
Learning to Rank Using High-Order Information

Puneet Kumar Dokania1, Aseem Behl2, C.V. Jawahar2, and M. Pawan Kumar1

1 Ecole Centrale de Paris
INRIA Saclay, France

2 IIIT Hyderabad, India

Abstract. The problem of ranking a set of visual samples according to
their relevance to a query plays an important role in computer vision.
The traditional approach for ranking is to train a binary classifier such as
a support vector machine (svm). Binary classifiers suffer from two main
deficiencies: (i) they do not optimize a ranking-based loss function, for
example, the average precision (ap) loss; and (ii) they cannot incorporate
high-order information such as the a priori correlation between the rele-
vance of two visual samples (for example, two persons in the same image
tend to perform the same action). We propose two novel learning formu-
lations that allow us to incorporate high-order information for ranking.
The first framework, called high-order binary svm (hob-svm), allows for
a structured input. The parameters of hob-svm are learned by minimiz-
ing a convex upper bound on a surrogate 0-1 loss function. In order to
obtain the ranking of the samples that form the structured input, hob-
svm sorts the samples according to their max-marginals. The second
framework, called high-order average precision svm (hoap-svm), also
allows for a structured input and uses the same ranking criterion. How-
ever, in contrast to hob-svm, the parameters of hoap-svm are learned by
minimizing a difference-of-convex upper bound on the ap loss. Using a
standard, publicly available dataset for the challenging problem of action
classification, we show that both hob-svm and hoap-svm outperform the
baselines that ignore high-order information.

1 Introduction

Many tasks in computer vision require the development of automatic methods
that sort a given set of visual samples according to their relevance to a query. For
example, consider the problem of action classification (or more precisely action
ranking). The input is a set of samples corresponding to bounding boxes of per-
sons, and an action such as ‘jumping’. The desired output is a ranking where a
sample representing a jumping person is ranked higher than a sample represent-
ing a person performing a different action. Other related problems include image
classification (sorting images according to their relevance to a user query) and
object detection (sorting all the windows in a set of images according to their
relevance to an object category). As the desired output of the aforementioned
problems is a ranking, the accuracy of an approach is typically reported using a
ranking-based measure such as the average precision (ap).

D. Fleet et al. (Eds.): ECCV 2014, Part IV, LNCS 8692, pp. 609–623, 2014.
c© Springer International Publishing Switzerland 2014

610 P.K. Dokania et al.

A popular way of solving a problem that requires us to rank a set of samples
is to train a binary classifier. The positive class of the classifier corresponds
to the relevant samples and the negative class corresponds to the non-relevant
samples. Once a classifier is learned on a training set, a new set of samples is
sorted according to the scores assigned to the samples by the classifier. Perhaps
the most commonly used classifier is the support vector machine (svm) [23].
However, the svm framework has two main drawbacks. First, an svm minimizes
an upper bound on the 0-1 loss function (that is, the fraction of misclassifications)
instead of a loss function that depends on the ap. Second, an svm only uses first-
order information to classify a sample, that is, the score of a sample depends only
on itself and not on other samples in the dataset. In other words, an svm does not
explicitly incorporate a priori high-order information, which can be very useful
in improving the accuracy of ranking. For example, in action classification, most
of the persons present in the same image tend to perform the same action. In
object detection, two objects of the same category tend to have the similar aspect
ratio. In pose estimation, people in the same scene tend to have similar poses
(sitting down to watch movie). In document retrieval, documents containing
same or similar words are more likely to belong to the same class.

At first glance, the two drawbacks seem to be easily fixable using a generaliza-
tion of the svm framework, known as structured output support vector machines
(ssvm) [20,22]. Given a structured input, the ssvm framework provides a linear
prediction rule to obtain a structured output. Specifically, the score of a puta-
tive output is the inner product of the parameters of an ssvm with the joint
feature vector of the input and the output. The prediction requires us to maxi-
mize the score over all possible outputs for an input. Given a training dataset,
the parameters of an ssvm are learned by minimizing a regularized convex upper
bound on a user-specified loss function. In the past decade, several customized
algorithms have been developed to solve the optimization problem that learns
the ssvm parameters [6,8,13,20,22]. While the optimization algorithms for ssvm
differ significantly in their details, they share the common characteristic of iter-
atively performing loss-augmented inference. In other words, given the current
estimate of the parameters, they compute the output that jointly maximizes the
sum of the score and the loss function. Loss-augmented inference can be viewed
as the optimal cutting-plane or the subgradient of the learning objective, which
exploits its central role in the optimization.

The ssvm framework places no restriction on the form of the loss function
and on the structure of the input and the output. Thus, it appears the ideal
framework to (i) optimize the ap loss; and (ii) incorporate high-order informa-
tion. However, in order to successfully employ an ssvm, we need an efficient
algorithm for loss-augmented inference. In that regard, the first drawback can
be addressed using ap-svm [24], which is a special form of ssvm. In the ap-svm
framework, the input is a set of samples and the output is a ranking. The loss
value for a putative output is one minus the ap of the corresponding ranking
with respect to the ground truth ranking. The joint feature vector of the input
and the output is a weighted sum of the feature vectors for all samples, where the

Learning to Rank Using High-Order Information 611

weights are governed by the ranking. Yue et al. [24] showed that, for this choice
of joint feature vector, loss-augmented inference can be performed optimally us-
ing an efficient greedy algorithm. Furthermore, they showed that the prediction
of ap-svm is exactly the same as the prediction of the standard svm, that is,
to sort the samples according to their individual scores. Since the joint feature
vector of ap-svm depends only on the feature vectors of the individual samples,
ap-svm does not incorporate high-order information. A straightforward way to
address this deficiency would be to modify the joint feature vector such that it
depends on feature vectors of pairs of samples, or more generally, on feature vec-
tors of subsets of samples. For example, Rosenfeld et al. [19] recently proposed
a framework to optimize the area under curve (auc) while considering the high-
order information. However, similar approach cannot be used for optimizing ap
based loss function since it does not decompose over single variable. Therefore,
such a modification can not be introduced trivially into the ap-svm formulation.

We present two alternate frameworks to incorporate high-order information
for ranking. The first framework, which we call high-order binary svm (hob-
svm), takes its inspiration from the standard svm. The input of hob-svm is a
set of samples. The output is a binary label for each sample, where the label
1 indicates that the sample is relevant and 0 indicates that the sample is not
relevant. The joint feature vector of hob-svm depends not only on the feature
vectors of the individual samples, but also on the feature vectors of subsets
of samples. In this work, we restrict the subsets to be of size two, but our
frameworks can easily be generalized to other subset sizes. The loss function
of hob-svm is a weighted 0-1 loss, which allows us to efficiently perform loss-
augmented inference using graph cuts [12]. Practically speaking, the difficulty
with employing hob-svm is that it provides a single score for the entire labeling
of a dataset, whereas we need scores corresponding to each sample in order to
find the ranking. To address this difficulty, we propose to rank the samples using
the difference between the max-marginal for assigning a sample to the relevant
class and the max-marginal for assigning it to the non-relevant class. Intuitively,
difference of max-marginals measure the positivity of a particular sample while
capturing high-order information. Empirically, we show that the difference of
max-marginals provides an accurate ranking. The main advantage of hob-svm is
that its parameters can be estimated efficiently by solving a convex optimization
problem. However, its main disadvantage is that, similar to svm, it optimizes a
surrogate loss function instead of the ap loss.

The second framework, which we call high-order ap-svm (hoap-svm), takes
its inspiration from ap-svm and hob-svm. Similar to ap-svm, the input of
hoap-svm is a set of samples, its output is a ranking of the samples, and its loss
function is the ap loss. However, unlike ap-svm, the score of a ranking is equal to
the weighted sum of the difference of max-marginals of the individual samples.
Since the max-marginals capture high-order information, and the loss function
depends on the ap, hoap-svm addresses both the aforementioned deficiencies
of traditional classifiers such as svm. The main disadvantage of hoap-svm is
that estimating its parameters requires solving a difference-of-convex program

612 P.K. Dokania et al.

[7]. While we cannot obtain an optimal set of parameters for hoap-svm, we show
how a local optimum of the hoap-svm learning problem can be computed effi-
ciently by the concave-convex procedure [25]. Using standard, publicly available
datasets, we empirically demonstrate that hoap-svm outperforms the baselines
by effectively utilizing high-order information while optimizing the correct loss
function. For the sake of clarity, the proofs of all the propositions presented in
the paper are given in the accompanying technical report. To facilitate the use
of hob-svm and hoap-svm, we have made our code and data available online
at http://cvn.ecp.fr/projects/ranking-highorder.

2 Preliminaries

2.1 Structured Output SVM

An ssvm, parameterized by w, provides a linear prediction rule to obtain a
structured output y ∈ Y from a structured input x ∈ X . Formally, let Ψ(x,y)
denote the joint feature vector of the input x and the output y. The prediction
for a given input x is obtained by maximizing the score over all possible outputs,
that is, y = argmaxy∈Y w�Ψ(x,y).

Given a dataset that consists of n samples, that is,D = {(xi,y
∗
i), i = 1, · · · , n},

the parameters of an ssvm are estimated by minimizing a regularized upper
bound on the empirical risk. The risk is measured using a user-specified loss
function Δ(·, ·). In more detail, the parameters are estimated by solving the
following convex optimization problem:

min
w

1

2
||w||2 + C

n

n∑

i=1

ξi, (1)

w�Ψ(xi,y
∗
i)−w�Ψ(xi,y) ≥ Δ(y∗

i ,y)− ξi, ∀y ∈ Y, ∀i ∈ {1, · · · , n}.

Intuitively, the above problem encourages a margin (proportional to Δ(y∗
i ,y))

between the score of the ground-truth output y∗
i and all other outputs y. The hy-

perparameter C controls the trade-off between the training error and the model
complexity. Inspite very large number of constraints, it has been shown that
the above problem can be optimized efficiently using cutting-plane algorithm [8]
which requires iteratively solving the loss-augmented inference problem (to find
the most-violated constraint), that is, ŷi = argmaxy w

�Ψ(xi,y) +Δ(y∗
i ,y).

2.2 AP-SVM

The ap-svm classifier is a special case of ssvm. The input of an ap-svm is a set
of n samples, which we denote by X = {xi, i = 1, · · · , n}. Each sample can either
belong to the positive class (that is, the sample is relevant) or the negative class
(that is, the sample is not relevant). The indices for the positive and negative
samples are denoted by P and N respectively. In other words, if i ∈ P and
j ∈ N then xi belongs to positive class and xj belongs to the negative class.

http://cvn.ecp.fr/projects/ranking-highorder

Learning to Rank Using High-Order Information 613

The desired output is a ranking matrix R of size n × n, such that (i) Rij = 1
if xi is ranked higher than xj ; (ii) Rij = −1 if xi is ranked lower than xj ;
and (iii) Rij = 0 if xi and xj are assigned the same rank. During training, the
ground-truth ranking matrix R∗ is defined as: (i) R∗

ij = 1 and R∗
ji = −1 for all

i ∈ P and j ∈ N ; (ii) R∗
ii′ = 0 and R∗

jj′ = 0 for all i, i′ ∈ P and j, j′ ∈ N .

Joint Feature Vector. For a sample xi, let ψ(xi) denote its feature vector. For
example, in action classification, ψ(xi) can represent poselet [2] or bag-of-visual-
words [3]. Similar to [24], we specify a joint feature vector as

Ψ(X,R) = γ
∑

i∈P

∑

j∈N
Rij(ψ(xi)− ψ(xj)), γ =

1

|P||N | (2)

In other words, the joint feature vector is the scaled sum of the difference between
the features of all pairs of samples having different classes.

Parameters and Prediction. The parameter vector of the classifier is denoted by
w. Given the parametersw, the ranking of an inputX is predicted by maximizing
the score, that is, R = argmaxRw�Ψ(X,R). Yue et al. [24] showed that the
above optimization can be performed efficiently by sorting the samples xk in
descending order of the score w�ψ(xk).

Loss Function. Given a training dataset, our aim is to learn a classifier that
provides a high ap measure. Let AP(R∗,R) denote the ap of the ranking matrix
R with respect to the ground truth ranking R∗. The AP(R∗,R) is defined as:
AP(R,R∗) = 1

|P|
∑

k Prec(k)δ(Rec(k)), where |P| is the number of positive

samples in the ground truth R∗, Prec(k) is the precision upto top k samples
given by R, and δ(Rec(k)) is the change in recall when moving from (k− 1)th to
kth sample. The value of the AP(·, ·) lies between 0 and 1, where 0 corresponds
to a completely incorrect ranking −R∗ and 1 corresponds to the correct ranking
R∗. In order to maximize the ap, we will minimize a loss function defined as
Δ(R∗,R) = 1−AP(R∗,R).

Parameter Estimation. Given the input X and the ground-truth ranking matrix
R∗, we would like to learn the parameters of the classifier such that regular-
ized upper bound on the empirical ap loss is minimized. Specifically, the model
parameters are obtained by solving the following convex optimization problem:

min
w

1

2
||w||2 + Cξ, (3)

w�Ψ(X,R∗)−w�Ψ(X,R) ≥ Δ(R∗,R)− ξ, ∀R

Problem (3) is specified over an exponential number of R. Nonetheless, Yue et al.
[24] showed that it can be optimized efficiently by providing an optimal greedy
algorithm to solve the corresponding loss-augmented inference problem, that is,
R̂ = argmaxR w�Ψ(X,R) +Δ(R∗,R).

614 P.K. Dokania et al.

3 High-Order Binary SVM (hob-svm)

We now describe our two frameworks for ranking while incorporating high-order
information. As mentioned earlier, we will restrict our description to second-
order information. However, extending our frameworks to general high-order
information is trivial. We start with the simpler framework, which we call High-
Order Binary svm (hob-svm). This will allow us to define the terminology nec-
essary to develop a more principled framework (hoap-svm) in the next section.

The input of a hob-svm is a set of n samples X = {xi, i = 1, · · · , n}. Similar
to the ap-svm, a sample can either belong to the positive class or a negative class.
However, the output of hob-svm is not a ranking, but an assignment of a class
for each sample. In other words, the output is a vector Y = {yi, i = 1, · · · , n}
where yi ∈ {0, 1}. The label ‘0’ implies that the sample has been assigned to the
negative class, whereas the label ‘1’ implies that the sample has been assigned
to the positive class. During training, the ground-truth output Y∗ assigns all
relevant samples to the positive class and all non-relevant samples to the negative
class. Once again, givenY∗, we denote the indices of the positive and the negative
samples as P and N respectively.

Joint Feature Vector. The joint feature vector of the input X and the output Y
consists of two parts. The first part Ψ1(X,Y) captures first-order information,
and is henceforth referred to as the unary joint feature vector. The second part
Ψ2(X,Y) captures second-order information, and is henceforth referred to as the
pairwise joint feature vector. In more detail, let ψ(xi) ∈ R

d denote the feature
vector of the sample xi. The unary joint feature vector is defined as follows:

Ψ1(X,Y) =

(∑
i,yi=1 ψ(xi)∑
i,yi=0 ψ(xi)

)
. (4)

The unary joint feature vector is of dimensionality 2d. The first d dimensions
correspond to the sum of the feature vectors of the samples belonging to the
positive class. The last d dimensions correspond to the sum of the feature vectors
of the samples belonging to the negative class. Clearly, Ψ1(X,Y) only captures
the first-order information.

As mentioned earlier, our aim is to use second-order information to improve
ranking. In other words, if we know a priori that two samples xi and xj are more
likely to belong to the same class (henceforth referred to as similar samples), then
we would like to encourage them to either both be labeled as relevant or as non-
relevant. Let E denote the set of all pairs of similar samples. In other words,
if samples xi and xj are similar, then (i, j) ∈ E . We define the pairwise joint
feature vector as follows:

Ψ2(X,Y) = η

⎛

⎝
∑

(i,j)∈E,yi �=yj

Φ(ψ(xi), ψ(xj))

⎞

⎠ (5)

where Φ(ψ(xi), ψ(xj)) is a vector such that each of its elements is inversely pro-
portional to the difference between the corresponding elements of its two input

Learning to Rank Using High-Order Information 615

vectors and η controls the trade-off between the first-order and high-order infor-
mation. In our work, we define Φ(zi, zj) = exp(−(zi − zj)

2). All the operations
are performed in an element-wise manner. In other words, Ψ2(X,Y) is a d di-
mensional vector that is the sum of pairwise feature vectors over all pairs of
similar samples having different classes.

Parameters and Prediction. Similar to the joint feature vector, the parameters
of a hob-svm consist of two parts: the unary parameters w1 ∈ R

2d and the
pairwise parameters w2 ∈ R

d. Given an input X, the output Y is predicted by
maximizing the score, that is,

Y = argmax
Y

w�Ψ(X,Y),w =

(
w1

w2

)
, Ψ(X,Y) =

(
Ψ1(X,Y)
Ψ2(X,Y)

)
. (6)

Note that, in general, the above problem is np-hard. However, when w2 ≤ 0,
it can be optimized efficiently using graph cuts [12]. This follows from the fact
that each element of the pairwise joint feature vector is non-negative (see equa-
tion (5)), and hence the score of an output Y is a supermodular function of Y.
In what follows, we will always estimate the parameters of a hob-svm under the
constraint that w2 ≤ 0. Moreover, our approaches can also be used without this
constraint by employing approximate inference algorithms such as [11,14,18].

Loss Function. Although we would ideally like to optimize the ap loss, as men-
tioned earlier, this results in a difficult loss-augmented inference problem when
the joint feature vector captures high-order information. Hence, inspired by the
success of svm for ranking, we use a surrogate loss function defined as follows:

Δ(Y∗,Y) =
J
∑

i,y∗
i =1 δ(yi = 0) +

∑
j,y∗

j =0 δ(yj = 1)

J |P|+ |N | , (7)

where δ(·) is 1 if its argument is true and 0 otherwise. The terms |P| and |N | are
the total number of positive and negative samples (as specified by the ground-
truth assignment Y∗) respectively. The hyperparameter J is set to |N |/|P|. In
other words, Δ(Y∗,Y) is the weighted fraction of misclassifications.

Parameter Estimation. Given the dataset (X,Y∗), the parameters of hob-svm
are obtained by solving the following convex optimization problem:

min
w

1

2
||w||2 + Cξ, (8)

w�Ψ(X,Y) −w�Ψ(X,Y) ≥ Δ(Y∗,Y)− ξ, ∀Y,w2 ≤ 0.

Even though the number of constraints in the above problem are exponential
in the number of samples n, it can be optimized efficiently by iteratively solv-
ing the loss-augmented inference problem, that is, Ŷ = argmaxY(w�Ψ(X,Y)+
Δ(Y∗,Y)). The restriction w2 ≤ 0 allows us to solve the above problem effi-
ciently using graph cuts [12]. The problem (8) is similar to training graphical
models with approximate inference [5,6,15,21].

616 P.K. Dokania et al.

Using HOB-SVM for Ranking. From a theoretical point of view, the main dis-
advantage of hob-svm is that it optimizes a surrogate loss function instead of
the ap loss. In the next section, we will describe a novel framework that ad-
dresses this disadvantage. From a practical point of view, the main disadvantage
of hob-svm is that it provides a single score for the entire assignment Y. In
other words, instead of assigning an individual score for each sample, it assigns
one score w�Ψ(X,Y) for all the samples taken together. This prevents us from
specifying a ranking of the samples. To address this issue, we propose a simple
yet intuitive solution: (i) compute the difference between the max-marginal of
a sample being assigned to the positive class and the max-marginal of it being
assigned to the negative class; and (ii) sort the samples according to the differ-
ence in max-marginals. Max-marginal captures high-order information and the
difference of max-marginals measures our confidence on a particular sample be-
longing to the positive class. Formally, we define the max-marginal of a sample
xi belonging to the positive class m+

i (w) and negative class m−
i (w) as:

m+
i (w) = w�Ψ(X,Y+

i),Y
+
i = argmax

Y,yi=1
w�Ψ(X,Y). (9)

m−
i (w) = w�Ψ(X,Y−

i),Y
−
i = argmax

Y,yi=0
w�Ψ(X,Y). (10)

The max-marginals for all the samples can be computed efficiently using the dy-
namic graph cuts algorithm [9,10]. Given the max-marginalsm+

i (w) andm−
i (w),

the score of a sample xi is defined as

si(w) = m+
i (w) −m−

i (w). (11)

Note that, if the two labelings Y+
i and Y−

i defined in equations (9)-(10) re-
spectively differ only in the label assigned to the sample xi, this implies that
the sample xi has no influence in determining the labels of the other samples
in the dataset. In this case, the difference in max-marginals does not depend on
the feature vectors of any other samples except the sample xi. However, if the
sample xi does influence the labels of the other samples (that is, Y+

i and Y−
i

differ significantly), then the difference in the max-marginals depends on several
samples in the dataset. The ranking is obtained by sorting the samples in de-
scending order of their scores si(w). As will be seen in section 5, this intuitive
way of scoring a sample provides an improved ranking over the baselines.

4 High-Order Average Precision SVM (hoap-svm)

While hob-svm allows us to incorporate high-order information via the pair-
wise joint feature vector, it suffers from the deficiency of using a surrogate loss
function. Specifically, instead of optimizing the ap loss in order to estimate the
parameters, it optimizes a weighted 0-1 loss. However, the way that hob-svm
obtains a ranking points us to the direction of resolving this deficiency. We begin
by presenting the high-level overview of our approach. We observe that the score
of a ranking according to an ap-svm is the weighted sum of the scores of the

Learning to Rank Using High-Order Information 617

individual samples. The reason why ap-svm fails to capture high-order informa-
tion is that the score of the individual sample depends on no other sample in
the dataset. This is in contrast to the score employed by hob-svm (see equa-
tion (11)). Hence, it would be desirable to extend ap-svm such that the score of
the ranking is the weighted sum of the difference of max-marginals of individual
samples. This is precisely our next learning framework, which we call High-Order
ap-svm (hoap-svm). In what follows, we describe hoap-svm in detail.

The input of hoap-svm is a set of n samples X = {xi, i = 1, · · · , n}. Similar
to ap-svm, a sample can belong to the positive class or the negative class. The
output of hoap-svm is a ranking matrix R, defined in a similar manner to ap-
svm. During training, the ground-truth ranking matrix R∗ assigns each positive
sample to a higher rank than all negative samples. Once again, the indices of
positive and negative samples is represented as P and N respectively.

Score of a Ranking. The parameters of hoap-svm are denoted by w. Given an
input X and a ranking R, the score for the ranking specified by hoap-svm is
defined as follows:

S(X,R;w) = γ
∑

i∈P

∑

j∈N
Rij(si(w) − sj(w)), (12)

where si(w) is as specified in equation (11). In other words, the score of a ranking
is the weighted sum of the difference of max-marginals for each sample, where
the weights are specified by the ranking.

Prediction. Given an input X, the ranking R is predicted by maximizing the
score over all possible rankings, that is,

R = argmax
R

S(X,R;w). (13)

Proposition 1. Problem (13) can be solved efficiently by sorting the samples in
descending order of their scores si(w).

In other words, the prediction for hoap-svm is the same as the prediction for
hob-svm. Recall that the score si(w) can be computed efficiently using dynamic
graph cuts [9,10].

Parameter Estimation. Given the input X and the ground-truth ranking R∗,
the parameters of hoap-svm are learned by optimizing the ap loss. To this end,
we propose to estimate w by solving the following optimization problem:

min
w

1

2
||w||2 + Cξ, (14)

S(X,R∗;w)− S(X,R;w) ≥ Δ(R∗,R)− ξ, ∀R,w2 ≤ 0.

Here, Δ(R∗,R) is the ap loss, that is, one minus the ap of the ranking R with
respect to R∗. The following proposition establishes the suitability of the above
problem for learning an hoap-svm.

618 P.K. Dokania et al.

Proposition 2. Problem (14) minimizes a regularized upper bound on the ap
loss of the predicted ranking.

Optimization. While problem (14) provides a valid upper bound on the ap loss,
it is not a convex program. Hence, it cannot be optimized efficiently to obtain an
optimal set of parameters for hoap-svm. However, in what follows, we show that
problem (14) is a difference-of-convex program. By identifying the convex and the
concave part of problem (14), we show how a locally optimal set of parameters
can be obtained efficiently using the concave-convex procedure (cccp) [25].

We begin by specifying the following shorthand notation that will be useful
in simplifying problem (14). Given a ranking R we define functions f(w;R) and
g(w;R) of the parameters w as

f(w;R) = γ
∑

i∈P
m−

i (w)

⎛

⎝
∑

j∈N
(R∗

ij −Rij)

⎞

⎠+γ
∑

j∈N
m+

j (w)

(
∑

i∈P
(R∗

ij −Rij)

)
,

g(w;R) = γ
∑

i∈P
m+

i (w)

⎛

⎝
∑

j∈N
(R∗

ij −Rij)

⎞

⎠+γ
∑

j∈N
m−

j (w)

(
∑

i∈P
(R∗

ij −Rij)

)
(15)

Proposition 3. For any valid ranking matrix R, the functions f(w;R) and
g(w;R) are convex in w.

Using our shorthand notation problem (14) can be rewritten as follows:

min
w

1

2
||w||2 + Cξ, (16)

ξ ≥ Δ(R∗,R) + f(w;R)− g(w;R), ∀R.

The above problem is obtained by substituting the value of the score of the
ranking, defined in equation (12), into problem (14). Using proposition 3, it
follows that problem (16) is a difference-of-convex program. This allows us to
obtain a locally optimal set of parameters for the hoap-svm formulation using
the cccp approach outlined in Algorithm 1. The cccp algorithm consists of
two steps. In the first step, given the current set of parameters wt, we obtain
a linear approximation l(w;R) of the function g(w;R) such that l(wt;R) =
g(wt;R), l(w;R) ≤ g(w;R), ∀w. In other words, the linear function l(w;R) is
a lower bound on the function g(w;R) such that the lower bound is tight at the
current parameters wt. While at first sight the problem of obtaining the linear
approximation for each ranking matrixRmay appear to be highly expensive, the
following proposition shows how this step can be performed in a computationally
efficient manner.

Proposition 4. Given the current set of parameters wt, let

Ȳ+
i = argmax

Y,yi=1
w�

t Ψ(X,Y), Ȳ−
j = argmax

Y,yj=−1
w�

t Ψ(X,Y). (18)

Learning to Rank Using High-Order Information 619

Algorithm 1. The cccp algorithm for learning hoap-svm parameters.

input Samples X, ranking R∗, tolerance ε, initial parameters w0.
1: t← 0.
2: repeat
3: For all R, find a linear lower bound l(w;R) tight at wt using proposition 4.
4: Update the parameters by solving the following convex optimization problem:

wt+1 = argmin
w

1

2
||w||2 + Cξ, (17)

ξ ≥ Δ(R∗,R) + f(w;R)− l(w;R),∀R.

The loss-augmented inference can be solved efficiently using proposition 5.
5: t← t+ 1.
6: until Objective of problem (16) does not decrease more than ε.

The following linear function is a lower bound on g(w;R) that is tight at wt:

l(w;R)=γ
∑

i∈P
w�Ψ(X, Ȳ+

i)

⎛

⎝
∑

j∈N
(R∗

ij−Rij)

⎞

⎠+γ
∑

j∈N
w�Ψ(X, Ȳ−

j)

(
∑

i∈P
(R∗

ij−Rij)

)

An upshot of the above proposition is that the linear lower bound of g(w;R)
can be computed efficiently for any R by pre-computing the labelings Ȳ+

i and
Ȳ−

j , which are independent of R. The labelings Ȳ+
i and Ȳ−

j can be obtained
efficiently using dynamic graph cuts [9,10].

In the second step of cccp, we obtain a convex optimization problem by
substituting the linear approximation l(w;R) in place of the convex function
g(w;R). We update the parameters by solving the resulting convex optimiza-
tion problem. To this end, we use the cutting-plane algorithm [8] in order to
handle exponentially many constraints. Cutting-plane algorithm requires us to
iteratively find the most-violated ranking R̂. The following proposition makes
the cutting-plane algorithm efficient.

Proposition 5. Given the upperbounded scores m̄+
i (w) = w�Ψ(X, Ȳ+

i),
m̄−

j (w) = w�Ψ(X, Ȳ−
j), and the scores for the current parameters m+

i (w) =

w�Ψ(X,Y+
i), m

−
j (w) = w�Ψ(X,Y−

j), the following problem gives the most
violated ranking.

R̂←argmax
R

{
η

∑
i∈P,j∈N

Rij(s̄i(w)− s̄j(w)) +Δ(R,R∗)−η
∑

i∈P,j∈N
R∗

ij(s̄i(w)− s̄j(w))
}

where, s̄i(w) = (m̄+
i (w)−m−

i (w)) and s̄j(w) = (m+
j (w)− m̄−

j (w)). The greedy

algorithm of [24] can be used to find the R̂ efficiently.

Upon convergence, the cccp algorithm provides a locally optimal set of param-
eters for the hoap-svm framework.

620 P.K. Dokania et al.

Table 1. The AP over five folds for the best setting of the hyperparameters obtained
using the cross-validation. Our frameworks outperforms svm and ap-svm in all the 10
action classes. Note that hoap-svm is initialized with hob-svm.

Actions/ Jump Phone Play Read Ride Run Take Use Walk Ride Average
Methods inst bike photo comp horse

svm 56.0 35.5 42.6 33.8 81.9 78.4 33.9 37.2 61.7 85.9 54.7

ap-svm 57.5 34.4 46.3 35.5 83.0 79.3 33.3 42.7 63.1 86.6 56.2

hob-svm 60.9 36.1 48.1 35.7 84.1 81.5 35.1 45.8 63.0 87.9 57.8

hoap-svm 63.4 34.5 48.8 38.3 84.3 81.0 36.5 48.7 65.3 87.7 58.9

Table 2. The AP of all the four methods. The training is performed over the entire
‘trainval’ dataset of PASCAL VOC 2011 using the best hyperparameters obtained during
5-fold cross-validation. The testing is performed on the ‘test’ dataset and evaluated on
the PASCAL VOC server. Note that hoap-svm is initialized using hob-svm.

Actions/ Jump Phone Play Read Ride Run Take Use Walk Ride Average
Methods inst bike photo comp horse

svm 51.1 29.7 40.5 20.6 81.1 76.7 20.0 27.7 56.7 84.2 48.82

ap-svm 54.0 33.8 42.3 26.5 82.5 76.7 23.7 32.8 57.7 84.2 51.42

hob-svm 56.3 33.8 42.8 24.3 82.5 80.5 27.7 32.8 53.6 84.5 51.88

hoap-svm 59.5 33.8 47.5 27.2 84.0 82.6 26.1 36.4 55.1 85.3 53.75

5 Experiments

We now demonstrate the efficacy of our learning frameworks on the challenging
problem of action classification [3,16]. The input for action classification is an
action class such as ‘jumping’ or ‘running’ and a set of samples X = {xi =
(Ii,bi), i = 1, · · · , n}. Here, Ii is the image corresponding to the i-th sample,
and bi is a tight bounding box around a person present in the image. The desired
output is a ranking of the samples according to their relevance to the action.
Recall that our main hypothesis is that high-order information can help improve
the ranking accuracy. To test our hypothesis, we require a set of similar samples
such that samples xi and xj are more likely to belong to the same class (relevant
or non-relevant) if (i, j) ∈ E . In the action classification experiments, we define
E = {(i, j), Ii = Ij}, that is, the set of all pairs of bounding boxes that are present
in the same image. Note that one could use any other similarity criterion in the
proposed frameworks. Below we describe our experimental setup in detail.

Dataset. We use pascal voc 2011 [4] action classification dataset, which con-
sists of 4846 images depicting 10 action classes. The dataset is divided into two
subsets: 2424 ‘trainval’ images for which we are provided the bounding boxes of
the person in the image together with their action classes; and 2422 ‘test’ images
for which we are only provided with the person bounding boxes.

Features. Given a sample xi = (Ii,bi), we use the concatenation of standard
poselet-based feature vector [2] of the bounding box bi and gist feature vector

Learning to Rank Using High-Order Information 621

Fig. 1. Top 8 samples ranked by all the four methods for ‘reading’ action class. First
row – svm, Second row – ap-svm, Third row – hob-svm, and Fourth row – hoap-svm.
Note that, the first false positive is ranked 2nd in case of svm (first row) and 3rd in
case of ap-svm (second row), this shows the importance of optimizing the ap loss. On
the other hand, in case of hob-svm (third row), the first false positive is ranked 4th
and the ‘similar samples’ (2nd and 3rd) are assigned similar scores, this illustrates
the importance of using high-order information. Furthermore, hoap-svm (fourth row)
has the best ap among all the four methods, this shows the importance of using high-
order information and optimizing the correct loss. Note that, in case of hoap-svm, the
4th and 5th ranked samples are false positives (underlying action is close to reading)
and they both belong to the same image (our similarity criterion). This indicates that
high-order information sometimes may lead to poor test ap in case of confusing classes
(such as ‘playinginstrument’ vs ‘usingcomputer’) by assigning all the connected samples
to the wrong label. Same effect can be seen in hob-svm for 7th and 8th ranked samples.

[17] of the image Ii to specify the sample features ψ(xi). The poselet feature
consists of 2400 activation scores of action-specific poselets and 4 object activa-
tion scores. The gist feature is a 512 dimensional feature vector that captures
the overall scene depicted in the image. This results in a sample feature of size
2916. The sample features used to specify the unary and the pairwise joint fea-
ture vectors are shown in equations (4) and (5). As each pair of similar samples
comes from the same image, we defined the joint pairwise feature vector using
only the poselet features. The size of the joint feature vector is therefore 8748.

Methods. We compare our proposed approaches, namely hob-svm and hoap-
svm, with the standard binary svm (obtained by setting w2 = 0 in hob-svm)
and ap-svm (obtained by settingw2 = 0 in hoap-svm) that ignore high-order in-
formation. The baselines, svm and ap-svm requires one hyperparameter C, and
hob-svm and hoap-svm requires two hyperparameters C and η. The common
hyperparameter C is the trade-off between the regularization and the empirical
loss, and η is the trade-off between the first order information and the high-order
information. Note that the ‘test’ dataset was not used for cross-validation. We

622 P.K. Dokania et al.

obtained the best setting of the hyperparameters for each method independently
via a 5-fold cross-validation on the entire ‘trainval’ dataset. We consider the fol-
lowing putative values: C ∈ {10−1, 100, . . . , 104} and η ∈ {10−4, 100, . . . , 104}.
The J parameter in (7) is fixed to |N |/|P|.
Results. Table 1 shows the average ap over all the five folds for the best hyper-
parameter setting. By incorporating high-order information hob-svm provides
an improvement in the ranking compared to the commonly used svm classifier
for all 10 action classes. Furthermore, even though hob-svm employs a surro-
gate loss function, it provides more accurate rankings compared to ap-svm for
9 action classes. By optimizing the ap loss function, while incorpoating high-
order information, hoap-svm outperforms svm in 9 action classes, ap-svm in
all 10 action classes, and hob-svm in 7 action classes. Table 2 shows the ap
values obtained for the ‘test’ set when the methods are trained using the best
hyperparameter setting over the entire ‘trainval’ set. Table 2 clearly shows that
hob-svm outperforms svm classifier in 9 action classes and ap-svm in 5 along
with 3 ties. On the other hand, hoap-svm outperforms svm classifier in all the
10 classes, ap-svm in 8 along with 1 tie, and hob-svm in 8 along with 1 tie.

The paired t-test shows that: (a) hob-svm is statistically better than svm for
6 action classes, (b) hob-svm is not statistically better than ap-svm, (c) hoap-
svm is statistically better than svm for 6 action classes, and (d) hoap-svm is
statistically better than ap-svm for 4 action classes.

The effects of incorporating high-order information is illustrated in Fig. 1.
While high-order information can introduce errors in the ranking, in general it
provides boost in the overall performance.

6 Discussion

We proposed two new learning frameworks that incorporate high-order informa-
tion to improve the accuracy of ranking. The first framework, hob-svm, uses a
surrogate loss function, which allows us to compute its parameters by solving
a convex optimization problem. The second framework, hoap-svm, minimizes
the ap loss, which results in a difference-of-convex optimization problem. Both
hob-svm and hoap-svm outperform baseline methods that do not make use of
high-order information. By minimizing the correct loss function, hoap-svm out-
performs hob-svm. An interesting direction for future work would be to allow
for weakly supervised learning by extending the recently proposed latent ap-svm
[1] formulation to use high-order information. While such a learning formulation
can be easily obtained with the introduction of latent variables, it is not clear
whether the resulting optimization problem can be solved efficiently.

Acknowledgements. This work is partially funded by the European Research
Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013)/ERC Grant agreement number 259112, and the Ministere de
l’education nationale, de l’enseignement superieure et de la recherche.

Learning to Rank Using High-Order Information 623

References

1. Behl, A., Jawahar, C.V., Kumar, M.P.: Optimizing average precision using weakly
supervised data. In: CVPR (2014)

2. Bourdev, L., Malik, J.: Poselets: Body part detectors trained using 3D human pose
annotations. IJCV (2009)

3. Delaitre, V., Laptev, I., Sivic, J.: Recognizing human actions in still images: a
study of bag-of-features and part-based representations. In: BMVC (2010)

4. Everingham, M., Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual
object classes (voc) challenge. IJCV (2010)

5. Finley, T., Joachims, T.: Training structural SVMs when exact inference is in-
tractable. In: ICML (2008)

6. Franc, V., Savchynskyy, B.: Discriminative learning of max-sum classifiers. JMLR
(2008)

7. Horst, R., Thoai, N.: DC programming overview. Journal of Optimization Theory
and Applications (1999)

8. Joachims, T., Finley, T., Yu, C.: Cutting-plane training of structural SVMs. Ma-
chine Learning (2009)

9. Kohli, P., Torr, P.: Measuring uncertainty in graph cut solutions efficiently comput-
ing min-marginal energies using dynamic graph cuts. In: Leonardis, A., Bischof,
H., Pinz, A. (eds.) ECCV 2006. Part II. LNCS, vol. 3952, pp. 30–43. Springer,
Heidelberg (2006)

10. Kohli, P., Torr, P.: Dynamic graph cuts for efficient inference in Markov random
fields. PAMI (2007)

11. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. PAMI (2006)

12. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts. PAMI (2004)

13. Komodakis, N.: Efficient training for pairwise or higher order crfs via dual decom-
position. In: CVPR (2011)

14. Komodakis, N., Paragios, N., Tziritas, G.: MRF energy minimization and beyond
via dual decomposition. PAMI (2011)

15. Kulesza, A., Pereira, F.: Structured learning with approximate inference. In: NIPS
(2007)

16. Maji, S., Bourdev, L., Malik, J.: Action recognition from a distributed representa-
tion of pose and appearance. In: CVPR (2011)

17. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation
of the spatial envelope. IJCV (2001)

18. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

19. Rosenfeld, N., Meshi, O., Globerson, A., Tarlow, D.: Learning structured models
with the AUC loss and its generalizations. In: AISTAT (2014)

20. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: NIPS (2003)
21. Taskar, B., Lacoste-Julien, S., Jordan, M.I.: Structured prediction, dual extragra-

dient and bregman projections. JMLR (2006)
22. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine

learning for interdependent and structured output spaces. In: ICML (2004)
23. Vapnik, V.: Statistical learning theory. Wiley (1998)
24. Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for

optimizing average precision. In: SIGIR (2007)
25. Yuille, A., Rangarajan, A.: The concave-convex procedure. Neural Computation

(2003)

	Learning to Rank Using High-Order Information
	1 Introduction
	2 Preliminaries
	2.1 Structured Output SVM
	2.2 AP-SVM

	3 High-Order Binary SVM (hob-svm)
	4 High-Order Average Precision SVM (hoap-svm)
	5 Experiments
	6 Discussion
	References

