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Abstract. The problem of multi-view/view-invariant recognition
remains one of the most fundamental challenges to the progress of the
computer vision. In this paper we consider the problem of modeling the
combined object-viewpoint manifold. The shape and appearance of an
object in a given image is a function of its category, style within category,
viewpoint, and several other factors. The visual manifold (in any cho-
sen feature representation space) given all these variability collectively
is very hard and even impossible to model. We propose an efficient com-
putational framework that can untangle such a complex manifold, and
achieve a model that separates a view-invariant category representation,
from category-invariant pose representation. We outperform the state of
the art in the three widely used multiview dataset, for both category
recognition, and pose estimation.

1 Introduction

Visual object recognition is a challenging problem. This is mainly due to the
large variations in appearance of objects within a given category, as well as vari-
ation of the appearance of an object due to viewpoint, illumination, occlusion,
articulation, clutter, etc.. Impressive work have been done in the last decade
on developing computer vision systems for generic object recognition. Research
has spanned a wide spectrum of recognition-related issues, however, the problem
of multi-view/view-invariant recognition remains one of the most fundamental
challenges to the progress of the computer vision.

The problems of object classification from multi-view setting (view-invariant
recognition) and pose recovery are coined together. Inspired by Marr’s 3D
object-centric doctrine [14], traditional 3D pose estimation algorithms often
solved the recognition, detection, and pose estimation problems simultaneously
(e.g. [7,11,13,24]), through 3D object representations, or through invariants.
However, such models were limited in their ability to capture large within-class
variability and were mainly focused on recognizing instances of objects. In the
last two decades the field has shifted to study 2D representations based on local
features and parts, with encoding the geometry loosely (e.g. pictorial struc-
ture like methods [6,5]) or without encoding the geometry at all (e.g. bag of
words methods [29,25].) Encoding the geometry and the constraints imposed by
objects’ 3D structure are essential. Most research on generic object recognition
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bundle all viewpoints of a category into one representation; or learn view-specific
classifiers from limited viewpoints, e.g. frontal cars, side view cars, rear cars, etc..

In the context of multiview recognition and pose estimation, there is a grow-
ing recent interest in developing representations that captures 3D geometric
constraints in a flexible way to handle the categorization problem. The work of
Savarese and Fei-Fei [21,22] was pioneering in that direction. In [21,22] a part-
based model was proposed where canonical parts are learned across different
views, and a graph representation is used to model the object canonical parts.
Successful recent approaches have proposed learning category-specific detection
models that is able to estimate object pose (e.g. [15,18,23,19]). This has an
adverse side-effect of not being scalable to a large number of categories while
dealing with high within-class variations. Typically papers on this area focus
primarily on evaluating the detection, and secondarily on evaluating pose es-
timation performance, and do not evaluate the categorization performance. In
contrast to category-specific representations, in this paper we focus on devel-
oping a common representation for recognition and pose estimation, which can
scale up to deal with a large number of classes.

In this paper we consider the problem of modeling the combined object-
viewpoint manifold. The shape and appearance of an object in a given image
is a function of its category, style within category, viewpoint, and several other
factors. Given all these variability collectively, the visual manifold (in any cho-
sen feature representation space) is very hard and even impossible to model.
The main goal of this paper is to find a computational framework that can un-
tangle such a complex manifold. In particular, we aim at untangling the object-
viewpoint manifold, to achieve a model that separates a view-invariant category
representation, from category-invariant pose representation.

This paper is builds over the model introduced in [30], which mainly proposed
to model the category as a ”style” variable over the view manifold of objects. This
unconventional way is motivated by three observations: 1) low-dimensionality of
the manifold of different views for a given object; 2) the prior knowledge of
the view-manifold topology; 3) view manifolds of different objects (under the
same view setting) share the same topology (ignoring degeneracy) but differ in
their geometry, i.e, view manifolds of different objects are deformed version of
each other. In contrast, considering the inter-class and the intra-class variability,
even from a give view point, the resulting visual manifold is expected to be quite
challenging to model, and can be of infinite dimensions. In [30] a computational
framework was introduced that capitalizes on these observations, and models
the deformation of different objects’ view manifolds. The deformation space is
then parameterized to reach a latent view-invariant category space, which is used
in recognition. The overall model in [30] is a generative model, where hypothe-
ses about the category and pose were used, within a sampling-based inference
approach to minimize the reconstruction error, given a test image.

There is a mounting evidence of a feedforward computation in the brian [3] for
the immediate categorization task. This motivated us to seek a forward model,
that capitalizes on the same manifold structure observations used in [30], however



436 A. Bakry and A. Elgammal

avoids the challenging inference problem. The sampling-based inference, in [30],
constitutes a major limitation to the computational framework. Even though
the pose space is very low in dimensionality (one or two depending on the view
setting), the view-invariant category latent space is high in dimensionality, which
makes sampling not effective with no guarantee of convergence to the correct
answer. In contrast, the current work presents several realizations, which leads to
feed-forward computational models that do not require sampling-based inference.

The organization of the paper is as follows. Sec 2 describes the framework.
Sec 3 describes how sampling-free inference can be achieved. Sec 4 illustrates
experimental validation of the approach.

2 Framework

This section explains the intuition behind the the proposed framework and in-
troduces the mathematical framework.

2.1 Framework Overview

Consider collections of images containing instances of different object classes
and different views of each instance. The shape and appearance of an object
in a given image is a function of its category, style within category, viewpoint,
besides other factors that might be nuisances for recognition. Our discussion do
not assume any specific feature representation of the input, we just assume that
the images are vectors in some input space. The visual manifold given all these
variability collectively is impossible to model. Let us first simplify the problem.
Let us assume that the object is detected in the training images (so there is no
2D translation or in-plane rotation manifold). Let us also assume we are dealing
with rigid objects (to be relaxed), and ignore the illumination variations (assume
using an illumination invariant feature representation). Basically, we are left with
variations due to category, within category, and viewpoint, i.e. , we are dealing
with a combined view-object manifold.

The underlying principle in our framework is that multiple views of an object
lie on an intrinsically low-dimensional manifold (view manifold) in the input
space. The view manifolds of different objects are distributed in that descriptor
space. To recover the category and pose of a test image we need to know which
manifold this image belongs to, and what is the intrinsic coordinate of that image
within that manifold. This basic view of object recognition and pose estimation
is not new, and was used in the seminal work of Murse and Nayar [16]. In that
work, PCA was used to achieve linear dimensionality reduction of the visual
data, and the manifolds of different objects were represented as parameterized
curves in the embedding space. However, dimensionality reduction techniques,
whether linear or nonlinear, will just project the data to a lower dimension, and
will not be able to achieve the desired untangled representation.

The main challenge is how to achieve an untangled representation of the visual
manifold. The key is to utilize the low-dimensionality and known topology of
the view manifold of individual objects. To explain the point, let us consider the
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Fig. 1. Framework for untangling the view-object manifold.

simple case where the different views are obtained from a viewing circle, e.g. a
camera looking at an object on a turntable. The view manifold of each object
in this case is a one-dimensional closed manifold embedded in the input space.
However, that simple closed curve deforms on the input space as a function of
the object geometry and appearance. The visual manifold can be degenerate, for
example, imaging a texture-less sphere from different views result in the same
image, i.e. , the view manifold in this case is degenerate to a single-point.

Ignoring degeneracy, the view manifolds of all objects share the same topology
but differ in geometry, and are all homeomorphic to each other. Therefore, cap-
turing and parameterizing the deformation of a given object’s view manifold tells
us fundamental information about the object category and within category. The
deformation space of these view manifolds captures a view-invariant signature
of objects, analyzing such space provides a novel way to tackle the categoriza-
tion and within-class parameterization. Therefore, a fundamental aspect in our
framework, is that we use the view-manifold deformation as an invariant for cat-
egorization and modeling the within-class variations. If the views are obtained
from a full or part of the view-sphere around the object, the resulting visual
manifold should be a deformed sphere as well. In general, the dimensionality
of the view manifold of an object is bounded by the dimensionality of viewing
manifold (degrees of freedom imposed by the camera-object relative pose).

2.2 Manifold Parameterization

Here, we summarize the mathematical framework proposed in [30], which is the
basic for our model, and highlight the challenges. The input are different views
of each object instance, where the number views do not have to be same, and
the views do not have to be aligned across objects.

Let us denote the view manifold of object instance s in the input space by
Ds ⊂ R

D where D is the dimensionality of the input space. Assuming that all
manifolds Ds are not degenerate (we will discuss this issue shortly), then they
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Fig. 2. Plotting of a three-dimensional unsupervised projection of the view-invariant
style parameterization of 473 instances from 3DObjects dataset [21] (obtained from a
training set of 3784 images from 8 views). Points of different categories show in different
colors and point style. The plot clearly shows the separation between different objects,
even in a three-dimensional projection.

are all topologically equivalent, and homeomorphic to each other1. Moreover,
suppose we can achieve a common view manifold representation across all ob-
jects, denoted by M ⊂ R

e, in a Euclidean embedding space of dimensionality
e. All manifolds Ds are also homeomorphic to M. In fact all these manifold
are homeomorphic to a unit circle in 2D for the case of a viewing circle, and a
unit-sphere (S2) for the case of full view sphere.

We can achieve a parameterization of each manifold deformation by learning
object-dependent regularized mapping functions γs(·) : Re → R

D that map from
M to each Ds. Given a Reproducing Kernel Helbert Space (RKHS) of functions
and its corresponding kernelK(·, ·), from the representer theorem [8,20] it follows
that such functions admit a representation in the form

γs(v) = Cs · ψ(v) , (1)

where Cs is a D × Nψ mapping coefficient matrix, and ψ(·) : Re → R
Nψ is a

nonlinear kernel map, i.e. ψ(v) = [K(v,v1), · · · ,K(v,vNψ)]
T , defined using a

set basis of points {vi ∈ R
e}i=1···Nψ on M (The basis points can be arbitrary

and does not need to correspond to actual data points [20]).
In the mapping in Eq. 1, the geometric deformation of manifold Ds, from

the common manifold M, is encoded in the coefficient matrix Cs. Therefore,
the space of matrices C = {Cs} encodes the variability between manifolds of
different objects, and can be used to parameterize such manifolds. Notice that

1 A function f : X → Y between two topological spaces is called a homeomorphism if
it is a bijection, continuous, and its inverse is continuous. In our case the existence
of the inverse is assumed but not required for computation, i.e., we do not need
the inverse for recovering pose. We mainly care about the mapping in a generative
manner from M to Ds.
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the dimensionality of these matrices (D×Nψ) does not depend on the number of
views available each object. We can parameterize the variability across different
manifolds in a subspace in the space of coefficient matrices.

Of course the visual manifold can be degenerate or it can be self intersecting,
because of the projection from 3D to 2D and lack of visual features, e.g. images
of a textureless sphere. In such cases the homeomorphic assumption does not
hold. The key to tackle this challenge is in learning the mapping in a generative
manner from M to Ds, not in the other direction. By enforcing the known non-
degenerate topology on M, the mapping from M to Ds still exists, still is a
function, and still captures the manifold deformation. In such cases the recovery
of object pose might be ambiguous and ill-posed. In fact, such degenerate cases
can be detected by rank-analysis of the mapping matrix Cs.

The space of manifold deformation functions, encoded by the coefficient ma-
trices Cs is a high-dimensional rich space. Note that all the views of a given
object is represented by a single point in that space, parameterizing the geome-
try of the view manifold of that object, and hence encoding information about its
3D geometry. By projecting the coefficient matrices to a low-dimensional latent
space, we can reach a view-invariant representation. Such a representation can
be achieved in an unsupervised way or in a supervised way using class labels; in
a linear or nonlinear way. In the simplest case, using linear projection, we can
achieve a generative model of the data in the form

z = γ(v, s) = A×2 s×3 ψ(v), (2)

where A is a third order tensor of dimensionality D × d×Nψ, ×i is the mode-
i tensor product as defined in [12].The variable v is a representation of the
viewpoint that evolves around the common manifold M, which is explicitly
modeled. In this model, the variable s ∈ R

d is a parameterization of manifold Ds

that encodes the variation in category/instance of an object in a view-invariant
way. We denote that space by “style” space. Therefore, that space can be used
to train category classifiers in a view-invariant way. In this model, both the
viewpoint and object/style latent representations, v and s, are continuous.

Given features from a single test image, denoted by z, recovering the pose
and category reduces to an inference problem, where the goal is to find s∗ and
viewpoint v∗ that minimize a reconstruction error, i.e.,

argmin
s,v

‖z−A×2 s×3 ψ(v)‖ (3)

Once s∗ is recovered, a category classifier trained on the style space can be used
for categorization. There are different ways to do inference here, for example
typical MCMC sampling, or gradient-based optimization can be used.

While the view variable is constrained to a 1D or 2D manifold for the cases of a
viewing circle or a viewing sphere, respectively, inference in the style space is very
challenging if its dimensionality is high. There is a fundamental tradeoff here:
Lowering the dimensionality can lead to efficient inference, on the expense of
losing the discriminative power of the space; in contrast, keeping the dimensions
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of the style space high will make the inference unlikely to converge. This is
a fundamental limitation of the model, which we try to resolve by avoiding
sampling all together, and investigating feed-forward solutions.

3 From Inference to Feed Forward

We propose a feedforward realization of the model that does not involve infer-
ence of the latent variables, yet still capitalizes on the advantages of the model.
There are three motivations behind investigating such a feedforward realization
of the model. First, biologically motivated, inspired by the extensive evidence
of a cascade of feedforward computation in the brain for solving the immedi-
ate categorization problem [2], we would like to capitalize on the view-invariant
property of the style space to achieve a realization of the model that can be
implemented in a feedforward manner. Second, computationally, solving the in-
ference problem in Eq 3 requires a sampling or a gradient-based search, which
might not be desired for real-time applications. Third, from accuracy point of
view, there is a tradeoff in choosing the dimensionality of the style space, (re-
call the style space is a achieved using linear or nonlinear projection of the
high-dimensional manifold deformation space). Inference in high-dimensional
spaces is notoriously not efficient nor effective. Reducing the dimensionality
would lead to efficient inference, on the expense of losing discriminative power in
categorization.

View-Invariant Category Manifolds: Let the set of view manifold param-
eterization matrices be {Ci}, where i = 1, · · · ,M , is the index of the in-
stances in the training data. Let us assume the case where the factorization
in Eq 2 is achieved in an unsupervised way, by finding the subspace spanning
these matrices. In that case, the factorization is achieve by SVD of the matrix

Fig. 3. Left: Illustration of recovering pose and category by manifold intersection in
a view-invariant space. Right: Example of Style-projected Inconsistent View Manifold
for two images
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[c1 · · · cM ] = UΣV�, where ci is a vectorization of Ci. The columns of V�, cor-
responding to the styles of all training instances. Let us denote these style vectors
by {si ∈ R

d}M1 . Instances of the same category lie on a linear manifold (sub-
space) in the style space; we call that the view-invariant category manifold, and
denote it by Ck, where k denotes the category index. Such manifolds capture
the within-category variability and also facilitate modeling other variabilities,
hence relaxing the rigidity assumption. Figure 2 shows an example of the view-
invariant space, with different category clearly separated. For the case where
no dimensionality reduction take place, i.e. d = M , the style vectors for the
instances of each category would provide orthonormal basis for that category’s
subspace.

Style-projected Inconsistent View Manifold: The key to achieve a feedfor-
ward realization is, again, in utilizing the low-dimensionality and known topology
of the view manifold. Given a test image z we need to solve the inference prob-
lem in Eq 3 for the view (v) and style (s) variables. If we know the viewpoint,
the problem reduces to solving a least-squares problems for the style variable,
which can be achieved by solving the linear system (A ×3 ψ(v))s = z. Sup-
pose we have a sequence of images of the same object from different viewpoints,
{zi}n1 , and we know the corresponding latent view representation {vi}n1 , the so-
lutions for the linear system above for every pair (zi,vi) should all coincide in
a single point s∗, since the style-space is view-invariant. However, we only have
a single test image, and we do not know the corresponding latent view repre-
sentation. Instead, if we sample the latent view manifold {v̂i}n1 and solve the
linear systems (A ×3 ψ(v̂i))̂si = z, we get a sequence of solutions {ŝi}, which
constitutes a projection of the view manifold into the style space, using inconsis-
tent pairs {(z, v̂i)}. Such projection will also constitute a manifold, we call that
style-projected inconsistent view manifold, denote it by M̂z, formally define it as

M̂z = {ŝi = V†
iz}n1

where Vi = A ×3 ψ(v̂i) is a d × D matrix, and † denotes the Moore-Penrose
pseudoinverse. Note that each image will have its own inconsistent view manifold,
hence the use of the subscript. Figure 3 shows examples of these manifolds for
sample images.

Ideally the correct style s∗ will be a point on that projected view manifold,
corresponding to the solution for the pair (z,v∗), where v∗ is the closest sam-
pled view to the correct viewpoint. Ideally also the correct style will be the
intersection point between M̂z and the correct category’s manifold Ck. Notice
that finding the intersection point directly corresponds to finding the correct
viewpoint as well. Figure 3 illustrates this process. Realistically, these manifolds
might not intersect, especially since we are using sparse sampling of views. More-
over, the category manifolds are hard to model, given the sparse data available
at training anyway. Therefore, we need to investigate different ways to achieve
an approximate solution. The brute-force method would be a nearest neighbor
search between {ŝi}n1 and the set of style vectors of the all training instances.
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Instead we can parameterize M̂ and/or C and use interpolation to find closest
points between them.

Based on the concept explained above, in what follows we propose four dif-
ferent solutions to solve for pose, instance, and category, given image z.

Manifold Intersection: Parametrizing the projected view manifold is easy
since its topology and dimensionality is known. The category manifolds are linear
in the style space. A simple way to find an approximate solution is to find the
point on M̂z closest to each category subspace, This can be achieved by

argmin
i,k

‖V†
iz−AkA

�
k V

†
iz‖ (4)

where Ak is the matrix of orthonormal basis for category k. Unlike the optimiza-
tion in Eq 3, where the search was over continuous spaces for style and view,
here the problem reduces to discrete search over categories and sample views.
The trade-off in choosing the style dimensionality is no-longer an issue here. The
main trade-off here comes from sampling the viewpoint/pose space, however, in
most pose estimation applications, only coarse estimation of the viewpoint is
needed anyway. However, dense sampling might be necessary to obtain good
approximation of the intersection with category manifold, which directly im-
pact the categorization accuracy. This leads to the following three alternative
solutions.

View-specific Projections: Given a test image z, the correct style s∗ will
be a point on the projected view manifold for that image M̂z, which is most
consistent with the correct view v∗, i.e. minimizes the reconstruction error. The
problem then reduces to minimizing

‖z−A×2 (V
†
iz)×3 ψ(v̂i)‖

Since Vi = A×3 ψ(v̂i), the above equation reduces to

i∗ = argmin
i

‖z−ViV
†
iz‖ ≡ argmax

i
‖ViV

†
iz‖ (5)

Basically, this marginalizes the instance/category and provides a way to find
the best viewpoint, among the sampled latent viewpoints, that is most consis-
tent with test image. Once the best view, i∗, is found, the style can be directly
obtained as s∗ = V†

i∗z. The geometric interpretation of this solution relies on

noticing that the each of the matrices ViV
†
i is an orthogonal projection opera-

tor into a view-dependent object-invariant subspace spanned by the columns of
Vi. Eq 5 is equivalent to finding the view-dependent subspace (spanned by the
columns of Vi) where z is closest to. In that sense, the images in the training
data are used to learn these view-dependent object-invariant operators.

One important aspect that we should highlight is that the number of view-
specific projector in this model is not restricted by the number of views in the
training data. Since manifold parameterization is used to learn the view manifold
for each instance, we can sample the view manifold at any arbitrary points {v̂i}n1 ,
and hence we can reach any desired number of view-specific projectors.
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Instance-specific Projections: Using the same rational above, we can also
obtain instance-specific view-invariant projectors by marginalizing out the view.
Given a test image z, and hypothesizing its corresponding style s, an encoding
of the view can be obtained by solving the linear system (A ×2 s)ψ = z. Recall
that ψ(v) is a vector of nonlinear RBF kernels on v, hence we can not obtain
v directly, instead an encoding in an empirical kernel space. Given the set of
style vectors {si}M1 obtained from the instances in training data, let us define
D ×Nψ instance-specific matrices {Bi = A ×2 si}M1 . The solution for the view

representation can be written as ψ(v) = B†
iz. Substituting in the reconstruction

error equation, we can reach

i∗ = argmin
i

‖z−BiB
†
iz‖ ≡ argmax

i
‖BiB

†
iz‖ (6)

This marginalizes the viewpoint and provides a set of instance-specific view-
invariant orthogonal projectors {BiB

†
i}M1 . Eq 6 is equivalent to finding the

instance-specific view-invariant subspace (spanned by the columns of Bi) where
z is closest to. Once the closest instance subspace is obtained, the pose can be
recovered by finding the closest view in the empirical kernel map space

argmin
j

‖B†
i∗z− ψ(vj)‖ (7)

Notice that, if the full dimensions of the style space is retained, i.e. d=M, the
matrices Bi’s reduce to the original coefficient matrices Ci’s. In terms of scala-
bility, the instance-specific solution will not scale well since one projection has
to be computed for every instance in the training data, a problem that we will
discuss next, to reach category-specific projections

Category-specific Projections: The scalability issues highlighted above mo-
tivates finding category-specific view-invariant projections, rather than instance-
specific ones. The goal is to find a good category representation from the set of
matrices Bk = {Bi|i ∈ class k}. Equivalently, each of these instance-specific ma-
trices can be represented by an orthonormal basis matrixUi ∈ R

D×Nψ. In other
words, each instance corresponds to a point on a Grassmann manifold G(D,Nψ)
(the subspace spanned by its column). This put into our disposal all the tools
available for Grassmann manifold analysis [4] to obtain a good category-specific
representations. For example k-means clustering on Grassmann manifold [28]
can be used to achieve a representative category-specific subspace.

Given the set of instance-specific matrices Bk for the k-th category, we can
reach a representation of that category’s subspace by merging the subspaces of
all its instances. Let Bk be a D × (NψMk) matrix constructed by stacking all
the matrices in Bk, where Mk is the number of instances of class k. The column
span of this matrix is the union of all the column spans of the instance-specific
matrices for this class. Therefore, a category-specific view-invariant projector
can be achieved by BkB

†
k = UkU

�
k , where Bk = UkΣkVk is the truncated SVD

of Bk. Category and pose can be recovered in the same way as in Eq 6 and 7,
by replacing the instance-specific matrices with the category-specific ones.
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Discussion: At this point, it is important to contrast the solutions based on the
view-specific, instance-specific, and category-specific projections. In terms of scal-
ability, the instance-specific solution will not scale well since one projection has to
be computed for every instance in the training data. In contrast the view-specific
solution provides a more scalable solution, since the number of views can always
be restricted. The view-specific projection also allows the use of discriminative
classifiers, e.g. SVM in the style space, since it provides a solution for the s∗, in
contrast, the instance-specific and the category-specific just find the closest in-
stance or category subspace. Another advantage of the view-specific solution, is
that it allows expanding the model to add new objects, even with a single image
from a single view point. This can be achieved by computing the corresponding
style representation, as mentioned above. A reader might question, why this so-
lution would yield a feedforward computational model. Notice that all projectors
are learned offline during training. Finding the best point, whether using nearest
neighbor search, or svm classifiers, is also a feedforward computation. Although
we do not address detection in this paper, it can be achieved through a sliding win-
dow approach. However, the challenge is to learn a model for clutter. This can be
achieved by projecting clutter training patches using the view-specific projectors,
and learning a clutter/object classifier in the style space.

4 Experiments

We validated our framework using three multiview datasets: 3DObjects [21],
U-Washigton-RGBD datasets [9], and Multi-View Car Dataset [17]. Since we
target categorization, instance recognition and pose estimation, in all reported
experiments we use ground-truth localizations of objects.

Results on 3DObjects
3DObjects dataset contains objects from 10 different categories: car, stapler,
iron, shoe, monitor, computer mouse, head, bicycle, toaster and cellphone. Each
object is imaged from 24 poses on a viewing sphere (8 azimuth angles × 3
zenith angles), and from 3 scales. We used the entire (all classes) 3DObjects
dataset to evaluate the performance of the proposed framework on both object
categorization and viewpoint estimation. Similar to [21,22] we test our model
on an 8-category classification task (excluding heads and monitors). However,
unlike [21,22], we do not exclude the farthest scale (which is more challeng-
ing). Figure 2 shows the learned view-invariant “style” vectors of each object
instance, which clearly shows separation between different classes, even in a
three-dimensional projection. Because of the limited number of zenith angles
(3), we treat each zenith angle as a different viewing circle; i.e. all viewing man-
ifolds are considered homeomorphic to a unit circle. To compare to published
results, we used a train/test split similar to [21]; we randomly selected 7 object
instances out of 10 in each category to build the proposed model, and the rest 3
instances for testing. We used HOG [1] features (20x20x31) as the input space
representation. For parameterizing the view manifold, we used 8 RBF centers,
(i.e. Nψ = 8).
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Table 1. 3DObjects: Category recognition and pose estimation results (%) for several
configurations

Categorization Accuracy Pose Estimation
View- Instance- Category- Manifold View Instance- Manifold
specific specific specific intersection specific specific intersection

# v SVM 5NN 7NN S-Dists
8 81.86 83.07 79.73 89.65 90.01 76.46 81.86 70.08 63.83
16 82.46 83.74 79.67 89.65 90.01 76.21 80.67 70.08 60.32
20 90.53 82.1 83.34 79.55 89.65 90.01 69.30 80.34 70.08 46.19

Table 1 shows the categorization and pose estimation accuracies using the
different setting explained in Sec 3. Different rows show the results with different
number of sampled views along the view manifold latent space, which is the
number of view-specific projectors. For the case of view-specific projectors, after
recovering the pose and the style, we evaluated four different classifiers on the
style space: one-vs-all linear SVM, 5NN, 7NN, and the distance to the different
category subspaces (similar to Eq 4 after choosing the best view, i.e. minimizing
over categories only), denoted as S-Dists. For the view-specific case, the SVM
classifier yields the best results. Interestingly, the three types of projectors gave
very similar results (≈ 90%). Notice, by construction, that changing the number
of sampled views has no effect on the recognition accuracy of the instance-
specific or the category-specific projectors. For the pose estimation, we estimate
the azimuth angle. Given that the ground truth only has 8 azimuth viewpoints,
for the cases where we sample more than 8 views, we approximate the result
to the nearest 8 bin case. Not surprisingly, the view-specific projector gave the
best results for pose estimation. Overall, the view-specific projector give the
best results for both category recognition and pose estimation. Table 4-I shows
comparison to some of the published results on this dataset2.

In a machine with 2.3 GHz Intel Core i7 CPU and 16 GB 1600 MHz DDR3
memory, each frame of this dataset takes about 4.6 microseconds to be processed
(using MATLAB code), excluding the HOG feature extraction, for the instance-
specific case.

Results on RGBD

We evaluated the different setting with the RGB-D dataset [9], which is the
largest available multi-view dataset, consisting of 300 instances of 51 tabletop
object categories. Each object is rotated on a turn-table and captured using an
Xbox Kinect, providing synchronized RGB and depth images. For each object
three pitch angles are used: 30,45,60 degrees. Training is done on using 30 and
60 degrees sequences and testing is done on the 45 degree sequences. We use
HOG descriptors [1] in both RGB and depth. Unlike the 3DObject dataset,
which include completely different objects, the RGB-D is challenging because it
has large number of objects, with high appearance similarity among them. Also

2 Wemainly compared to approaches that perform categorization and pose estimation.
We do not compare to approaches that perform category-pacific detection and pose
estimation, since such a comparison will not be fair.
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Table 2. RGB-D: Instance, Category, and Pose recognition results (%) using several
configurations

View-Specific Instance-Specific-I Instance-Specific-II

SVM (classes) S-Dists (Instances) (Height-mean)

Features Category Pose Instance Category Pose Instance Category Pose Instance Category Pose

Setting I

RGB 60.36 76.95 72.51 66.48 85.66 72.24 80.10 94.84 76.63

RGB+D 88.31 73.23 63.80 82.36 73.23 66.19 89.62 71.93 78.63 95.77 75.44

Setting II

RGB 83.23 72.69 66.24 82.49 74.13 68.24 86.71 73.13

Depth 51.87 59.02 17.88 39.80 59.02 34.42 71.55 61.30 38.86 76.04 61.65

RGB+D 62.09 82.04 73.36 79.73 96.01 76.01

many objects are almost textureless with symmetric geometry, which makes the
pose estimation ill-posed in such cases (e.g. an apple or an orange)

Table 2 shows the results over different configuration. We use two different
setting for manifold parameterization: Setting I uses 11 RBF centers, while Set-
ting II used 20 RBF centers. In both settings we samples 32 viewpoints on the
view latent space to generate the view-specific projectors. The description of
the different classifiers/metrics is similar to the case of 3D Objects. For the
instance-specific projectors we compared two settings: in the first we used the
two different heights for each instance to construct a different projector, while in
the second setting, we combined the two heights to obtain one instance-specific
projector (taking the average of the two style vectors for each instance). We
report the instance, category, and pose estimation accuracies. The best results
is achieved using the instance-specific projectors.

Table 3 summarizes the results, and compares to the state-of-the-art re-
sults [10,30]. Comparison to [30] is particularly important since our approach
is based on the same formulation. The percentage evaluation metric used is the
same as [10]. Following from [10], Average Pose (C) are computed only on test
images whose categories were correctly classified. We report the results of our
instance-specific projector-II from Table 2. We compared the results using differ-
ent features (RGB and/or Depth). For all feature settings, our instance-specific
projector outperforms both [10,30] for instance, category, and pose estimation.

Although our framework is based on [30], and it might be considered as an
approximation of it, however we outperforms [30] in all settings. The reason,
as we hypothesized in Sec 3, is that our approach avoids the sampling-based
inference, which has a fundamental dimensionality-accuracy tradeoff, which we
do not have. Moreover, our approach is much more efficient. Using Matlab code,
on Dell PRECISION 490 with Intel(R) Xeon (5160@ 3.00GHz 3.00 GHz) CPU
- 8 GB memory and 64-bits Windows-7 os machine (this configuration is far
from powerful), we find that the average running time using Instance-Specific
approach in this dataset is about 9.2 milliseconds. While the running time of the
View-specific approach (with K-NN classifier) is about 0.279 microseconds on
the same machine, which shows the power and speed of our framework. This is
compared to less than two seconds per frame reported in [30], i.e. , our approach
much faster and more accurate.
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Table 3. Instance and Category recognition, and pose estimation accuracy (%) on the
RGBD dataset. Compared to the state of the art [30] and [10].

Method Instance Category Avg. Pose Avg. Pose (C)
Ours (RGB) 80.10 94.84 76.63 79.78
[30] (RGB) 74.36 92.00 61.59 80.01
Ours (Depth) 38.86 76.04 61.65 70.79
[30] (Depth) 36.18 74.49 26.06 66.36
ours (RGB+Depth) 79.73 96.01 76.01 78.42
[30] (RGB+Depth) 74.79 93.10 61.57 80.01
[10] (RGB+Depth) 78.40 94.30 53.50 56.80

Table 4. Categorization and Pose estimation - comparison with state-of-the-art

Table 4-I Categorization - 3DObjects

View-Spec Instance-Spec Zhang et al Savarese et al
Projectors Projectors [30] [21]

Average 90.53% 89.56% 80.07% 75.65%

Bicycle 99.54% 99.54% 99.79% 81.00%
Car 99.31% 100.00% 99.03% 69.31%
Cellphone 98.15% 96.29% 66.74% 76.00%
Iron 86.11% 90.74% 75.78% 77.00%
Mouse 52.58% 44.60% 48.60% 86.14%
Shoe 94.07% 92.59% 81.70% 62.00%
Stapler 98.10% 96.21% 82.66% 77.00%
Toaster 98.15% 99.54% 86.24% 74.26%

Table 4-II Pose Estimation - Multiview Cars

Method Split 16 views 8 views

Ozuysal et al .[17] 50% split 41.69 71.20
Teney and Piater [26] 50% split 78.10 79.70
Torki and Elgammal [27] 50% split 70.31 80.75
Zhang et al . [30] 50% split 87.77 88.48
proposed- 16 views 50% split 93.94 94.13
proposed- 20 views 50% split 94.64 94.73
proposed- 32 views 50% split 94.84 94.84

Torki and Elgammal [27] leave one out 63.73 76.84
Zhang et al . [30] leave one out 90.34 90.69
proposed -32 views leave one out 95.38 95.38

Results on EPFL-CARS

The Multi-View Car Dataset [17], is a challenging dataset, which captures 20 ro-
tating cars in an auto show. It provides finely discretized viewpoint groundtruth,
that can be calculated using the time of capturing assuming a constant velocity.
Table 4-II shows the view estimation results in comparison to the state of the art.
All results are generated using view-specific projectors. We build the parameter-
izations using 15 Gaussian-RBF centers, and the input space is HOG features.
We compared the results using 50% splits and leave-one-out splits, which are
the typical splits reported in other papers, we report the average over different
splits. More detailed experiments available at the supplementary material.

5 Conclusion

We presented a framework for untangling the object-viewpoint visual manifold.
We described different approaches based on the framework which learn view-
specific object-invariant, instance-specific view-invariant, or category-specific
view-invariant projectors from the input space, and described how to solve for the
pose and category in each case. Experiment on three multi-view dataset showed
the potentials of our proposed approach, we outperform the reported state-of-
the-art approaches for recognition and pose estimation on these datasets. More-
over, the approach is shown to be very efficient. The view-specific projectors are
the most promising and most scalable approach. We did not target detection
in this paper, however, detection can be achieved by running the approach in a
sliding window manner, which is a subject of our future research.
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