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Abstract. Maximally Stable Extremal Regions (MSERs) have achieved
great success in scene text detection. However, this low-level pixel opera-
tion inherently limits its capability for handling complex text information
efficiently (e. g. connections between text or background components),
leading to the difficulty in distinguishing texts from background compo-
nents. In this paper, we propose a novel framework to tackle this problem
by leveraging the high capability of convolutional neural network (CNN).
In contrast to recent methods using a set of low-level heuristic features,
the CNN network is capable of learning high-level features to robustly
identify text components from text-like outliers (e.g. bikes, windows,
or leaves). Our approach takes advantages of both MSERs and sliding-
window based methods. The MSERs operator dramatically reduces the
number of windows scanned and enhances detection of the low-quality
texts. While the sliding-window with CNN is applied to correctly sepa-
rate the connections of multiple characters in components. The proposed
system achieved strong robustness against a number of extreme text vari-
ations and serious real-world problems. It was evaluated on the ICDAR
2011 benchmark dataset, and achieved over 78% in F-measure, which is
significantly higher than previous methods.

Keywords: Maximally Stable Extremal Regions (MSERs), convolu-
tional neural network (CNN), text-like outliers, sliding-window.

1 Introduction

With the rapid evolvement and popularization of high-performance mobile and
wearable devices in recent years, scene text detection and localization have
gained increasing attention due to its wide variety of potential applications.
Although recent progresses in computer vision and machine learning have sub-
stantially improved its performance, scene text detection is still an open problem.
The challenge comes from extreme diversity of text patterns and highly compli-
cated background information. For example, texts appeared in a natural image
can be in a very small size or in a low contrast against the background color, and
even regular texts can be distorted significantly by strong lightings, occlusion,
or blurring. Furthermore, a large amount of noise and text-like outliers, such as
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(a) (b) (c) (d)

Fig. 1. The text detection pipeline of our method. The input image is shown in (a).
We first apply the MSERs operator on the input image to generate a number of text
component candidates (b). We then apply the CNN classifier to generate a component
confidence map (c). The components with positive confident scores are applied for
constructing text-lines, which are scored by the mean values the components included.
The final detection results are generated by a simple thresholding on (d).

windows, leaves, and bricks, can be included in the image background, and often
cause many false alarms in detection.

There are mainly two groups of methods for scene text detection in the lit-
erature, sliding-window based and connected component based methods. The
sliding-window based methods detect text information by sliding a sub-window
in multiple scales through all locations of an image [11,3,9,28,29,18,1]. Text and
non-text information is then distinguished by a trained classifier, which often
uses manually designed low-level features extracted from the window, such as
SIFT and Histogram of Oriented Gradients (HoG) [6]. The main challenge lies
in the design of local features to handle the large variance of texts, and compu-
tational demand for scanning a large amount of windows, which may increase
to N2 for an image with N pixels. Hand crafted features like SIFT and HoG
are effective to describe image content information, but these features are not
optimized for text detection.

The connected component based methods achieved the state-of-the-art per-
formance in scene text detection. They first separate text and non-text pixels
by running a fast low-level filter and then group the text pixels with similar
properties (e. g. intensity, stroke width, or color) to construct component can-
didates [23,24,22,34,7,31,10,32,2]. Stroke width transform (SWT) [7,31,10] and
Maximally Stable Extremal Regions (MSERs) [16,23,24,22,34] are two represen-
tative low-level filters applied for scene text detection with great success. The
main advantages of these methods are the computational efficiency by detect-
ing text components in an one pass computation in complexity of O(N), and
providing effective pixel segmentations, which greatly facilitate the subsequent
recognition task.

It has been shown that MSERs based methods have high capability for de-
tecting most text components in an images [24]. However, they also generate a
large number of non-text components at the same time, leading to high ambiguity
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between text and non-text in MSERs components. Robustly separating them has
been a key issue for improving the performance of MSERs based methods. Efforts
have been devoted to handling this problem, but most of current methods for
MSERs pruning focus on developing low-level features, such as heuristic charac-
teristics or geometric properties, to filter out non-text components [23,24,22,34].
These low-level features are not robust or discriminative enough to distinguish
true texts from text-like outliers, which often have similar heuristic or geometric
properties with true texts. Besides, the MESRs methods are based on pixel level
operations, and hence are highly sensitive to noise or single pixel corruption.
This may lead to incorrect component connections, such as a single component
includes multiple characters, which significantly affect the performance of text-
line construction in the subsequent step.

In order to tackle these inherent problems, this paper aims to develop a robust
text detection system by embedding the high-capability deep learning method
into the MSERs model, and taking the advantages of both MESRs and sliding-
window methods. The main contributions of the paper are:

1. We apply deep convolutional neural network to learn high-level features
from the MSREs components. This high-capability classifier correctly distin-
guishes texts from a large amount of non-text components, and shows high
discriminant ability and strong robustness against complicated background
components (see Fig. 1 and 2), and therefore greatly improves capability of
the MSERs based methods.

2. We incorporate the CNN classifier with sliding-window model and non-
maximal suppression (NMS) to handle the multiple characters connection
problem of the MSREs, and also recover missing characters, as shown in Fig.
3. Our method provides better character candidates than previous MSERs
methods. This improvement is a crucial technique for bottom-up scheme to
construct text-lines.

3. Our system have the advantages of both MSERs and sliding window meth-
ods. Comparing to traditional sliding-window methods, our method not only
reduces the number of search window, but also enhances the detection of low
contrast texts by using MSREs, as shown in Fig. 2 (a) and (b).

4. Our method achieves state-of-the-art results on the most cited ICDAR 2011
benchmark with over 78% in F-measure, which improves current results with
a large margin.

The rest of paper is organized as follow. Section 2 describes all details of the
proposed system. Experimental verifications are produced on Section 3, followed
by the conclusions in Section 4.

2 Our System

The proposed text detection system includes three main steps, as shown in Fig. 1.
Text components are first generated by applying the MSERs detector on the
input image. Then, each MSERs component is assigned a confident value by
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using a trained CNN classifier. Finally, the text components with high confident
scores are employed for constructing the final text-lines. Besides, we also propose
a novel approach to enhance character separation by applying siding window
with the CNN classifier for error-connected MSERs components. Details of the
system are presented bellow.

2.1 MSERs Component Generation

MSERs define an extremal region as a connected component of an image whose
pixels have intensity contrast against its boundary pixels [16,25]. The intensity
contrast is measured by increasing intensity values, and controls the region ar-
eas. A low contrast value would generate a large number of low-level regions,
which are separated by small intensity difference between pixels. When the con-
trast value increases, a low-level region can be accumulated with current level
pixels or merged with other lower level regions to construct a higher level re-
gion. Therefore, an extremal region tree can be constructed when it reaches the
largest contrast (e.g. 255 in a gray-scale image). An extremal region is defined as
a maximally stable extremal region (MSER) if its variation is lower than both
its parent and child [16,25]. Therefore, a MSER can be considered as a special
extremal region whose size remains unchanged over a range of thresholds.

The MSERs has been one of the most widely-used region detectors. For text
region detection, it can be assumed that pixel intensity or color within a single
text letter is uniform, while the intensity contrast between text and background
regions typically exists. Each individual character can be detected as a extremal
region or a MSER. Two promising properties make the MSER detector effective
in text detection. First, the MSERs detector is computationally fast and can be
computed in linear time of the number of pixels in a image [25]. Second, it is a
powerful detector with high capability for detecting low quality texts, such as
low contrast, low resolution and blurring. With this capability, MSER is able
to detect most scene texts in a natural images, leading to high recall on the
detection. However, the capability of the MSER is penalized by the increasing
number of false detections. It would substantially increase the difficulty to iden-
tity true texts from a large number of non-text false alarms, which is one of the
main challenge for current MSERs based methods. Previous work often balance
the two factors by using a MSERs threshold, which can be changed from 1 to
255 for a gray-scale image.

For text detection system, our goal is to detect as many text components as
possible in this step. Because it is difficult or impossible to recover the missed
characters in the subsequent processes. The MSERs threshold is set to its lowest
value 1 which makes it possible to capture most challenging cases, as shown in
the top row of Fig. 2. As shown, although they are a number of error detections,
the true text characters in highly difficult cases are also correctly detected. This
makes it possible to construct a robust system to correctly detect those chal-
lenge texts and result in a high recall. But at the same time, it needs a powerful
classifier to identify those low-quality texts from a large number of non-text
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components. A high capability classifier based on deep convolutional neural
network is present bellow.

2.2 Deep Convolutional Neural Network

Deep learning has been applied to a number of challenging tasks in computer vi-
sion with breakthrough improvements achieved in last several years. It has been
shown that deep network is capable of leaning meaningful high-level features and
semantic representations for visual recognition through a hierarchal architecture
with multiple-layers feature convolutions. The deep structure of the CNN allows
it to refine feature representation and abstract sematic meaning gradually. The
traditional CNN network has achieved great success on digit and hand-written
character recognition [12,13]. Scene text detection in natural image is a high-
level visual task, which is difficult to be solved completely by a set of low-level
operations or manually designed features. In contrast to previous works, which
often use a set of heuristic features to distinguish text and non-text compo-
nents [23,24,22,34,31,10], we take the advantages of deep learning and adapt

Fig. 2. The performance of the MSERs detector and the CNN classifier for low contrast
(a) and low quality texts (b), and text-like outliers (c). The top row are the MESRs
detections on text areas. The middle row are the confident maps generated by the CNN
classifier. The pixels are displayed by their higher confident scores if they belong to
multiple components. The bottom row are the detection results.
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a deep convolutional neural network to robustly classify the generated MESRs
components.

The structure of the CNN text classifier is similar to that applied in [29,4].
The network includes two convolutional layers, each of which has a convolution
and an average pooling steps. The number of filters for the two layers are 64
and 96, respectively. The input patch is with fixed size of 32 × 32. Similar to
[29,4,5,19], the first layer is trained in an unsupervised way by using a variant
of K-means described in [4] to learn a set of filters D ∈ R

k×n1 from a set of
8 × 8 patches randomly extracted from training patches, k is the dimension of
the convolution kernel, and is 64 for the kernel size with 8 × 8, n1 = 64 is the
number of the filters in the first layer in our system. The responses (r) of the
first layer is computed as [29],

r = max{0, |DTx| − θ} (1)

where x ∈ R
64 is an input vector for an 8× 8 convolutional kernel, and θ = 0.5.

The resulted first layer response maps are with size of 25×25×64. Then average
pooling with window size of 5× 5 is applied to the response maps to get reduced
maps with the size of 5× 5× 64. The second layer is stacked upon the first layer.
The sub-window patch for computing response and average pooling is 4× 4 and
2 × 2, respectively. The final output of the two layers is a 96 dimension feature
vector, which is input to a SVM to generate the final confident score of the
MSERs component. The parameters in the second layer are fully connected and
are trained by back-propagating the SVM classification error.

Given a MESR component, we applied the trained CNN classifier to decide
whether it is a text component by assigning a confident score to it. In our exper-
iments, we discarded the MSERs components which include very small numbers
of pixels (e.g. less than 0.01% of the total pixel number in an image), and keep
all other components as input to the CNN classifier. For each retained MSER
component, we computed the aspect ratio of its boundary box. If the width of
the box is larger than its height, we directly resized the image component into
the size of 32× 32; otherwise, we extracted a square patch with the same center
of the boundary box and with the side length equal to the height of box, and
then resized it into 32×32. This alignment scheme makes the input patches con-
sistent with the synthetic training samples used in our experiments, which were
originally generated by Wang et. al. [28,29]. Two examples for both cases are
shown in Fig. 3. The final confident maps for three challenge images are shown
in the middle row of the Fig. 2. As shown, our CNN classifier generally assigns
higher scores to text components, even for those MSERs with very low quality
of the text characters (see Fig. 2 (a) and (b)), and at the same time, classify
the text-like outliers (such as the masks and bricks in Fig. 2 (b) and (c)) as
low confident scores, demonstrating strong robustness and highly discriminative
capability for filtering the non-text components.

The performance of the SWT methods highly depend on the edge detector,
which is often not feasible in many challenge cases. Compared to the SWT based
methods, MSER operator is capable of detecting more true text components,
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Fig. 3.MESRs component alignment with size of 32×32 and synthetic training samples

often leading to a higher recall. But at the same time, the MESRs methods
also generate a larger number of non-text components. It means that the high
performance of the MSERs methods heavily depend on a powerful component
classifier. Thus we designed the CNN network by leveraging its high learning
capability to improve the performance of the MSERs methods. Besides, in our
system, the MESRs method and the CNN classifier are strongly compensated to
each other. Comparing to general siding-window methods, the MSER operator
provides two promising properties. It not only reduces the number of searching
windows dramatically by two orders of magnitude, but also provides a significant
enhancement on low quality texts, which are difficult to be detected correctly
by a general sliding-window method. In our experiment, the average number of
the MSERs components in an image input to the CNN classifier is 516 in the
ICDAR 2011 database.

2.3 Component Splitting with MSERs Tree

As pointed out in the literature, most connected component based methods suffer
from inherent limitations of low-level filters, which easily cause error connections
between multiple characters or with background components in some difficult
cases, such as low quality or seriously affected texts [24,2,10]. In order to tackle
this problem, we proposed a high-level approach by incorporating CNN scores
and MSERs tree structure with a sliding window model.

We define an error-connected component as a MSER component including
multiple text characters. As mentioned, implementation of the sliding-window
model is computationally expensive. We show that only a small number of the
MSERs components are considered as the error-connected components by select-
ing them using the output CNN scores and the structure of MSERs tree. It can
be observed that an error-connected component generally has three remarkable
characteristics.
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– First, it often has a high aspect ratio where the width of the boundary box
is much longer than its height (e.g. the example in the top row of Fig. 3).

– Second, differing from other non-text components, such as long horizontal
lines or bars which are generally scored with negative confident values by
our CNN classifier, the error-connected component actually includes some
text information (multiple characters), but it is not very strong, because our
CNN classifier is trained on single-character components.

– Third, although the components in high-level of the MSERs trees often in-
clude multiple text characters, such as the components in the roots of the
tree. Most of these components can be further separated correctly by their
children components, which often have higher confident scores than their
parents. Thus, we do not consider these components as the error-connected
components.

Therefore, the error-connected components are defined as the components having
high aspect ratios (e.g. width/height > 2 in our experiments) and positive CNN
scores, (1) but cannot be further separated in their MSERs trees; or (2) all
components in their children sets do not have a higher CNN score than them.
The first situation includes the texts having multiple characters truly connected,
which cannot be separated by most low-level filters. The components in the
second situation often include error separations (resulted in the low or negative
confident scores for all their children components), which are caused by some
challenging cases.

To present the proposed splitting scheme, we selected an error-connected
MSER component sample, as shown in Fig 4. The component has high aspect
ratio and positive CNN scores, which is higher than the scores of its children.
We applied a sliding window with our CNN classifier to scan through the com-
ponent, which returns an one dimension continuous confident scores. Finally,
non-maximal suppression (NMS) method [20] was applied to the continuous
scores to estimate the locations for each single characters. The details of the
component splitting method are described in Algorithm 1.

As shown in Fig. 4, the proposed high-level component splitting method ef-
fectively handles the component connection problem of the MSERs methods,
and often generates better component candidates with high confident values
for subsequent text-line construction and recognition. Note that, by integrat-
ing MSERs tree structure and CNN confident map for carefully choosing the
error-connected components, only a small number of components are selected
for splitting. While each component is scanned just once by a sliding window
with a single scale (32× 32) and the size of component is often small. Therefore,
the increase of the computational cost for the proposed splitting method is rela-
tively trivial. With powerful CNN classifier and efficient splitting scheme, a large
number of non-text components have been identified correctly and only a small
number of text components (with positive confident scores in our experiments)
are retained to construct the final text-lines.
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Fig. 4. Error-connected component slitting by sliding window model with the CNN
classifier

Algorithm 1. Error-connected Component Splitting

Require: Selected error-connected components, MSERs Tree Structure and CNN con-
fident map.

Ensure: Revised MSERs Tree and CNN confident map.
1: Given N error-connected components
2: for k = 1 → N do
3: Get the confident score of the current component, Wk

4: Normalize the size of component into 32×X
5: Use sliding window (32× 32) with CNN to compute confident scores Sk

6: Apply NMS [20] for estimating the peak values (Pk) in Sk as,
7:

Pk(x) =

{
Sk(x) if Sk(x) � Sk(x+Δx),Δx < Θ

0 otherwise
(2)

8: Generate new components at location x, where Pk(x) > 0, {P 1
k , P

2
k , . . . , P

m
k }

9: if max(P 1
k , P

2
k , . . . , P

s
k ) > Wk then

10: Replace children set of current component with new generated ones
11: Update confident map with new scores and locations, as shown in Fig 4
12: end if
13: end for
14: return Revised MSERs tree and new CNN confident map

The text-line construction is now simple and straightforward. Similar to pre-
vious work in [7,10], we first grouped two neighboring components into a pair if
they have similar geometric and heuristic properties, such as similar intensities,
colors, heights, and aspect ratios. Then, the pairs including a same component
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and having similar orientations were merged sequentially to construct the final
text-lines. The process is ended when no pairs can be merged further. Finally,
text-lines were broken into separate words by computing the horizontal distances
between consecutive characters. This is different from Yin et al.’s method [34],
which is difficult to sperate text and non-text MSERs components discrimina-
tively by using heuristic features, and a large number of non-text components
are retained to construct the text-lines, leading to a large number of false alarms
included in the resulted text-lines (e.g. as indicated in [34], only 9% of the fi-
nal text-lines are true texts.). It often requires a further computationally costly
post-processing to filter out the false alarms by using sophisticated machine
learning algorithms [34]. In contrast, our system discards the false alarms by
simply thresholding the average confident scores of the text-lines.

3 Experiments and Results

We evaluated the proposed method on two widely cited benchmarks for scene
text detection, the ICDAR 2005 [15,14] and the ICDAR 2011 [26] Robust Read-
ing Competition databases.

3.1 Datasets and Evaluation Method

The ICDAR 2005 dataset includes 509 color images having sizes varied from
307 × 93 to 1280 × 960. 258 images are included in the training set, while 251
images are used for test. There are 229 training images and 255 testing ones for
the ICDAR 2011 dataset. The detection performance were evaluated in the word
level in both datasets, which include totally 1114 and 1189 words in their test
sets, respectively.

For evaluation, we followed the ICDAR 2011 competition evaluation proto-
col, which was proposed by Wolf et al. [30]. This evaluation method presents
object level precision and recall based on constraints on detection quality. It
evaluates both quantity and quality of rectangle matches through all images in
the database, and considers not only one-to-one matching, but also one-to-many
and many-to-one matchings. The quality of detection or matching is controlled
by two parameters which penalizes more on parts matching than larger detec-
tion. Specifically, the evaluation is computed by Precision, Recall, and F-measure
which are defined bellow,

Precision =

∑N
i

∑|Di|
j MD(Di

j , G
i)

∑N
i |Di|

(3)

Recall =

∑N
i

∑|Gi|
j MG(G

i
j , D

i)
∑N

i |Gi|
(4)

Fmeasure = 2× Precision×Recall

Precision+Recall
(5)
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where N is the total number of images in a dataset. |Di| and |Gi| are the num-
ber of detection and ground true rectangles in the i-th image. MD(D

i
j , G

i) and

MG(G
i
j , D

i) are the matching scores for detection rectangle Dj and ground true
rectangle Gj . Their values are set to 1 for one-to-one matching, 0.8 for one-to-
many matching and 0 for no matching. Two rectangles are considered as matched
when their overlapping ratio is higher than a defined threshold, which controls
the quality of the matching.

3.2 Experiments and Results

The CNN classifier was trained by using 15000 toy samples generated by Wang
et al. [29]. There are 5000 positive and 10000 negative samples in the training
dataset, and all samples are resized into 32 × 32. Some examples are shown in
Fig. 3. The training data on the two datasets were not applied for training in our
experiments, which shows strong generalization power of the proposed system. In
our experiments, the MSERs operator was run twice on each image, correspond-
ing to both black-to-white and white-to-black texts. Each MSER component was
classified by the trained CNN classifier and only the component with positive
confident score was used for text-line construction. A text-line with an average
component score lower than 1.2 was considered as a fail detection. The final
detected boundary boxes for each image are the non-overlap combination of the
boxes from both sides. The full evaluation results on the two databases are pre-
sented in Table 1 and 2, along with the detection results on several challenging
images displayed in Fig. 5.

The proposed method achieved excellent performance on both databases and
the improvements are significant in terms of Precision, Recall, and Fmeasure.
In the most recent ICDAR 2011 dataset, our method improved the most closed
performance with 2 ∼ 3% in all three terms and reached the Fmeasure score over
78%. Note that the evaluation scheme of the SFT-TCD method [10] did not
follow the standard protocol of the ICDAR 2011. It was evaluated based on each
single image and the mean values of all images in the dataset were reported.
The improvements by our method mainly gain from two facts. On the one hand,
the powerful MSERs detector is able to detect most true texts, which resulted
in a high Recall. One the other hand, high capability of the CNN classifier with
high-level splitting scheme robustly identify true text components from non-text
ones, leading to a large improvement on Precision.

Fig. 5 shows the successful detection results on a number of challenging cases,
which indicate that our system is highly robust to large variations in texts in-
cluding small font size, low contrast, and blurring. The images also show that
our system is robust against strong lighting and highly noise background effects.
Fig. 6 shows two failure cases in our experiments. For the left one, our method
missed a number of true text-lines. It is mainly caused by the strong masks cov-
ering the texts, which significantly break the low-level structure of texts. The
text components in the right image do not include strong text information and
are easily confused with its background.
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Fig. 5. Successful text detection results with extreme variances and significant affects

Fig. 6. Failure cases
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Table 1. Experimental results on the ICDAR 2005 dataset

Method Year Precision Recall F −measure

Our method – 0.84 0.67 0.75

SFT-TCD [10] 2013 0.81 0.74 0.72

Yao et al. [31] 2012 0.69 0.66 0.67

Chen et al. [2] 2012 0.73 0.60 0.66

Epshtein et al. [7] 2010 0.73 0.60 0.66

Yi and Tian [33] 2013 0.71 0.62 0.63

Neumann and Matas [23] 2011 0.65 0.64 0.63

Zhang and Kasturi [35] 2010 0.73 0.62 –

Yi and Tian [32] 2011 0.71 0.62 0.62

Becker et al. [14] 2005 0.62 0.67 0.62

Minetto et al. [17] 2010 0.63 0.61 0.61

Chen and Yuille [3] 2004 0.60 0.60 0.58

Table 2. Experimental results on the ICDAR 2011 dataset

Method Year Precision Recall F −measure

Our method – 0.88 0.71 0.78

Yin et al. [34] 2014 0.86 0.68 0.76

Neumann and Matas [21] 2013 0.85 0.68 0.75

SFT-TCD [10] 2013 0.82 0.75 0.73

Neumann and Matas [22] 2013 0.79 0.66 0.72

Shi et al. [27] 2013 0.83 0.63 0.72

Neumann and Matas [24] 2012 0.73 0.65 0.69

González et al. [8] 2012 0.73 0.56 0.63

Yi and Tian [32] 2011 0.67 0.58 0.62

Neumann and Matas [23] 2011 0.69 0.53 0.60

4 Conclusions

We have presented a robust system for scene text detection and localization
in natural images. Our main contribution lies in effectively leveraging the high
capacity of the deep learning model to tackle two main problems of current
MSERs methods for text detection, and enable our system with strong ro-
bustness and highly discriminative capability to distinguish texts from a large
amount of non-text components. A sliding window model was intergraded
with the CNN classifier to further improve text character detection on chal-
lenging images. Our method has achieved the state-of-the-art performance on
two benchmark datasets, convincingly verifying the efficiency of the proposed
method.
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