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Abstract. In fine-grained action (object manipulation) recognition, it
is important to encode object semantic (contextual) information, i.e.,
which object is being manipulated and how it is being operated. How-
ever, previous methods for action recognition often represent the seman-
tic information in a global and coarse way and therefore cannot cope
with fine-grained actions. In this work, we propose a representation and
classification pipeline which seamlessly incorporates localized semantic
information into every processing step for fine-grained action recognition.
In the feature extraction stage, we explore the geometric information
between local motion features and the surrounding objects. In the fea-
ture encoding stage, we develop a semantic-grouped locality-constrained
linear coding (SG-LLC) method that captures the joint distributions
between motion and object-in-use information. Finally, we propose a
semantic-aware multiple kernel learning framework (SA-MKL) by uti-
lizing the empirical joint distribution between action and object type
for more discriminative action classification. Extensive experiments are
performed on the large-scale and difficult fine-grained MPII cooking ac-
tion dataset. The results show that by effectively accumulating localized
semantic information into the action representation and classification
pipeline, we significantly improve the fine-grained action classification
performance over the existing methods.

1 Introduction

Recently, fine-grained action analysis has raised a lot of research interests due
to its potential applications in smart home, medical surveillance, daily living
assist and child/elderly care, where action videos are captured indoor with fixed
camera. Although background motion (i.e. one of main challenges for general
action recognition) is more controlled compared to general action recognition,
it is widely acknowledged that fine-grained action recognition (some examples
are listed in Figure 8) is very challenging due to large intra-class variability,
small inter-class variability, large variety of action categories, complex motions
and complicated interactions. Fine-grained actions, especially the manipulation
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sequences involve a large amount of interactions between hands and objects,
therefore how to model the interactions between human hands and objects (i.e.,
context) plays an important role in action representation and recognition. Con-
textual information has been explored in earlier action recognition works. Feifei
et al. [28] modeled objects and human poses jointly by leveraging the mutual
context model in human action images. Lan et al. [12,11] introduced the ac-
tion context descriptor to encode action of individual person and people nearby.
Choi et al. [6] proposed to learn crowd action context to recognize collective
activities. Marszalek et al. [16] exploited the high correlation between human
actions and natural dynamic scenes. Object contextual information has been
commonly used for recognizing actions which involves human and object in-
teractions [17,26,24,10]. Feifei et al. [27] jointly modeled the attributes (i.e.,
actions) and parts (i.e., objects or poselets related to actions) by learning a
set of sparse bases that are shown to carry much semantic meaning. However,
these methods often represent the human and object contextual information in a
global and coarse way, e.g., co-occurrence, which is not sufficient for representing
fine-grained actions. This is because in fine-grained actions, local manipulation
motion details (e.g., subtle movements of hand in operating an object) are much
more important than global co-occurrence information.

The recently proposed local dense motion trajectories [22] has achieved the
state-of-the-art performance in action recognition. Local motion trajectory is
capable of describing subtle movement, which is suitable for representing fine-
grained motion feature. Inspired by this observation, we propose localized se-
mantic features (LS) based on local dense motion trajectories. Namely, we
extract object occurrence information (i.e., object detection scores) surrounding
each local motion trajectory and we augment the semantic features to the mo-
tion features. Therefore, we can know which object is being manipulated (object
semantic feature) and how it is being manipulated (motion feature) in a local-
ized manner (i.e., per motion trajectory). These complementary information are
very important in representing fine-grained actions. Various previous methods
have combined semantic features with low-level features for recognition, but they
only used global context. For example, Cao et al. [3] only considered grouped
feature pooling using global scene type. Chao et al. [5] considered only global
label information instead of local semantic.

Further more, we propose a representation and classification pipeline which
seamlessly incorporates the localized semantic features into every processing step
for fine-grained action recognition. More details are given as follows. In the fea-
ture extraction stage, we explore the geometric information between local motion
features and the surrounding objects. In the feature encoding stage, we develop a
semantic-grouped locality-constrained linear coding (SG-LLC) method that cap-
tures the joint distribution between motion and object semantic features. Finally,
we propose a semantic-aware multiple kernel learning (SA-MKL) framework by
utilizing the empirical joint distributions between action and object type for
more discriminative action classification. The proposed pipeline is experimented
thoroughly on the fine-grained MPII cooking action dataset [20], which is the
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Name Color Name Color

1.background 17.oven
2.bottle 18.food wrapper
3.bowel 19.pan
4.bread 20.slicer(for grate)
5.plug-out charger 21.plate
6.electric range 22.pot
7.cup(transparent) 23.electric blenders
8.cupboard 24.small size food
9.cuttingboard 25.seasoning bottle
10.dough 26.bottle rack
11.drawer 27.hands-on juicers
12.eggs 28.tin
13.fridge 29.tin opener
14.hands 30.towel
15.lid 31.water sink
16.small objects 32.human body

Fig. 1. Color code for 32 types object-
of-interest

Fig. 2. Sample object detection maps

large-scale and very challenging dataset for fine-grained action recognition. The
results show that the localized semantic action representation and classification
pipeline can step-by-step improve the action classification performance, which
significantly outperforms the existing methods on the MPII cooking dataset in
terms of multi-class precision, recall and per-class average precision.

To summarize, our contributions are three-fold: 1) we propose an end-to-
end solution on utilizing localized semantic features (i.e., object contextual
information of local dense trajectories in the spatial-temporal volume) in fine-
grained action analysis, which includes novel localized semantic feature en-
coding, pooling and classification; 2) we propose a novel MKL modeling and
optimization framework for semantic-aware classifier learning, which utilizes
the prior knowledge of kernel weights; 3) the proposed fine-grained action recog-
nition pipeline achieves about 10% improvement over the existing methods on
the challenging fine-grained action dataset.

2 Methodology

2.1 Localized Semantic Feature Extraction

As introduced in the previous section, our basic idea is to augment local mo-
tion features with localized semantic features (LS), to enrich the descriptions
for representing manipulation movement that involves subtle human and object
interactions. To this end, we first extract local dense motion trajectories [22]
from input videos. To describe motion, different types of motion feature descrip-
tors are computed in a spatial-temporal volume (i.e., spatial size of 2 × 2 with
temporal length of 15) around the 3D neighborhood of the tracked points along
the trajectory. Following [22], we use four types of motion feature descriptors in-
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Fig. 3. Localized semantic feature ex-
traction

Fig. 4. Semantic-grouped (best viewed
with color) feature encoding

cluding histogram of oriented gradients (HOG), histogram of optic flows (HOF),
motion boundary histogram (MBH) and shape of trajectory (SOT).

During human-object interaction, local motion features describe how a certain
object is being manipulated. For fine-grained actions, different action types share
similar motion patterns, for example, local motions are almost the same among
actions “put on plate”, “put on pot”, “put on dough”. Therefore, we should
augment each local motion feature with localized semantic feature to encode
which object is being manipulated, i.e., whether the action is related to “plate”,
“pot” or “dough”? In other words, the localized semantic feature descriptor
encodes the local object-in-use contextual information for each local motion
trajectory. To compute localized semantic features, for each input video frame,
we first build object detection maps for various types of objects. Assume we have
M objects of interest, then each position on the detection map is represented by
a M -dimensional object detection score vector. For a trajectory, we average the
object detection score vectors in the spatial-temporal volume along its tracked
points and form a M -dimensional localized semantic feature vector.

Object detection maps are computed as follows. We first apply superpixel
segmentation using SLIC [1] on each input frame. The 1624× 1224 pixels video
frame is over-segmented into around 2000 superpixels, with the regularization
parameter being set as 10. We then represent each superpixel with a concate-
nated feature vector consisting of histogram of oriented gradient (HOG) [7] and
HSV color histogram. Multiple linear support vector machine classifiers are ap-
plied to calculate the object detection scores. We build our training object patch
(superpixel) dataset by randomly sampling 12000 video frames from the train-
ing videos. In average, we have annotated around 2000 training patches for each
object type. In addition, we use the conditional random field model to spa-
tially regularize the object detection map for better detection accuracy. For the
MPII cooking dataset, 32 types of object-of-interest are defined in data-driven
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approach, which are summarized in Figure 1, some object detection maps are
shown in Figure 2. The feature extraction process is illustrated in Figure 3.

Discussion: One might argue that pre-detection of objects gives unfair advan-
tages to our method over conventional holistic action recognition method [22].
We clarify that: 1) we do not target general action recognition problem on action
datasets such as YouTube [15], Hollywood2 [16], UCF sport [25], etc., where
object detection is infeasible. Instead, fine-grained action recognition is more
suitable for applications such as indoor assisted living, occupational therapy
(with fixed camera), where object detection is quite feasible. Indeed, to detect
object-of-interest is compulsory task in these applications; 2) for fine-grained ac-
tions with frequent and delicate hand-object interactions, to detect object and
associate it locally with motion features is a natural, reasonable and promising
approach. Holistic approaches such as bag of dense trajectories [22] or STIPs [13]
cannot well deal with fine-grained action recognition, even though their imple-
mentations are easier without the need for object detection.

2.2 Semantic-Grouped Feature Encoding

The next important building block for image and video classification is local
feature encoding. State-of-the-art local feature encoding schemes include vector
quantization (or bag-of-words) [8], locality-constrained linear coding (LLC) [23],
fisher kernel [18], etc. Usually, a codebook is trained using the training features,
any input feature vector can be encoded using the codebook either by searching
its nearest codebook item (visual word) or by computing the linear combination
of codebook items that well approximates it (i.e., LLC).

In this work, each local motion feature is augmented with a localized semantic
feature vector, which indicates which object(s) the motion feature is associated
with. This contextual information motivates us to propose an enhanced feature
encoding scheme. The basic idea is as follows. As the localized semantic features
tell us to which object(s)-of-interest the motion feature is related, when we en-
code a local motion feature descriptor, we should encourage that the codebook
items it selects are also related to the same object(s)-of-interest. We believe that
the advantages of this localized semantic feature grouped feature encoding are
two-fold: firstly, it implicitly embeds the information of which object(s) is be-
ing manipulated into the encoded feature representation; secondly, because the
codebook motion features that are related to the same object(s)-of-interest are
considered for approximating the input motion feature, the similarity between
the input motion feature and the selected codebook items is higher, thus more
accurate encoding (i.e., lower reconstruction error) can be achieved. The pro-
posed semantic-grouped feature encoding is illustrated in Figure 4 and more
details are introduced as follows.

We denote by (x, s) the pair of motion descriptor x and the corresponding
localized semantic feature vector s. Namely, x represents the concatenation of
HOG, HOF, MBH and SOT feature descriptors and s is a M -dimensional object
detection score vector. Let X be a set of features extracted from the training
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video clips, i.e., X = {(x1, s1), · · · , (xN , sN )}. The total number of training
features is N . According to the localized semantic features {si}, we further group
the whole training feature set X into M subsets X =

⋃Xm,m = 1, · · · ,M . Each
Xm only contains the set of features that are related to object-of-interest type
m, i.e., s(m) > 0, we denote by s(m) the m-th element of vector s. Note that
one feature can be related to multiple objects-of-interest (i.e., the trajectory is
surrounded by multiple objects), therefore different Xm may be overlapped. For
each Xm, we use the K-means clustering algorithm to train a codebook of motion
features Bm. Note that each Bm is a D×Nm matrix, i.e., D is the motion feature
dimension and Nm is the number of basis for codebook Bm. We denote by B0 the
codebook trained using the whole training set X . Therefore our codebook can
be denoted as B = [B0, B1, · · · , BM ]. Each sub-codebook Bm,m = 1, · · · ,M is
related to m-th type of object-of-interest.

Given an input feature descriptor (y,w), i.e., local motion feature y and lo-
calized semantic feature w vector pair, the encoding objective is to minimize the
following cost function with respect to encoding coefficients c = [c0; c1; · · · ; cM ]:

min
c

‖y − [B0, B1, · · · , BM ][c0; c1; · · · ; cM ]‖22 (1)

s.t.

M∑

m=0

|cm| ≤ ε, ε > 0, (2)

M∑

m=1

(1− wm) |cm| ≤ τ, τ > 0, (3)

here cm is the encoding coefficient on sub-codebook Bm. The first constraint
Eqn. (2) encourages that: 1) only a few sub-codebooks are selected for recon-
structing the input local motion feature vector y and 2) the codebook items
are sparsely selected. The second constraint Eqn. (3) encourages that the sub-
codebooks which are not related to the motion feature y (i.e., the sub-codebook

Algorithm 1. Semantic-grouped locality-constrained linear coding

input: feature descriptor pair (y,w), number of nearest neighbors n,
regularization term β of sparse coding solver, sub-codebooks B1, · · · , BM .

Initialize B̃ = [ ], β = 500, n = 5, compute c0 with LLC encoding on B0.
for m = 1, · · · ,M do

if w(m) > 0
Choose n nearest neighbors of y from Bm as B̃m.
Push B̃m into B̃, i.e., B̃ = [B̃, B̃m].

else
cm = 0.

end
Solve c following sparse coding solver in [23]:

(1) c̃ = C+ βdiag(C)\1, where C = (B̃ − 1yT)(B̃ − 1yT)T.
(2) c = c̃/1Tc̃,

Assign c to the corresponding positions of cm, i.e., w(m) > 0.
output: SG-LLC code c = [c0; c1; · · · ; cM ].
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m that w(m) is near zero) are not selected for reconstructing y. Applying these
two constraints ensures that only a few codebook items which are related to the
object-in-use of the motion feature y are selected for approximating the input
motion feature vector y.

Finding the exact solution to Eqn. (1) is possible by various sparse coding
solvers including generic QP solvers (e.g., CVX), �1-regularized Least Squares
solver [14], etc. However, for a large-scale dataset as MPII cooking, exact so-
lution for encoding millions of local motion features is extremely expensive. In
practice, we develop an approximate optimization algorithm which is shown in
Algorithm 1. The basic idea is to first choose n nearest codebook items from
the sub-codebooks which are selected by non-zero semantic scores of the in-
put motion feature, and then perform reconstruction using the codebook items.
We note that this approximated optimization for feature encoding is similar to
the locality-constrained linear coding algorithm (LLC). Therefore, our feature
encoding algorithm is named as Semantic-Grouped Locality-constrained Linear
Coding (SG-LLC).

2.3 Semantic-Aware Motion Feature Pooling and Classification

After local motion feature encoding, the next building blocks for action classifi-
cation are to perform local motion feature pooling and classifier learning. Feature
pooling is to aggregate local features to form a video level representation (i.e.,
to form a representation vector). In this subsection, we show how localized se-
mantic features can help enhance the pooling and classifier training stage, i.e.,
to achieve more discriminative video level representation and classification. The
procedure is shown in Figure 5.

Fig. 5. Semantic-Aware multiple kernel learning (SA-MKL) utilizing action to object
association probability (Eqn. (4)) as prior information
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Semantic-Partitioned Feature Pooling: A traditional motion feature pool-
ing scheme is global pooling, i.e., a frequency vector of all encoded local motion
features within the video volume is calculated, named as the bag-of-words fre-
quency vector representation h. With localized semantic feature vector for each
local motion feature, we can perform finer pooling. More specific, global pooling
ignores the object-in-use contextual information and the local motion features
associated with different irrelevant objects are pooled together, therefore, the
resulting histogram representation is noisy (i.e., confused by motion features
occurring on different objects) and less discriminative. On the contrary, if we
utilize the localized semantic information, we can pool the local motion features
object-wise. Namely, local motion features that are associated with the same
object are pooled together and we can have multiple pooled histogram repre-
sentations where each corresponds to the distribution of motions related to one
type of object. It is obvious this new histogram representation possesses richer
and finer descriptive information than globally pooled histogram.

The proposed pooling process is as follows. Suppose for video volume V , we
have a set of extracted local motion features X = {(x1, s1), · · · , (xN , sN )}. Each
local feature x is encoded as c. According to localized semantic features we can
group (partition) the local motion feature set X into M subsets X =

⋃Xm,m =
1, · · · ,M , where each Xm only contains motion features which are associated
with m-th object-of-interest, i.e., s(m) > 0. We then calculate the pooled vector
(histogram) within each Xm and result in M histogram vectors as {h1, · · · ,hM}.
We also denote h0 as the pooled histogram vector using all local motion features
in the video volume, i.e., X .

Semantic-Aware Multiple Kernel Learning: Now we have M + 1 feature
channels for each video clip (i.e., each feature channel corresponds to one object-
associated histogram hm, m = 0, 1, · · · ,M), a straightforward feature fusion and
classification scheme is to calculate M + 1 kernel matrices {K0,K1, · · · ,KM}
and combine them for classifier training. There are two major kernel combination
ways include: 1) average kernel combination [21]; and 2) kernel weights learning,
i.e., multiple kernel learning [2]. Traditional multiple kernel learning methods
do not rely on any prior knowledge about the kernel weights {d1, · · · , dM}, i.e.,
the value of dm means how important kernel Km is. However, for our problem,
as each type of action is strongly correlated with certain types of objects, prior
knowledge on the kernel weights are available. For example, to recognize the
action “put in bowl”, the kernels related to object “hands” and “bowl” are
important. To take advantage of the prior knowledge brought by the localized
semantic feature, we therefore propose a novel multiple kernel learning method
which can leverage the empirical joint distributions between action and object
type. Namely, the empirical action-object association probability estimated from
the training data guides the learning of kernel weights {d1, · · · , dM}.

To begin with, we define the empirical action-object association probability
for action a (we ignore the superscript for action a in the rest of paper) and
object m as:
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pam =

Ntr∑

i=1

(
yi = 1 ∧ hi

m > 0
)

Ntr∑

i=1

(yi = 1)

, m = 1, · · · ,M, (4)

here Ntr denotes the number of training video clips, and yi ∈ {+1,−1} denotes
binary classification label for video level representation hi. The numerator rep-
resents the number of training video clips which have action label a and there is
object-use on the m-th object. The denominator denotes the number of positive
training video clips for action a.

We consider one-versus-all classification in this work. 64 action types are
defined in dataset, and a total of 64 binary classifiers f(h) are learned. For
each binary classifier (i.e., to classify action a), we define the following decision
function:

fa(h) = fa
0 (h) +Δfa(h), (5)

here fa
0 (h) = wT

0 φ0(h0)+b is the base classifier trained from the globally pooled
histogram vector h0. Δfa(h) is a linear combination of object-specific classi-
fiers learned from their corresponding object-specific histogram vector hm,m =
1, · · · ,M , which is defined as in Eqn. (6):

Δfa(h) =
M∑

m=1

dmwT
mφm(hm) + b (6)

s.t. d ≥ 0, ||d||∞ ≤ 1,

where d = [d1, · · · , dM ]T are the weights for combining different classifiers. The
combined classifier can be learned by optimizing the following objective function:

min
dm

min
vm,b,ξi

1

2

M∑

m=1

‖vm‖
dm

+
λ

2

M∑

m=1

|dm − pm|+ C

Ntr∑

i=1

ξi (7)

s.t. yi

(

wT
0 φ0(h

i
0) +

M∑

m=1

vT
mφm(hi

m) + b

)

≥ 1− ξi,

ξi ≥ 0, i = 1, · · · , Ntr, d ≥ 0, ||d||∞ ≤ 1,

where we set C = 100 as the multiple kernel learning regularization parameter.
Km(hi

m,hj
m) = φm(hi

m)Tφm(hj
m). pm is the action-object association probabil-

ity for object m, which is defined in Eqn. (4). λ, d1, · · · , dM are the parameters
we need to learn. Note that the second objective, i.e., |dm − pm| enforces that the
kernel weights to approximate the values of action-object association probability
pm. λ adjusts the weight between kernel K0 and semantic kernels K1, · · · ,KM .
Large λ will encourage that the learned object-specific kernel weight follows the
empirical action-object association probability.

To solve the objective Eqn. (7), we alternatively optimize w.r.t. the variables
dm,vm, b, ξi using the following two steps.
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Firstly, we optimize vm, b, ξi with fixed dm. By introducing the non-negative
Lagrangian multipliers α = [α1, · · · , αNtr ]

T, the dual can be derived as follows:

max
α

αT1− 1

2
(α� y)T(

M∑

m=1

dmKm +K0)(α� y) (8)

s.t. αTy = 0, 0 ≤ α ≤ C,

where α � y denotes the element-wise product between two vectors α and y.
Because Eqn. (8) is a standard dual problem, we can solve it with the SVM
solvers such as libsvm [4]. With the dual primal coefficients α derived from the
SVM solvers, we compute the primal variables vm as:

vm = dm

Ntr∑

i=1

αiyiφm(hi
m),m = 1, · · · ,M. (9)

Secondly, we optimize dm with fixed vm, b, ξi , the problem in Eqn. (7) reduces
to:

min
dm

1

2

M∑

m=1

‖vm‖
dm

+
λ

2

M∑

m=1

|dm − pm| (10)

s.t. d ≥ 0, ||d||∞ ≤ 1.

By taking the derivative over dm, the closed-form solution is given in Eqn. (11):

dm = max{
√

‖vm‖
λ

, pm}. (11)

The optimization procedure is given in Algorithm 2. Finally, the classifier for
a novel input h = {h0,h1, · · · ,hM} is expressed as Eqn. (12):

fa(h) =

Ntr∑

i=1

αiyi

[
M∑

m=1

dmKm(h,hi) +K0(h,h
i)

]

+ b. (12)

Algorithm 2. Optimization for Semantic-Aware Multiple Kernel Learning

input: d0, λ, ε, {K0,K1, · · · ,KM}, {p1, · · · , pM}
Initialize d0m = 1/M (m = 1, · · · ,M), λ = 0.2, ε = 10−4.
repeat

Compute αt by solving Eqn. (8) using SVM solver with dt.
Compute vm by Eqn. (9) and solve dt+1 by Eqn. (11).
t=t+1.

until
∥
∥dt+1 − dt

∥
∥ < ε

output: α, d, λ
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3 Experiment

3.1 Dataset and Configurations

We perform extensive experiments on the MPII cooking [20] dataset, which is a
recent fine-grained cooking action dataset published on CVPR 2012. Considering
the scale and complexity, it is very challenging for fine-grained action recognition.

Totally, 5609 video segments are annotated for 65 action categories such as
“open drawer”, “cut slices”, “cut into dices”, “wash hands” or “background”
(“background” is dropped in evaluation as indicated in [20]). Following the same
experimental setting as in [20], 5 out of 12 subject are used to train the model, the
remaining 7 subjects are used to perform leave-one-person-out cross-validation.
We evaluate classification performance in terms of multi-class precision (Pr),
recall (Rc) and per-class average precision (AP).

For codebook training, the base codebook B0 is clustered into 4000 centers,
all the other object-specific codebooks have 500 cluster centers. For the original
holistic bag-of-words on dense motion trajectories method [22], the size of code-
book is also set as 4000 for all types of descriptors for fair comparison. All the
experiments are conducted on a powerful 16-core computing server. Each step is
paralleled if applicable, and our pipeline (with object detection) involves 9 hours
of running time in total.

In the following, we first evaluate the effectiveness of every component of
our proposed localized semantic feature based fine-grained action recognition
pipeline, which includes both semantic-grouped feature encoding and semantic-
aware multiple kernel learning. Then we quantitatively compare the classification
performance of our method with state-of-the-art results on the MPII cooking
dataset with in-depth discussions on the algorithmic behavior of our approach.

3.2 Results and Discussions

Effectiveness of Semantic-Grouped Feature Encoding: We show the ef-
fectiveness of proposed SG-LLC in Table 1. We compare various state-of-the-
art encoding methods including: vector quantization encoding (VQ), locality-
constrained linear coding (LLC) and our proposed semantic-grouped locality-

Table 1. Comparison among dif-
ferent encoding methods in terms
of multi-class precision (%)

VQ LLC SG-LLC

HOG 39.6 42.2 46.2

HOF 41.3 42.8 45.7

MBHx 42.4 44.9 49.3

MBHy 45.6 47.1 51.8

SOT 39.2 42.3 47.6

Combined 49.4 52.5 57.3

Table 2. Comparison among different multiple
kernel learning methods in terms of multi-class
precision (%)

AK-SVM MKL SA-MKL

HOG+SG-LLC 46.2 47.1 48.7

HOF+SG-LLC 45.7 46.9 48.3

MBHx+SG-LLC 49.3 50.5 52.4

MBHy+SG-LLC 51.8 53.1 54.7

SOT+SG-LLC 47.6 47.9 49.3

Combined+SG-LLC 57.3 58.2 60.1
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constrained encoding (SG-LLC). To be comprehensive, these encoding tech-
niques are tested on individual feature descriptor and their combination (Com-
bined). From the comparison results shown in Table 1, we observe that the
SG-LLC coding consistently and significantly enhances the discriminative power
for all types of motion feature descriptors as well as their combination. More
specific, SG-LLC is much more discriminative than LLC (i.e., which does not
consider localized semantic information), and the improvement from LLC to
SG-LLC is over 5% for most feature descriptors. This demonstrates that the
encoding method to embed localized semantic information into motion feature
encoding is beneficial. We also study our algorithmic performance by varying
the number of nearest neighbors parameter n for our algorithm SG-LLC, i.e.,
n = 2, 5, 20, 40. As illustrated in Figure 6, n = 5 gives the best performance, and
larger n will induce more noise and decrease classification performance.

Fig. 6. Classification test on 7 cross-
validation rounds under different n

Fig. 7. Classification test on 7 cross-
validation rounds under different λ

Effectiveness of Semantic-Aware Motion Feature Pooling and Clas-
sification: We show in Table 2 that after semantic-grouped feature encoding
(SG-LLC), our proposed semantic-aware motion feature pooling and multiple
kernel learning (SA-MKL) can further boost the classification performance. To
this end, Table 2 compares our proposed SA-MKL with conventionally used aver-
age kernel (AK-SVM) in action recognition [22] as well as conventional multiple
kernel learning method (MKL). For MKL, we use the state-of-the-art implemen-
tation of SimpleMKL [19]. We test on different types of motion features (which
are encoded by the proposed SG-LLC method) and the results show that 1) MKL
outperforms average kernel due to its kernel selection capability and 2) our pro-
posed SA-MKL further outperforms traditional MKL as our SA-MKL method
utilizes prior information for the kernel weights through semantic information
extraction for kernel learning, i.e., action class-object type contextual informa-
tion. We also study the effect of the parameter λ used for adjusting the weight
between kernel K0 and kernels K1, · · · ,KM . Figure 7 illustrates the classifica-
tion performance by varying λ. As can be seen from Figure 7, small λ improves
classification performance, which is benefited from prior semantic information,
and λ = 0.2 achieves the best result. Performance starts to drop from λ = 0.4
because of the magnified semantic noise.
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Table 3. Stage-by-stage classification performance(%) of our proposed pipeline

Pr Rc AP

Holistic Dense Trajectories [22] 49.4 44.8 59.2

Holistic + Pose [20] 50.4 45.1 57.9

Dense Trajectory + LS 53.9 48.9 64.4

SG-LLC + AK-SVM 57.3 52.4 68.4

SG-LLC + SA-MKL 60.1 54.3 70.5

Comparison with the State-of-the-Art: We compare our approach with the
state-of-the-art performance achieved by the holistic dense motion trajectory
approach [22] (naive combination of motion features with pose features is used
in [20], which achieves minor improvement). To study the algorithmic behavior
of our pipeline (i.e., to show the stage-by-stage improvement of the pipeline),
we also compare our method with: 1) naive combination of the dense motion
trajectory bag-of-words features and the localized semantic bag-of-words fea-
tures (Dense trajectory + LS, Average Kernel is used) and 2) our proposed SG-
LLC encodings but without semantic-aware pooling and multiple kernel learning
(SG-LLC + Average Kernel). Comparison results are shown in Table 3. In our
experiment, we set λ and n to be 0.2 and 5 empirically. The results show that
naive combination of local motion features and localized semantic features im-
proves the holistic dense trajectory method. However, by exploring novel ways
to embed the localized semantic features into feature coding, pooling and clas-
sification steps, we can obtain a total of more than 10% performance increase
accumulated by every stage of our proposed pipeline, which is much better than
merely using the semantic feature and combining it naively with the original
motion feature descriptors (about 6% more increase than naive combination of
dense trajectory and LS). Also each proposed step (i.e., SG-LLC and SA-MKL)
consistently benefits the final fine-grained action classification performance.

To prove the effectiveness of our approach on fine-grained actions, we specifi-
cally pick up classification results of five fine-grained action groups (i.e., “cut”,
“put in/on”, “take & put in”, “take out”, “open/close”) and compare our ap-
proach with holistic dense trajectories in Figure 8, we observe that our method
significantly outperforms the holistic approach on the fine-grained action recog-
nition. We find that recognition on actions of “put in/on” have been significantly
improved, which are benefited from excellent object detection performance on
objects such as bowel, bread/dough or cutting-board (i.e., manipulated objects
in the “put in/on” video clips). However, actions of “put on plate” are not im-
proved as expected because the plate is always occluded and difficult for detec-
tion. We also observe that “cut” actions are not improved significantly compared
to “put in/on”, the reasons can be two-fold: 1) the intra-class variability is espe-
cially large and 2) the object detection is extremely difficult for the manipulated
objects (e.g., knife, fruits, vegetables) because they are in very small size. Never-
theless, “cut” actions are still improved by incorporating the localized semantic
information into further steps of our pipeline.
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Fig. 8. Holistic [22] and our proposed approach are compared among five major fine-
grained action groups (i.e.,“cut”,“put in/on”,“take & put in”,“take out”,“open/close”)
in terms of per-class classification accuracy (true positive out of total)

There are still two major issues for our approach. First of all, object detection
performance is far from good enough. For example, the object-of-interest list is
coarse and incomplete, some defined object categories are difficult to detect (e.g.,
small size objects such as knife or vegetables, we group them as one object type in
our work). Secondly, motions including human body or background motions (i.e.,
with mainly useless patterns) still count for a large part of dense trajectories,
thus actions such as “cut” or “put” are easily confused by the intensive noise.

In the future work, we will make the localized semantic feature more discrim-
inative and less noisy, e.g., by using better object detection method. Note that
according to the large deformation and small size nature of the manipulated
objects, superpixel based object detection is more suitable than DPM [9] in our
scenario. But we believe the performance can be further improved if better tuned
object detection method is applied. We can also leverage object co-occurrence
information in the localized semantic feature extraction.

4 Conclusion

In summary, we propose a fine-grained action recognition pipeline which seam-
lessly incorporates localized semantic information into every processing step. The
pipeline includes localized semantic feature extraction, semantic-grouped feature
encoding, semantic-aware motion feature pooling and classification. We evalu-
ate our approach on the MPII cooking fine-grained action dataset and achieve
significant improvement over the existing methods, which is quite promising to
be applied in applications such as daily living assist or medical assistance.
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