezed or stretched vertically,
and horizontal motions shear the image so that vertical lines tilt to left or right.

At the same time, cell phones have gained the processing resources and fea-
tures that make real-time, on-device video processing possible. The majority of
mid-to-high range mobile devices contain a multi-core CPU complex, a graphics
processing unit (GPU) and an inertial measurement unit (IMU) with a 3-axis gy-
roscope. In this paper we address the challenge of performing video stabilization
on such devices, using the gyroscope for motion tracking. Unlike most proposed
stabilization methods, which operate as a post-processing step on a captured

D. Fleet et al. (Eds.): ECCV 2014, Part IV, LNCS 8692, pp. 294–308, 2014.
c© Springer International Publishing Switzerland 2014



Non-Linear Filter for Gyroscope-Based Video Stabilization 295

video, our method can run in real-time as part of the camera capture pipeline.
In addition, our motion filter does a better job at removing camera shake than
previous methods that stabilize the video stream using gyroscope data [1].

Correcting a video frame before it is sent to the hardware video encoder is
beneficial in several ways. First, our algorithm has access to uncompressed data,
which is an improvement over off-line methods that need to decode and re-encode
and degrade the video quality when doing so. Moreover, because encoding meth-
ods such as H.264 rely on finding patches of image data which match between
frames, removing frame-to-frame shake and increasing the temporal consistency
of a video may improve the encoding quality and reduce the final storage size.
Finally, it is important to consider that many (perhaps most) videos shot with
cell phones are watched on the same device instead of being uploaded to a shar-
ing site. Likewise, video chatting, because of its real-time peer-to-peer nature,
requires that any stabilization be done on the device without inducing any lag.

Motion tracking is greatly simplified when using a phone’s on-board 3-axis
gyroscope. The camera orientation can be computed from the gyroscope mea-
surements using a handful of multiplications and additions, while image-based
methods must analyze thousands or even millions of pixels. As a result, motion
estimation using the gyroscope can dramatically reduce CPU utilization, mem-
ory bandwidth, and battery usage compared to image-based methods. A typical
MEMS gyroscope consumes about 4 milliwatts [2], while the power consumed
by the CPU and memory traffic can easily be tens or hundreds of milliwatts.

Additionally, image-based methods can fail when features are sparse or when
large objects move in the foreground. A gyroscope, by contrast, always reports
the device motion regardless of how much and in which way the objects in
the scene move. Furthermore, the gyroscope measurements allow us to estimate
intra-frame camera orientations which we can use to accurately correct rolling
shutter on a per-frame basis.

Compared to state-of-the-art stabilizers [3], our method provides a similar
level of stabilization quality at a fraction of the processing cost, with no degra-
dation due to foreground object motion.

2 Background and Prior Work

Video stabilization removes jitter from videos based on the assumption that
high-frequency motions are unintended and are the consequence of hand tremor.
It is essentially a three-stage process, consisting of a motion estimation stage, a
filtering stage that smooths the measured motion, and a re-synthesis stage that
generates a new video sequence as observed by a virtual camera moving under
the filtered motion.

Two-dimensional stabilization involves tracking image keypoints to find the
camera motion between frames, usually modeled as an affine or projective im-
age warp [3–7]. The video is re-synthesized by defining a virtual crop window
that is transformed according to the smoothed camera path. Matsushita et al .
[7] smooth the camera motion by applying a Gaussian kernel to a local window



296 S. Bell, A. Troccoli, and K. Pulli

of 2D transforms. Gleicher et al . [4] take a different approach by segmenting
the camera path into shorter paths that follow a particular motion model, as
defined by cinematic conventions. Grundmann et al . [5] integrate this kind of
motion segmentation with saliency, blur, and crop window constraints in a uni-
fied optimization framework.

Image-based tracking methods suffer when depth variations induce pixel mo-
tions that, due to parallax, are not easily modeled by homographies. Further-
more, a rolling-shutter imaging sensor can introduce non-rigid frame-to-frame
correspondences that cannot simply be modeled by a global frame-to-frame mo-
tion model. To address rolling-shutter, Baker et al . [8] estimate and remove
the high-frequency jitter of the camera using temporal super-resolution of low-
frequency optical flow. Following up on their earlier work, Grundmann et al . [3]
developed a model based on a mixture of homographies that track the intra-frame
motions and produces stabilized videos with corrected rolling-shutter distortions.
Liu et al . [6] employ a mesh-based, spatially-variant motion representation cou-
pled with an adaptive space-time path optimization that can handle parallax
and correct for rolling-shutter effects.

Three-dimensional video stabilization techniques track the camera motion in
the world 3D space using structure-from-motion methods [9, 10]. These 3D meth-
ods can deal with parallax distortions caused by depth variations in the scene,
and synthesize the output using image warps that take into account the scene
structure. Still, the motion estimation is brittle if there are not enough fea-
tures or sufficient parallax; and these methods are, in general, computationally
expensive.

Gyroscopes are an attractive alternative to feature-based motion estimation,
since they sidestep many failure cases. Karpenko et al . [1] and Hanning et al . [11]
describe video stabilization techniques for mobile devices which use the built-in
gyroscope to track the camera orientation. Both of these methods apply a linear
low-pass filter to the gyroscope output. Karpenko et al . [1] use a Gaussian kernel,
while Hanning et al . [11] apply a variable-length Hann window to adaptively
smooth the camera path. In contrast, we introduce a nonlinear filtering method
which completely flattens small motions regardless of frequency, and performs
low-pass smoothing when the virtual camera must move to keep the crop window
inside the input frame. When the camera is nearly still, our virtual camera is
fixed, removing all jitter. When moving, our method acts like a variable IIR
filter, mixing the input velocity with the virtual camera velocity in a way that
smooths the output, while guaranteeing that it tracks the input so that the crop
window never leaves the input frame. This nonlinearity is necessary because a
very low cutoff frequency is required to smooth out low-frequency motions such
as those induced by walking. A large low-pass FIR or IIR filter introduces lag.
Moreover, any linear filter with a low enough cutoff frequency to flatten low-
frequency bouncing will also do a poor job tracking the input when the camera
is intentionally moved.

None of the previous cited work has a suitable real-time implementation that
eliminates camera shake. Karpenko et al . [1] implemented a truncated causal



Non-Linear Filter for Gyroscope-Based Video Stabilization 297

Fig. 1. Example crop polygons (shown in red) for a variety of scenarios: (a) no motion,
(b) vertical motion causes shrinking, (c) horizontal motion causes shearing, and (d) a
combination of motions causes a complex rolling-shutter distortion

low-pass filter for their real-time implementation of viewfinder stabilization on
an iPhone. However, as mentioned in their paper, the truncated low-pass filter
attenuates camera shake, but does not completely remove it. They suggest that
for video recording it might be possible to hold back video frames for a longer
period of time to achieve a smoother result, and leave this implementation for
future work. But there is a limit on the number of frames that can be buffered,
and as we show in Section 4, a Gaussian low-pass filter that buffers five frames
still does not eliminate shake, while our method does.

Our primary contribution in this work is a novel smoothing algorithm that
uses the gyroscope to track the camera motion and is suitable for real-time im-
plementation. By using a nonlinear filter, we are able to produce static segments
connected by smooth motions, while tracking the input and using little to no
frame buffering.

3 Algorithm Description

Conceptually, video stabilization can be achieved by creating a crop rectangle
that moves with the scene content from frame to frame as the camera shakes
around. The position of the crop rectangle within the input frame may vary
wildly, but the content within the crop rectangle remains stable, producing a
smooth output. Our method is based on this idea, but instead of moving a
crop rectangle, we move a crop polygon, and the region within the polygon
is projectively warped to create the output video. This more flexible model
allows us to model the distortions introduced by the sensor’s rolling shutter, as
illustrated by Figure 1.

3.1 Camera Tracking Using the Gyroscope

We model the camera motion as a rotation in a global coordinate frame. The
gyroscope provides a series of discrete angular velocity measurements with time-
stamps, which we integrate to produce a function of time that describes the
camera orientation. In theory we could be more precise by also measuring trans-
lation with the device’s accelerometer, but in practice this is difficult and of
limited value. If the camera is 3 meters away from a flat scene, then the image



298 S. Bell, A. Troccoli, and K. Pulli

motion induced by a 1 cm translation is equivalent to a rotation of 0.19 degrees,
which is far more likely to occur [12]. Moreover, the process of estimating gravity
and double-integrating acceleration to obtain translation is extremely sensitive
to error; plus the use of translation information requires knowledge about the
depth of objects in the scene.

In order to fix rolling shutter distortions, we need to know the orientation of
the camera at the time a particular row was exposed. Given the timestamp for
the first row of a frame t0, the timestamp for row r is

tr = t0 +
r

fl
ft, (1)

where ft is the total frame time (i.e., the time elapsed between the start of two
consecutive frames) and fl is the frame length in image rows. The frame length
is the sum of the image height (in pixels), plus the number of blanking rows,
where no data is read out. Both of these values depend on the image sensor and
capture mode, but we assume that they are known and constant for the duration
of the video. If these values are not provided by the sensor driver, they can also
be obtained by calibration [13, 14].

We can find the device orientation corresponding to a point x in an image
by calculating its corresponding row timestamp and interpolating the camera
orientation from known samples. Due to hardware and software latencies, there
is a small offset between the frame timestamps and the gyroscope timestamps.
We assume this offset td is known and constant for the duration of the capture.
In practice, we calibrate this offset as detailed in section 3.5.

We use a projective camera model with focal length f and center of projection
(cx, cy); these three parameters define the entries of the camera intrinsic matrix
K. The parameters are calibrated off-line using the OpenCV library [15]. With
the K matrix known, the relationship between corresponding points x1 and x2

on two different frames captured by a rolling-shutter sensor subject to rotational
motion is

x2 = KRc(t2)R
−1
c (t1)K

−1x1, (2)

where the rotation matrix Rc represents the camera orientation in the camera’s
coordinate system as a function of time, and t1 and t2 are the row timestamps
for points x1 and x2.

We can re-write Equation 2 with respect to the gyroscope coordinate system
and time origin as

x2 = KTRg(t2 + td)R
−1
g (t1 + td)T

−1K−1x1, (3)

where Rg is the orientation derived from the gyroscope, T is the transformation
between the camera and the gyroscope coordinate systems, and td is the afore-
mentioned time offset between the gyroscope and camera data streams. Since
most mobile devices have the gyroscope and camera rigidly mounted with axes
parallel to each other, T is simply a permutation matrix. In our implementa-
tion, the transformation T is known since the Android operating system defines
a coordinate system for sensor data [16].



Non-Linear Filter for Gyroscope-Based Video Stabilization 299

3.2 Motion Model and Smoothing Algorithm

We parametrize the camera path with the camera’s orientation and angular
velocity at each frame. We represent the physical and virtual camera orientations
at frame k with the quaternions p(k) and v(k). The physical and virtual angular
velocities are computed as the discrete angular changes from frame k to frame
k+1, and are represented as pΔ(k) and vΔ(k). Since the framerate is constant,
time is implicit in this representation of the velocity. For each new frame k, our
smoothing algorithm computes v(k) and vΔ(k) using the virtual parameters
from the last frame, and the physical camera parameters from the last frame,
the current frame, and optionally a small buffer of future frames (5 or less).

Our smoothing algorithm creates a new camera path that keeps the virtual
camera static when the measured motion is small enough to suggest that the
actual intention is to keep the camera static, and that otherwise follows the
intention of the measured motion with smooth changes in angular velocity. As a
first step, we hypothesize a new orientation for the virtual camera by setting

v̂(k) = v(k − 1) · vΔ(k − 1), (4)

where · denotes the quaternion product. Simply, this equation is computing a new
camera orientation by rotating the camera from its last known orientation while
keeping its angular velocity. Given this hypothetical camera orientation v̂(k),
we use Equation 2 to compute the coordinates of the corners of the resulting
crop polygon. In virtual camera space, the crop polygon is a fixed rectangle
centered at the image center, but in physical camera space, it may be be skewed
or warped, and moves around within the frame, as shown in Figure 1. The
crop polygon is smaller than the input size, which leaves a small amount of
“padding” between the polygon borders and the input frame edges, as shown
in Figure 2. We divide this padding into two concentric zones, which we will
refer to as the “inner region” and “outer region”. When the hypothetical crop
polygon lies within the inner region of the image we assert that the hypothesis
v̂(k) is good and make it the current camera orientation. In practice, we find
it advantageous to let the motion decay to zero in this case, which biases the
virtual camera towards remaining still when possible. Thus, if the crop polygon
remains completely within the inner region, we reduce the angular change by a
decay factor d and set the new virtual camera configuration to:

vΔ(k) = slerp(qI ,vΔ(k − 1), d), (5)

and
v(k) = v(k − 1) · vΔ(k − 1). (6)

Here qI represents the identity quaternion, and the slerp function is the spherical
linear interpolation [17] between the two quaternions. In our implementation, we
set the mixing weight to d ≈ 0.95, so that the angular change is only slightly
reduced each frame.



300 S. Bell, A. Troccoli, and K. Pulli

Fig. 2. Left: Crop polygon and the division of the padding space. Right: Velocity
mixing weight. Dark blue represents a strong weight (taking the input velocity); white
represents a small weight (keeping the current velocity).

If any part of the hypothetical crop polygon lies outside the inner region, we
update the virtual camera’s angular velocity to bring it closer to the physical
camera’s rate of change:

vΔ(k) = slerp(p′
Δ(k),v(k − 1), α). (7)

Here p′
Δ is the orientation change that preserves the relative position of the crop

polygon from one frame to the next, calculated as

p′
Δ(k) = p(k) · p∗(k − 1) · v(k − 1), (8)

where p∗ denotes the quaternion conjugate that inverts the rotation. This equa-
tion calculates the physical camera motion from the previous to the current
frame in the virtual camera reference coordinate system. The term α is a mixing
weight that is chosen based on how much padding remains between the crop
polygon and the edge of the frame, as illustrated in the right hand side of Fig-
ure 2. Intuitively, if the crop polygon is only slightly outside the inner region,
α should be close to 1, assigning a higher weight to the current velocity. Con-
versely, if the hypothetical crop polygon is near the edge (or even outside), α
should be 0, so that the input velocity is matched, and the crop polygon remains
in the same position relative to the input frame. We calculate α with

α = 1− wβ , (9)

where w ∈ (0, 1] is the maximum protrusion of the crop polygon beyond the inner
region, and β is an exponent that determines the sharpness of the response. In
the extreme case where any corner of the crop polygon would fall outside the
input frame, w takes a value of 1, forcing α to 0 and causing the virtual camera
to keep up with the physical camera.

This algorithm works well, but it occasionally has to make quick changes in
velocity when the crop rectangle suddenly hits the edge. If frames can be buffered
within the camera pipeline for a short time before being processed, then a larger
time window of gyroscope data can be examined, and sharp changes can be
preemptively avoided. In the remainder of this section, we extend our algorithm
to use data from a look-ahead buffer to calculate a smoother path.



Non-Linear Filter for Gyroscope-Based Video Stabilization 301

0 10 20 30 40 50 60 70 80 90 100
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Frame number

D
eg

re
es

 p
er

 f
ra

m
e

Comparison of lookahead distance

 

 

Input
Lookahead = 0
Lookahead = 5
Lookahead = 10

Fig. 3. Comparison of paths for varying lookahead distances. Larger lookahead values
require more data to be buffered, but produce smoother output paths.

We can span a larger window of frames by projecting the virtual camera
orientation forward in time and comparing it to the actual orientation at the
“future” time. Let a be the number of frames to look ahead, and hypothesize

v(k + a) = v(k − 1) · vΔ(k)a+1. (10)

We can then compute vΔ(k+a) and v(k+a) as we described for the no-lookahead
case. If the projection of the crop polygon a frames into the future is outside the
inner region, we can update vΔ(k) to

vΔ(k) = slerp(vΔ(k + a),vΔ(k), γ), (11)

where γ is a mixing factor that defines how much of the lookahead angular
change we should mix with the current one. Using values of γ close to 1 provides
a preemptive nudge in the right direction, without being a hard constraint. Note
that we do not update the virtual camera position that we computed without
lookahead, we only update the virtual camera velocity that we will be using for
the next frame.

Figure 3 shows a comparison of paths for a range of lookahead distances (mea-
sured in frames). Larger lookahead values produce smoother paths, since they
effectively “predict” large motions and gently cause the output to start moving.
But it is important to note that our algorithm can work without lookahead and
still produce good results.

3.3 Output Synthesis and Rolling-Shutter Correction

Once we have computed the new orientation of the virtual camera, we can synthe-
size the output by projectively warping the crop polygon from the video input to
the virtual camera. Our crop polygon is essentially a sliced rectangle with multiple



302 S. Bell, A. Troccoli, and K. Pulli

Fig. 4. Rolling-shutter correction is done by dividing the crop polygon in slices, each
of which is subject to a different projective warp

0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Frame number

D
eg

re
es

 p
er

 f
ra

m
e

Walking

 

 

Input
Large inner region
Small inner region

0 50 100
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Panning

Frame number

Fig. 5. Single-axis comparison of the effects of the inner region size on the smoothing
result. A larger inner region can filter small motions more aggressively (left), but often
produces sharper motions when the camera moves abruptly (right).

knee-points on the vertical edges, as shown in Figure 4. The knee-points allow us to
use a different transform for every slice of the polygon and fix rolling-shutter dis-
tortions. For every slice we compute a homography matrix according to Equation
2. We fix the rotation matrix Rc(t2) to the orientation of the virtual output cam-
era, and compute Rc(tk), the orientation of the input camera at each knee-point,
from the gyroscope data. We set the coordinates of the crop polygon as texture
coordinates of an OpenGL shader program that projectively maps the crop poly-
gon from the input frame to the virtual camera. Note that in order to effectively
correct for rolling-shutter effects, the gyroscope sampling rate should be higher
than the frame read-out time. In our implementation we sample the gyroscope at
200Hz and use a total of 10 slices, or 9 knee-points per vertical edge.

3.4 Parameter Selection

The most important parameters are the size of the output crop polygon and the
amount of padding allocated to the inner and outer regions. The crop size is a
trade-off between smoothing and image quality: larger crop polygons preserve



Non-Linear Filter for Gyroscope-Based Video Stabilization 303

more of the input image, but leave less padding for smoothing out motions. The
padding allocation is a trade-off between completely removing motion and the
smoothness of the remaining motion. As illustrated in Figure 5, a large inner
region (green) is able to flatten out larger motions such as walking, but must
move more abruptly when the crop window approaches the edge of the frame.

3.5 Gyroscope and Camera Calibration

We solve for the time offset td using a calibration procedure that we developed
for this purpose. We place a calibration pattern, which consists of an asymmetric
grid of circles, in front of the camera. Then we record a video and the gyroscope
readings while rotating the camera vigorously. The circles are easily tracked
across frames, even in the presence of motion blur and rolling shutter effects.
We use the centroid of each circle as a feature point, and solve for td iteratively by
minimizing the sum of re-projection errors according to Equation 3. By repeating
the calibration on multiple data sets we determined that the offset td is nearly
constant. We also considered the possibility of doing an on-line calibration, by
tracking key-points as each frame is captured [18], but the off-line method proved
sufficient for our purposes.

The integration of any static offset in the gyroscope measurements will result
in an estimated orientation that slowly drifts away from the ground truth. How-
ever, our stabilization algorithm is not affected by such drift because it smooths
the relative change of orientation. We measure orientation changes in a window
of one to five frames, and in such a short time span, the integration drift is
negligible.

4 Results

We experimented with a prototype Android tablet, in which we installed a modi-
fied version of the Android OS that reads and saves the gyroscope measurements
while recording video. Using this tablet we recorded a series of videos represent-
ing typical use cases of casual video captured by a cell phone. For comparison
here, we discuss three scenes: a video recorded while walking, a video focusing on
a fountain, and panning video tracking a walking person. For the stabilization
algorithm, we set the width and height of the crop rectangle to be 80% of the
original video size, allocate the remaining 20% in width and height equally to
the inner and outer regions, and set the lookahead to 5 frames. The results show
that our method eliminates the high-frequency jitter while keeping the camera
as still as possible. To compare against previous work we also implemented video
stabilization using a Gaussian low-pass filter of the derived gyroscope orienta-
tions as done by Karpenko et al . [1], using a local window of eleven frames,
giving a forward lookahead of 5 frames as in our method and the same 80% crop
ratio. All original videos and results are included in the supplementary material
that accompanies this paper.

Figure 6 shows a quantitative comparison of the camera’s angular velocity rate
of change for the original video, a stabilized video produced with the Gaussian



304 S. Bell, A. Troccoli, and K. Pulli

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2
Fountain − angular velocity X

Frame number

D
eg

re
es

 p
er

 f
ra

m
e

0 50 100 150 200
−1

−0.5

0

0.5
Walking − angular velocity X

Frame number

D
eg

re
es

 p
er

 f
ra

m
e

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2
Panning − angular velocity X

Frame number

D
eg

re
es

 p
er

 f
ra

m
e

0 50 100 150 200
−0.1

0

0.1

0.2

0.3

Frame number

D
eg

re
es

 p
er

 f
ra

m
e

Fountain − angular velocity Y

Original
Ours
Karpenko et al.

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4
Walking − angular velocity Y

Frame number

D
eg

re
es

 p
er

 f
ra

m
e

0 50 100 150 200
−1

−0.5

0

0.5
Panning − angular velocity Y

Frame number

D
eg

re
es

 p
er

 f
ra

m
e

Fig. 6. Angular velocities of the camera in the X and Y axis. We show three different
scenes: a handheld camera pointed at a fountain as steadily as possible (left), a camera
held by a person walking (middle) and a camera panning while tracking a moving
object (right). Our method (green) can eliminate most of the small camera motions.
On the other hand, the Gaussian filter with a small window of support proposed in [1]
can remove high-frequency motions, but fails to completely remove camera shake.

filtering of [1], and a stabilized video produced with our method. Our method
dramatically reduces the jitter in angular velocity, and even removes it when
possible, thus producing smoother results. The fountain video shows that we
can effectively simulate a static camera. Our method keeps the virtual camera
fixed for the first hundred and fifty frames and, when moving, follows the actual
camera smoothly. In the walking video, our method removes most of the angular
acceleration, producing an output video which is pleasing to view. The smoothed
camera path is nearly free of rotational motions, but still contains small vertical
periodic motions due to translations of the camera while walking. This is a
limitation of our method, which cannot track translational camera motion; we
discuss how to address this in the future work section. Finally, the panning video
highlights that our method can produce a smooth virtual panning camera; the
graph of angular velocity in the Y axis shows that our result follows the velocity
of the original camera. The green line follows the original velocity (red line)
during frames in the range [100, 150] at the same rate, though slightly shifted
in time. This is by design, since our method tries to keep the static camera for
as long as possible and then follows the original camera velocity. “Catching up”
with the motion to center the crop window would require introducing additional
accelerations.

To further benchmark our method against the state-of-the-art in video sta-
bilization, we uploaded the videos to YouTube and ran the stabilization tool,
which is based on the work of Grundmann et al . [3]. Qualitatively, our method



Non-Linear Filter for Gyroscope-Based Video Stabilization 305

(a) (b)

(c) (d)

Fig. 7. Four different frames of the Fountain video blended together. The frames were
sampled at a 10 frame interval from: (a) the original video, (b) the video stabilized
using a truncated Gaussian filtering, (c) the video stabilized by YouTube, (d) the
video stabilized using our method. The blended results on (a) and (b) look blurry, due
to the motion of the camera. In contrast, the results from (c) and (d) look sharp, since
both methods were able to eliminate the camera motion.

stabilization results are similar to those produced by the YouTube stabilization.
In Figure 7 we show the results of blending together four frames taken at 10-
frame intervals. The blended image from the original video is blurry, due to the
motion of the camera. On the other hand, the blended images generated by sam-
pling the stabilized videos produced from our and Grundmann’s method show
sharp results, showing both methods were able to remove the camera motion.
Grundmann’s method can dynamically adjust the size of the crop window, which
we can observe is larger than ours in some cases, therefore retaining a larger area
of the frame and reducing the zoom effect in the stabilized video. Our method
keeps the size of the crop polygon fixed, but there is no impediment to making
it a dynamic part of the virtual camera configuration, as we discuss in the next
section. Additional comparisons are included with the supplementary material
video.

To fix rolling-shutter effects we determined from the sensor driver that the
effective frame length of our 1080p video recordings was 2214 lines. This cor-
responds to a read-out period of 16ms and a blanking period of 17ms. This is
fast enough that it is difficult to perceive rolling-shutter wobble effects within a
single frame. However, the effects quickly become visible in a video, even with
moderate shake. Figure 8 visually shows the effect of rolling shutter correction



306 S. Bell, A. Troccoli, and K. Pulli

Fig. 8. Static visualization of rolling-shutter correction. The left image shows the av-
erage of four frames sampled at 10-frame intervals, without rolling shutter correction.
Stabilization is applied using the top of the frame as a reference, but rolling shutter
wobble causes the bottoms of the frames to be badly aligned. The right image shows
the same four frames with rolling shutter correction applied. The wobble is greatly
reduced, and the entire frame is much sharper.

0 50 100 150 200 250 300
−4

−2

0

2

4

Frame number

D
is
ta

n
c
e

in
p
ix

e
ls

Center pixel displacement X

iPhone 5
Ours

0 50 100 150 200 250 300
−4

−2

0

2

4

Frame number

D
is
ta

n
c
e

in
p
ix

e
ls

Center pixel displacement Y

iPhone 5
Ours

Fig. 9. Frame-to-frame displacement of the image center for a video sequence captured
with our real-time implementation and an iPhone 5. Our algorithm is able to reduce
motion for low-amplitude high-frequency shakes, as shown in the plot above.

by comparing a series of frames in a video with rolling shutter wobble. The sup-
plementary video contains additional video which demonstrates the efficacy of
our method.

While the comparisons above were done offline in order to run the same video
through multiple filters, we have also implemented our algorithm within the
Android video capture stack, where it runs in real time. The filter itself, running
as a single thread on the CPU, operates in 160microseconds. The image warp,
implemented as an OpenGL shader on the tablet’s GPU, runs in 15ms.

Using this real-time implementation and fixing the crop ratio to 90% of the
original frame size, we ran our prototype tablet side-by-side with an iPhone 5,
both fixed rigidly to a supporting frame. A qualitative comparison of the video
sequence shows both look similar, with some instances in which our algorithm
produces better results, such as regions of high-frequency low-amplitude shakes,
as shown in Figure 9.

Our source videos, results and supplementary material video are
available at https://research.nvidia.com/publication/non-linear-

filter-gyroscope-based-video-stabilization.

https://research.nvidia.com/publication/non-linear-filter-gyroscope-based-video-stabilization
https://research.nvidia.com/publication/non-linear-filter-gyroscope-based-video-stabilization


Non-Linear Filter for Gyroscope-Based Video Stabilization 307

5 Conclusions and Future Work

We have presented a novel solution for video stabilization with rolling-shutter
correction using the gyroscope in a mobile device. Our method is fast and can
run in real-time within the camera processing pipeline. The stabilization can
work on each incoming frame as it is received, but can also benefit from an
optional buffer window that holds up to five frames. By using the gyroscope
to track the camera motion we are able to do better in some scenes than most
feature-based methods, which fail when there is lack of texture, excessive blur,
or large foreground moving objects. We also improve on previous techniques
that use the gyroscope for camera motion by using a novel filtering approach
that results in smoother motions. To achieve this we assume the intention of the
person recording the video is to keep the camera as static as possible or make a
smooth linear motion. These assumptions hold for a wide range of videos.

Our method may under-perform the state-of-the-art in feature tracking meth-
ods on videos where the camera is subject to large translations. Translational
motion cannot be tracked by the gyroscope. While it might be possible to use
the accelerometer that accompanies the gyroscope in most mobile devices, esti-
mation of translation from the accelerometer readings is less robust due to the
double integration of the accelerometer data. In addition, large translations will
cause occlusions and dis-occlusions in the image due to the parallax. In this case,
projectively warping the crop polygon can cause distortions near the occlusion
boundaries. Unfortunately, more sophisticated methods that can handle parallax
[6] cannot run in real-time.

Our method can run on scenes with no trackable features or large motion
of foreground objects, which feature-based might struggle with. In addition, our
method works at a fraction of the computational time and cost because we don’t
need to compute features at all.

We intend to improve the system in the future in several ways. Firstly, our
current algorithm keeps a fixed-size crop window; better stabilization might be
achieved if we can vary the crop size smoothly across frames. In addition, we
would like to explore the possibility of adding the ability to handle small transla-
tions by visual tracking of a sparse set of features. This tracking will be simplified
by that fact that the camera rotation is already accounted for from the gyro-
scope data, and could be further conditioned to be done only when a significant
change in acceleration is detected by the accelerometer. Finally, we would like
to explore the possibility of storing the gyroscope readings as a separate track of
the output video file, to enable further off-line stabilization using the gyroscope
data if desired.

Acknowledgments. We thank Orazio Gallo for his helpful suggestions and
feedback on earlier revisions of this paper.



308 S. Bell, A. Troccoli, and K. Pulli

References

1. Karpenko, A., Jacobs, D., Baek, J., Levoy, M.: Digital video stabilization and
rolling shutter correction using gyroscopes. Technical Report CTSR 2011-03, De-
partment of Computer Science, Stanford University (2011)

2. Invensense Corporation: MPU-6050 Product Specification,
http://invensense.com/mems/gyro/documents/

PS-MPU-9250A-01.pdf

3. Grundmann, M., Kwatra, V., Castro, D., Essa, I.: Calibration-free rolling shutter
removal. In: IEEE ICCP (2012)

4. Gleicher, M.L., Liu, F.: Re-cinematography: improving the camera dynamics of
casual video. ACM Multimedia (2007)

5. Grundmann, M., Kwatra, V., Essa, I.: Auto-directed video stabilization with robust
l1 optimal camera paths. In: IEEE CVPR (2011)

6. Liu, S., Yuan, L., Tan, P., Sun, J.: Bundled camera paths for video stabilization.
ACM TOG 32(4) (2013)

7. Matsushita, Y., Ofek, E., Ge, W., Tang, X., Shum, H.Y.: Full-frame video stabi-
lization with motion inpainting. IEEE PAMI 28(7) (2006)

8. Baker, S., Bennett, E., Kang, S.B., Szeliski, R.: Removing rolling shutter wobble.
In: IEEE CVPR (2010)

9. Liu, F., Gleicher, M., Jin, H., Agarwala, A.: Content-preserving warps for 3D video
stabilization. ACM TOG 28(3) (2009)

10. Liu, F., Gleicher, M., Wang, J., Jin, H., Agarwala, A.: Subspace video stabilization.
ACM TOG 30(1) (2011)

11. Hanning, G., Forslow, N., Forssén, P., Ringaby, E., Tornqvist, D., Callmer, J.:
Stabilizing cell phone video using inertial measurement sensors. In: IEEE ICCV
Workshops (2011)

12. Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial
measurement sensors. ACM TOG 29(4) (2010)

13. Forssen, P., Ringaby, E.: Rectifying rolling shutter video from hand-held devices.
In: IEEE CVPR (2010)

14. Oth, L., Furgale, P., Kneip, L., Siegwart, R.: Rolling shutter camera calibration.
In: IEEE CVPR (2013)

15. Various: OpenCV library, http://code.opencv.org
16. Google: Android operating system developers’ API guide,

http://developer.android.com/guide/topics/

sensors/sensors overview.html

17. Shoemake, K.: Animating rotation with quaternion curves. ACM TOG 19(3) (1985)
18. Li, M., Mourikis, A.: 3-D motion estimation and online temporal calibration for

camera-IMU systems. In: IEEE ICRA (2013)

http://invensense.com/mems/gyro/documents/PS-MPU-9250A-01.pdf
http://invensense.com/mems/gyro/documents/PS-MPU-9250A-01.pdf
http://code.opencv.org
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html

	A Non-Linear Filter for Gyroscope-Based Video
Stabilization

	1 Introduction
	2 Background and Prior Work
	3 Algorithm Description
	3.1 Camera Tracking Using the Gyroscope
	3.2 Motion Model and Smoothing Algorithm
	3.3 Output Synthesis and Rolling-Shutter Correction
	3.4 Parameter Selection
	3.5 Gyroscope and Camera Calibration

	4 Results
	5 Conclusions and Future Work
	References




