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Abstract. Template-based methods have been successfully used for sur-
face detection and 3D reconstruction from a 2D input image, especially
when the surface is known to deform isometrically. However, almost all
such methods require that keypoint correspondences be first matched
between the template and the input image. Matching thus exists as a
current limitation because existing methods are either slow or tend to
perform poorly for discontinuous or unsmooth surfaces or deformations.
This is partly because the 3D isometric deformation constraint cannot be
easily used in the 2D image directly. We propose to resolve that difficulty
by detecting incorrect correspondences using the isometry constraint di-
rectly in 3D. We do this by embedding a set of putative correspondences
in 3D space, by estimating their depth and local 3D orientation in the
input image, from local image warps computed quickly and accurately by
means of Inverse Composition. We then relax isometry to inextensibility
to get a first correct/incorrect classification using simple pairwise con-
straints. This classification is then efficiently refined using higher-order
constraints, which we formulate as the consistency between the corre-
spondences’ local 3D geometry. Our algorithm is fast and has only one
free parameter governing the precision/recall trade-off. We show experi-
mentally that it significantly outperforms state-of-the-art.

1 Introduction

An open problem in computer vision is to automatically determine correspon-
dences between two images of a deformable 3D surface. Solving this problem
is required in several applications, including estimating the nonrigid shape of
the surface (known as template-based 3D reconstruction in the literature [2–
5]), as a cue for nonrigid object detection [6, 7], and nonrigid Structure-from-
Motion [8, 9]. There are several approaches to this problem, and these can be
broadly broken into two main axes. In the first axis are the Graph-Based Assign-
ment (GBA) methods [10–12]. These solve the problem by constructing graphs
that encode the geometric relationship between correspondences. Solving GBA
amounts to an NP-hard binary programming problem, and much of the ongoing
research focuses on finding efficient and tight relaxations to this problem. In the
second axis are the Hard Matching with Outlier Detection (HMOD) methods
[5, 6, 1, 4, 13, 14]. HMOD methods work by first matching points using local
texture information computed from a keypoint descriptor algorithm. Each point
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Fig. 1. Summary of the problem tackled and our 3-step solution (example is from our
OpenBook dataset). As inputs we have 715 2D putative correspondences computed
between a 3D template’s texturemap and an input image. Of these 429 are correct
correspondences (i.e. positives) and 286 are incorrect correspondences (i.e. negatives).
In the bottom-right we show the final output of our method, which correctly classifies
713 correspondences, with 0 false negatives and 2 false positives. In the top-right is the
output from [1], which gives 97 false negatives and 85 false positives. Best viewed in
colour.

in one image is assigned to the point in the second image with the closest de-
scriptor. Thus, a hard correspondence decision is made using only local texture
information. A second stage is then performed to determine which correspon-
dences are correct and incorrect by measuring their geometric compatibility via a
deformable model. This second stage is sometimes referred to as outlier detection
in the literature. So far HMOD methods have been preferred over GBA methods
for use in template-based 3D reconstruction and nonrigid object detection. The
main reason is that they are typically much faster than GBA methods. With
efficient implementations the fastest HMOD methods perform in realtime [6]
and can handle thousands of feature points, whereas accurate GBA methods are
far slower, and may take several minutes to process a few hundred points [10].
Furthermore, unlike HMOD methods, most GBA methods are designed to work
when the same features are detected in both images, however this is typically
not the case in real conditions with scene clutter or occlusion.

There are three main limitations to state-of-the-art HMOD methods. Firstly,
they tend not to be able to handle cases when the number of incorrect correspon-
dences is large (e.g. 50% and beyond). This can often occur when dealing with
surfaces with poorly discriminative texture, or when the imaging conditions are
quite different such as strong lighting change or noise. Secondly, state-of-the-art
HMOD methods are either fast, and use a simplified convex model of deforma-
tion [13, 6], or use a more realistic physical deformation model, but are either
slow to execute and do not scale well to large, complex surfaces with complex
topology [5], or cannot handle discontinuous motion such as surface tearing [4]
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We present a new HMOD method that does not suffer these limitations and
show experimentally that it considerably improves on state-of-the-art (Fig. 1).
Our approach is based on using local physical 3D deformation constraints to de-
tect incorrect correspondences. Specifically we use quasi-isometry, which means
the amount of stretching induced by the deformation is small. This is a prop-
erty exhibited by many materials, and which has been exploited before to solve
the HMOD problem [5, 4, 15]. However those methods require a costly iterative
optimisation process that alternates between registering the surface and detect-
ing incorrect correspondences. We show that the problem can be solved more
efficiently using the fact that the deformation of an isometric surface can be lo-
cally approximated by smoothly-varying rigid transforms. Our method involves
estimating these transforms from the putative correspondences and because it
models deformation only locally, and so scales well to large meshes with com-
plex topology, can handle discontinuous surfaces and/or deformation, and is very
parallelisable.

2 Previous Work

All prior HMOD methods work by fitting a deformable model using the pu-
tative correspondences and detecting incorrect correspondences as those which
disagree with the fitted model. The methods differ along two main axes. Along
the first axis is the spatial extent of the deformable model. Global methods work
using global deformable models [6, 1, 4, 5] which model the entire deformation
of the surface. Local methods work by breaking the surface into multiple re-
gions and fitting a local deformable model to each region independently. Along
the second axis are HMOD-3D and HMOD-2D methods which use 3D and 2D
deformable models respectively. Previous HMOD-3D methods deform the sur-
face in 3D space using the putative correspondences. Their main advantage is
that they can use constraints that have physical meaning which are unaffected
by changing the camera viewpoint or camera parameters. All prior HMOD-3D
methods are global methods which constrain the surface deformation using isom-
etry [4, 5, 15]. Some of these have proposed detecting incorrect correspondences
and fitting the deformable model as a joint optimisation problem [15], however
this was very slow and reported to take 15 minutes with examples of only 40
correspondences. Faster HMOD-3D methods work by alternating between regis-
tering a mesh of the deforming surface and detecting incorrect correspondences
[4, 5]. During optimisation higher confidence is gradually placed on the model’s
prediction, which leads to more incorrect correspondences being detected. These
alternation methods have been shown to work well on very smooth, low com-
plexity surfaces. However the alternation is costly because at each iteration the
full 3D shape of the surface is estimated. However these are prohibitively slow to
process large, complex 3D surfaces in realtime, and cannot handle discontinuous
deformation.

HMOD-2D methods do not model the 3D deformation of the surface. In-
stead they model the 2D-2D deformation between a single image of the surface



328 T. Collins and A. Bartoli

(typically called a template image), and the input image. Because they do not
involve 3D properties they cannot exploit surface isometry, and must use general
assumptions on the 2D-2D flowfield. All prior HMOD-2D methods assume this
flowfield is smooth (either globally or piecewise). A global HMOD-2D method
was presented in [6] which first proposed the alternation strategy used by [4, 5].
This method is fast but breaks down when the flowfield is discontinuous, which
occurs if the surface self-occludes or has sharp edges. Another global method was
recently presented [1]. This assumes the 4D correspondence manifold is approx-
imately planar and works by fitting this 4D hyperplane using RANSAC. This
works well in some cases, such as simple, smooth bending of paper, but fails for
more complex deformations. A local method was presented by [13] which uses
affine and low-complexity Thin-Plate Spline (TPS) local models. The method is
fast and is highly parallelisable. Because smoothness is assumed only locally, it
can handle discontinuous 2D-2D flowfields, however the method does not cope
well with correct correspondence ratios below 60%. There are no previous local
HMOD-3D methods, and our proposed method fills this gap.

3 Problem Setup and Approach Overview

3.1 Problem Setup

Our problem setup is illustrated in Fig. 2. We define a 3D template similarly to
the template-based 3D reconstruction literature. The template consists of a 3D
mesh model defined in world coordinates which is textured using a set of regis-
tered texturemap images : T = {T1, T2, .., TT }. Each Tt is an RGB photograph of
the 3D mesh model with a known pose. We assume the 3D template has been
constructed using a 3D acquisition device such as a structured-light scanner with
fully-calibrated RGB cameras. We assume the template’s silhouette in each Tt is
known, and a set of 2D image features located within the silhouette is provided.
We use affine-covariant SIFT features [16] in our experiments but this could be
computed with any method. We then perform ray-intersection with the template
to compute the 3D positions of the features in world coordinates.

For the input image, 2D features are then computed and putatively matched
to the template’s features by finding the one with the closest descriptor. An op-
tional step is performed to remove low-confidence correspondences using Lowe’s
ratio test [17]. We denote the list of 3D-2D putative correspondences between
the 3D template and 2D input image with K = {(tj ,qj ,Qj),pj}. For the jth

correspondence, we have a 3D template feature, denoted by (tj ,qj ,Qj) and a
2D input image feature pj . tj ∈ {1..T } holds the index of the texturemap im-
age from which the 3D template feature was detected, qj ∈ R

2 holds its 2D
position in the texturemap image and Qj ∈ R

3 holds its 3D position in world
coordinates. pj ∈ R

2 holds the 2D position of the corresponding input image fea-
ture. We assume the input image’s camera is intrinsically calibrated, and define
pj in normalised pixel coordinates. The unknown 3D position of pj in camera
coordinates is denoted by Pj ∈ R

3 where pj = π(Pj) + ε, where ε denotes
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Fig. 2. Problem setup illustrated with two putative correspondences. Terms in green
and red indicate known and unknown quantities respectively.

measurement noise and π([x, y, z]�) def
= 1

z [x, y]
� is the normalised perspective

projection function.
Our goal is to classify which members of K are correct and which are incorrect

correspondences. We define the positive class to be correct correspondences and
the negative class to be incorrect correspondences. The problem is posed as

finding the binary label vector L ∈ {0, 1}n, n def
= |K| where L(j) = 1 means

the jth correspondence is classified positive and L(j) = 0 means it is classified
negative (Fig. 2).

3.2 Approach Overview

Our method involves determining L efficiently using local 3D deformation mod-
els. We use the fact that for isometric surfaces 3D deformation can be locally
approximated by smoothly-varying rigid transforms. The method is broken down
into three core steps (Fig. 1). In the first step we take each putative correspon-
dence in K and upgrade it to a 3D-3D correspondence. This is done by estimating
the local transform induced by the correspondence, and then inferring the depth
of the correspondence in the camera coordinate frame, using a very fast solution
inspired by [18]. The transforms are initialised using Affine Covariant Normali-
sation (ACN) [19], then efficiently refined with Inverse-Compositional iterations
[20, 21]. In the second stage we use the 3D-3D correspondences to construct a
graph that encodes pairwise inextensibility (in 3D space). Inextensibility is a
relaxation of isometry, which says that the Euclidean distance between any two
points on an isometric surface should not exceed their geodesic distance (which
is known a priori from the template). We use this constraint to find an initial
labelling L0 with an approach inspired by [14]. In the third step we refine L0

with a fast iterative approach by introducing local models with higher-order
constraints. Specifically, we enforce that the deformation can be modelled by lo-
cal, smoothly varying rigid transforms, and estimate these transforms robustly
whilst refining L. In practice only a few refinement iterations are needed.
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4 Steps 1 and 2: Computing High-Confidence Labels
Using Inextensibility in 3D

We show how inextensibility can be used to efficiently upgrade 3D-2D corre-
spondences to 3D-3D correspondences (Step 1). Then we show how to classify
correspondences using 3D inextensibility (Step 2).

4.1 Step 1: Upgrading to 3D-3D Correspondences

Principle. We upgrade each correspondence using the constraints that isome-
try imposes on the local 2D transformation between the template’s texturemap
image and the input image. This approach is inspired by [18, 22] where it was
shown that depth information can be recovered analytically from this transform.
Those methods assume that the deformable template and input images are al-
ready registered, which was achieved by conformally flattening the template and
computing a global warp between the flat template and the input image. In our
problem we do not know this warp (because knowing it would mean knowing L).
Furthermore we want to be able to compute depths for templates with arbitrary
topology (including non-flattenable templates). Our solution is to fit a localised
warp, but for each correspondence individually.

For the jth correspondence ((tj ,Qj ,qj),pj) ∈ K, we compute a local warpwj :
R

2 → R
2 that transforms the 2D point qj in Ttj to the 2D point pj in the input

image I (Fig. 2). Once estimated, by measuring the Jacobian Jwj (qj) ∈ R
2×2

of the warp, we can compute the depth zj ∈ R
+ of pj with respect to the input

image’s camera [18, 22]. Thus we are able to upgrade the 3D-2D correspondence

to a 3D-3D correspondence, which we denote by the pair (Qj ,Pj) with Pj
def
=

zj[p
�
j , 1]

�. In addition to Pj , the analytic solution also provides us with two
estimates of the rotation matrix that rotates Qj to Pj [23]. This means we have
for each correspondence two estimates of the local rigid transform from Qj to
Pj . We denote these by Mj = {M1

j ,M
2
j}, Ms

j ∈ SE3. We now address the
question of how to fit the local warps in order to compute Jwj (qj), and hence
compute zj andMj .

Computing the warp Jacobians. Our approach to compute Jwj (qj) is to fit the
warp using pixel intensity information surrounding qj and pj . This is sum-
marised in two steps:

1. Coarse approximation. We first compute a coarse estimate of Jwj (qj)
using ACN. By using a feature matching algorithm that performs ACN as
part of descriptor extraction then this step is done for us and so is at no
additional cost. In our experiments we use VLFeat’s vl covdet.

2. Direct refinement with a local warp. We then construct a low-complexity
2D-2D parametric warp centred at each qj . The warp is initialised using the
affine transform from Step 1 and refined efficiently by IC iterations [20, 21].

For Step 2 it is important to use low complexity warps. This is necessary to
prevent overfitting, improve convergence and to reduce computation time. We
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have found good results can be achieved using a TPS warp with only four control
points. We define a circular support region centred at qj of radius rj . There is
a trade-off in choosing rj . Too small, and the region may contain insufficient
image structure with which to estimate Jw(qj). Too large and the motion in
the region may be too complex to describe with a simple model. A strategy for
selecting rj is to use the characteristic scale of the feature at qj . The charac-
teristic scale gives the size of the image region surrounding qj with which its
descriptor was computed. Because feature descriptors do not normally provide
invariance beyond very simple transforms (at most affine transforms), a correct
putative correspondence implies the image transform at this scale must be sim-
ple. Furthermore if the correspondence is correct then the characteristic scale
is large enough to encompass sufficient discriminative image structure, which
usually implies there is enough structure with which to estimate Jwj (qj). We
optimise the TPS parameters using IC iterations, which are extremely fast, us-
ing a centre-weighted Normalised Sum-of-Square Difference (NSSD) data cost.
We provide implementation details for this optimisation in the supplementary
material. After optimisation, we compute Jwj (qj) by differentiating the local
warp at qj , from which we compute Pj and the local rigid transformsMj .

4.2 Step 2: Classifying Correspondences Using Pairwise
Inextensibility

We now use the upgraded 3D-3D correspondences to efficiently gain an initial
correspondence labelling L0 ∈ {0, 1}n using pairwise 3D inextensibility con-
straints (Fig. 2). The approach is inspired by [14], however it it different because
in [14] 2D inextensibility is enforced. The latter can be violated between two
correct correspondences when e.g. viewing the surface at different depths, differ-
ent orientations, using different image resolutions or using different focal lengths.
By contrast for isometric surfaces, 3D inextensibility is never violated, and is
totally independent of the imaging conditions. We use g(Qi,Qj) to denote the

geodesic distance between points Qi andQj , and e(Pi,Pj)
def
= ‖Pi −Pj‖2 to de-

note the Euclidean distance between Pi and Pj . g(Qi,Qj) can be pre-computed
efficiently offline when the 3D template was built, and the online cost of evalu-
ating it is negligible. If i and j are correct correspondences, then in the absence
of noise g(Qi,Qj) ≥ e(Pi,Pj). This is a relaxation of the isometric constraint
g(Qi,Qj) = g(Pi,Pj), which we cannot apply because we do not have measure-
ments of g(Pi,Pj). The relaxation is however still powerful because if j is an
incorrect correspondence then Pj tends to be distributed very randomly within
the camera’s frustum. This is illustrated in Fig. 1 (Step 1). The randomisation
of the incorrect correspondences means that when either i, j, or both i and j
are incorrect, often e(Pi,Pj) will exceed g(Qi,Qj), and this tells us correspon-
dences i and j are not geometrically compatible. We define a pairwise binary
compatibility matrix as follows:

U(i, j) =

{
1 if g(Qi,Qj) ≥ e(Pi,Pj)− τe
0 otherwise

(1)

This compatibility score is more discriminative whenQi andQj are close because
when g(Qi,Qj) is smaller the bound on e(Pi,Pj) is tighter. τe is a tolerance
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term used to handle uncertainty caused by the fact that the local warps will
have some noise, and hence induce noise in Pi and Pj . To select τe recall that
the template has been normalised to fit within the unit cube, and so τe does not
need to be adapted depending on the template’s size. We have found τe = 5%
to work well across all our experiments.

U can be interpreted as a graph with n nodes, where each node is a corre-
spondence and an edge appears between a pair of nodes if they respect the inex-
tensibility constraint. The set of correct correspondences should therefore form a
strongly-connected component in the graph, and so we can estimate L by estab-
lishing which nodes belong to this component. We do this in a similar manner to
[14], but because U is binary the selection process can be simplified because we
do not need the eigendecomposition of U. Let mi ∈ {0, 1}n denote the ith row
of U. First two empty sets are constructed; a set P = ∅ holding all positives,
and a set N = ∅ holding all negatives. We then find i∗ = argmax

i

∑
j mi(j)

(i.e. the best-connected correspondence) and insert i∗ into P . We then find the
correspondence which has not yet been classified that has the highest number
of connections: i∗ = arg max

i/∈P∪N
∑

j mi(j). We test whether i∗ is geometrically

compatible with P by computing the compatibility score:

c(i∗,P) = 1

|P|
∑
j∈P

U(i∗, j) (2)

This gives the proportion of members of P that are geometrically compatible
with i∗. We insert i∗ into P if c(i∗,P) > τc, otherwise it is inserted intoN . We use
τc = 90%, which provides robustness during selection if P contains some incor-
rect correspondences. This selection process continues until all correspondences
have been assigned to P or N . We then initialise L with L0(k) = 1(j ∈ P),
where 1(·) denotes the indicator function.

5 Step 3: Fast Label Refinement with Higher-Order
Constraints

L0 serves as an initial classification, but it may contain errors. An example of
these errors is shown in Fig. 1 (Step 2). By using a high value of τc = 90% the
number of false positives is usually low. False negatives mainly occur when the
local warp of a correspondence fails to converge to the right solution, which can
lead to a poor estimate of Pj . The main reasons for this are when (i) there is
a photoconstancy violation in the local warp’s region (such as a specularity) or
when (ii) the warp’s region crosses a discontinuity.

Our classification refinement method is based on the fact that if there is a
neighbouring correspondence i which is correct, fromMi we have two estimates
for the local transform that maps the template at point Qi to the input image.
We can therefore use these to validate whether j is a correct or incorrect corre-
spondence. Assuming rigidity holds locally at i and j, if either π

(
M1

i [Q
�
j , 1]

�)

or π
(
M2

i [Q
�
j , 1]

�) is close to pj , then j is likely to be a correct correspondence.
Otherwise j is likely to be an incorrect correspondence. One challenge with doing
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this is that we do not know if i is a correct correspondence. Our solution is to
use i if it has been classified positive in L0, but in a way that is robust to false
positives.

For each j we construct a list of positives Sj = {i ∈ 1..n, L0(i) = 1, i �= j}.
All members of Sj then vote for the predicted position of pj . First, for each i
we find the rigid transform inMi that agrees with pj the most. We define this
by M∗

i (j):

M∗
i (j) = arg min

M∈Mi

∥∥∥π (
M[Q�

j , 1]�
)
− pj

∥∥∥2

2
(3)

We then compute a robust prediction p̂j for pj . We do this using a weighted
median of the individual predictions in Sj in a neighbourhood of size σj :

p̂j = wmed
i∈Sj

{
π
(
M∗

i (j)[Q
�
j , 1]�

)
, vji (σj)

}

vji
def
=

{
exp(−g(Qj ,Qi)

2/σ2
j ) if ‖Qj −Qi‖2 < 3σj

0 otherwise

(4)

vji is a weight function which gives more influence to i if it is close to j. We
use a truncated Gaussian for this, which means only a subset of nearby corre-
spondences are used to compute p̂j (and thus improve efficiency). The weighted
median provides robustness if Sj has false positives. It also provides robustness
if local rigidity holds for some, but not all members of Sj . We then reclassify j
according to L(j)← 1(‖p̂j − pj‖2 < τp).

The free parameter τp governs the degree to which p̂j must agree with pj for
us to classify j as a positive. Thus τp provides a recall/precision tradeoff, with a
lower τp meaning fewer false positives but potentially more false negatives. τp is
a free parameter which can be set according to the application. We have found
a good default value to be τp = 2%.

The weight function’s bandwidth is given by σj . This should be adapted to
reflect the extent of rigidity of the deformation about Qj. We automatically
adapt σj using L0 and a fast minimisation of the prediction error. Specifically,
we compute:

σj = arg min
σ
‖p̂j(σ)− pj‖22 (5)

where p̂j(σ) denotes the dependency of p̂j on σ. We solve Eq. (5) by quantis-
ing σj in 10 levels in the range 1% to 30%, and using the one that minimises
Eq. (5).

We have found that L can usually be improved further by performing a few
reclassification iterations. The algorithm pseudocode is simple and presented in
Table 1, Step 3. There are a few cases which must be handled. The first is if
j began negative but was reclassified positive. If this occurs it is likely that its
warp was not estimated correctly in Step 2, leading to a poor estimate of its 3D
position and orientation. We recompute this 3D information using neighbouring
positives and a Pose from n Points (PnP) computation. Specifically we take a
neighbour i if it is a member of Sj and ‖π

(
M∗

i (j)[Q
�
j , 1]

�) − pj‖2 < τp (i.e.
its transform can predict well the position of j in the image). If there are more
than two such neighbours, we recompute Mj by performing PnP using the
correspondences from j and these neighbours. To perform PnP we use RPnP
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Table 1. Classifying correct/incorrect 3D-2D correspondences using isometry: algo-
rithm summary

Inputs (§3.1)
• Putative 3D-2D correspondences K = {(tj ,Qj ,qj),pj}
• Recall/precision threshold τp (default to 2% of the image diagonal)

Step 1: Upgrade K to 3D-3D correspondences (§4.1)
1. For j = 1→ |K| use IC iterations to compute local warp wj that transforms qj to pj

2. Use Jwj (qj) to estimate Pj and local rigid transformsMj mapping Qj to Pj

Step 2: Initialise L0 using 3D-3D pairwise inextensibility constraints (§4.2)
1. Construct compatibility matrix U ∈ {0, 1}|K|×|K|

2. Compute L0 from U with greedy selection process
Step 3: Refine L0 using higher-order constraints (§5)
1. L← L0

2. While L changes or 10 iterations have not passed do
3. For j = 1→ |K|
4. Compute Sj , σj , {wj

i } and p̂j (Eq. (4,5))

5. L′(j)←
{
0
1(‖p̂j − pj‖2 < τp)

|Sj | = 0
otherwise

6. L← L′

Output class vector L ∈ {0, 1}|K|

[24], and put intoMj all rigid poses returned by RPnP. We use RPnP because
it is fast and can handle cases when the problem is ambiguous (which is often the
case when doing local PnP [25]). A second case that must be handled is when
Sj is empty. This occurs when all correspondences excluding j are negative.
In practice this only usually happens when the template is not visible in the
input image. Thus if Sj is empty we conclude the template is not visible and set
L(j)← 0.

6 Experimental Results

We present a range of experiments to compare the performance of our method
against state-of-the-art. We compare against [13, 6, 1, 5], which we refer to by
Piz-IJCV12, Pil-IJCV08, Tran-ECCV12, and Salz-CVPR09 respectively. We use
the authors’ original code for Piz-IJCV12, Tran-ECCV12 and Salz-CVPR09, and
the implementation of Pil-IJCV08 from [1].

Obtaining ground truth. There are several existing datasets for deformable iso-
metric surfaces (e.g. [26, 27]). However these do not include ground-truth cor-
respondences and are generally quite simple and involve developable surfaces
such as sheets of paper or cloth. We have created three new real ground-truth
datasets involving more complex surfaces and deformations. Computing dense
ground truth correspondences for deforming surfaces is notoriously difficult and
tedious [28]. Our approach was based on the idea that although the 3D-2D non-
rigid registration problem is hard, when the surface is isometric, registering two
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deformed surfaces in 3D is far simpler and can be done automatically or semi-
automatically [29, 30]. We captured a test surface in several deformed states and
performed dense multiview Structure-from-Motion to obtain a texturemapped
3D template for each deformed state, and the camera parameters for each im-
age. We then semi-automatically co-registered the 3D templates with a method
based on [29] to provide us with dense correspondence between the 3D templates,
and hence dense registration between different images of the surface in different
deformed states.

The OpenBook dataset. The OpenBook dataset comprises four deformed states
(S1 → S4) of a book cover (Fig. 3 (top row)), with 14 images taken for each
deformed state. Images were captured with a standard 1020p point-and-shoot
camera and we used Agisoft’s Photoscan to perform dense multiview reconstruc-
tion. We use Ci to denote the set of images capturing the ith deformed state. A
selection of images from C3 are shown in Fig. 3 (second row). We then used each
state in turn as the 3D template, and used all images for all other deformed states
as input images. Thus in this dataset there is a total of 4×3×14 = 168 different
template/input image pairs. To allow a comparison between our method and
the HMOD-2D methods we used only features detected in one of the template’s
texturemap images. This is because the HMOD-2D methods cannot trivially
handle features coming from different texturemap images.

We use affine-covariant features using VLFeat ’s implementation with default
parameters. Putative correspondences were found using a Lowe ratio threshold
of 1.1 [31]. Typically this resulted in between 200-800 putative correspondences
per input image. Correspondences which were within 10 pixels of their ground
truth positions were marked as true correspondences, and the rest as false. The
proportion of incorrect correspondences in each image had a mean of 62%. For all
methods we generated ROC curves by varying each method’s detection thresh-
old (we use the same procedure as [1] to do this). For our method the detection
threshold is governed by τp (§5), with a default of 2.0% of the input image’s
diagonal). In Fig. 3 (third row) we show the ROC curves, with one ROC curve
generated for each deformed state. We can see that our method performs signif-
icantly better than all others. At a false negative rate of 4.5% our method suc-
cessfully classified all incorrect correspondences. The worst performing method
is Salz-CVPR09. The reason is because it often eliminates many correct corre-
spondences early in the annealing stage and cannot recover in later iterations.
In the fourth row of Fig. 3 we show how the previous methods typically fail.
Piz-IJCV12 fails if there is a small number of correct correspondences within
each correspondence’s neighbourhood. When this occurs a good local 2D model
cannot be found, and this leads to false negatives. Tran-ECCV12 fails in gen-
eral when the image transform is not simple and globally smooth. Pil-IJCV08
also fails when the image transform is not globally smooth. Salz-CVPR09 fails
systematically when the incorrect correspondence ratio is beyond approximately
40%. Note that our method can correctly handle correspondences on the book’s
spine, which proved difficult for the other methods.



336 T. Collins and A. Bartoli

Fig. 3. Results on the OpenBook dataset. There are 86 true and 129 false putative
correspondences in the example in the third row. FP and FN denote the number of
false positives and false negatives for each method. Best viewed in colour.

The ALCoV Baseball Cap dataset [22]. This dataset consists of two image sets
of a baseball cap in two deformed states S1 and S2. C1 and C2 are of sizes
29 and 16 respectively. We show sample images from C1 and C2 in the first
row of Fig. 4. The dataset is challenging due to the texture on the cap being
repetitive and there being considerable change in illumination. Between 488 and
1,404 affine covariant SIFT features were detected in these images. We used
C1 to build the 3D template, which consists of 12,205 vertices, and used each
image in C2 as an input image. We compared all methods using their default
values for detection precision. The results are summarised in the three graphs in
Fig. 4 (bottom) showing false negative, true negative and average errors across
all 16 input images. We can see that our method performs vastly better than all
others in terms of false negative rate, with a mean value of just 1.19%. The true
negative rate for our method was joint highest with Pil-IJCV08, however Pil-
IJCV08 gives many more false negatives because its deformation model cannot
suitably handle the 2D flowfield induced by the cap’s deformation, which causes
many false negatives. The second and third rows of Fig. 4 show the results on
a typical input image from C2. We present timing information of the methods
in Fig. 4 (bottom-right). Note that the implementations are sub-optimal non-
parallelised Matlab implementations, and considerable speedups could be made
with optimised code. We fully expect our method to be realtime on a standard
PC with a good C++/GPGPU implementation.
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Fig. 4. Results on the ALCoV Baseball Cap dataset. P and N denote the number of
positives and negatives. FP and FN denote the number of false positives and false
negatives for each method. Timing information is shown in bottom-right. Best viewed
in colour.

Fig. 5. Results on the CVLAB Bending Paper dataset. Best viewed in colour.
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The CVLAB Bending Paper dataset [26]. This dataset is a short video of a de-
forming sheet of paper lasting 193 frames. Fig. 5 (top left) shows one example
frame. The deformation of the paper is very low-frequency, and so we would
expect Pil-IJCV08 and Tran-ECCV12 to work well. We used the 3D template
that comes with this dataset, which has one texturemap image. We used affine-
covariant SIFT features and ran three tests by varying Lowe’s ratio threshold
using values of R = 1.0, R = 1.1 and R = 1.2. When R = 1.0 it means that all
putatives are kept (i.e. each feature in the input images has a putative corre-
spondence with a feature in the template image). The incorrect correspondence
ratios for R = 1.0, R = 1.1 and R = 1.2 (averaged over the whole sequence) are
77.1%, 32.5% and 12.3% respectively. The average number of correct correspon-
dences per frame are 481, 421, 390 respectively. We computed three ROC curve
for each R (Fig. 5). The performance difference of our method with respect to
Pil-IJCV08 is smaller than the previous datasets, which is expected given the
dataset’s simple deformation for which Pil-IJCV08 is designed for.

7 Conclusion and Future Work

We have presented a new method to classify correct and incorrect correspon-
dences between a 3D template and a 2D input image of a deformable surface. Our
method exploits isometry in an efficient manner. The key to the method’s suc-
cess is turning the putative 3D-2D correspondences to 3D-3D correspondences,
and doing this for each correspondence individually. This gets us in the posi-
tion where we can apply 3D inextensibility to obtain an initial classification.
This classification is then refined quickly using higher-order geometric consis-
tency between correspondences, which is based on robustly modelling the 3D
deformation by smoothly varying rigid transforms. The approach has several
advantages. It is very fast because it only uses local estimates of deformation
(unlike [5, 4]), can handle discontinuous surfaces and/or deformations, and it
has only one important tuning parameter that governs recall and precision, and
whose default value of τp = 2% of the image diagonal gives close to optimal
results. We have shown that it significantly outperforms existing methods on
more challenging real image datasets with ground truth. We will turn our exist-
ing Matlab implementation (which takes a few seconds to run), into a realtime
C++/GPGPU implementation and we believe that our algorithm will broaden
the use of template-based 3D reconstruction methods. We will be testing new
applications of those in our future research.
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