
Support Vector Guided Dictionary Learning

Sijia Cai1,3, Wangmeng Zuo2, Lei Zhang3,�, Xiangchu Feng4, and Ping Wang1

1 School of Science, Tianjin University, China
2 School of Computer Science and Technology, Harbin Institute of Technology, China

3 Dept. of Computing, The Hong Kong Polytechnic University, China
4 Dept. of Applied Mathematics, Xidian University, China

cssjcai@gmail.com, cslzhang@comp.polyu.edu.hk

Abstract. Discriminative dictionary learning aims to learn a dictionary
from training samples to enhance the discriminative capability of their
coding vectors. Several discrimination terms have been proposed by as-
sessing the prediction loss (e.g., logistic regression) or class separation
criterion (e.g., Fisher discrimination criterion) on the coding vectors. In
this paper, we provide a new insight on discriminative dictionary learn-
ing. Specifically, we formulate the discrimination term as the weighted
summation of the squared distances between all pairs of coding vectors.
The discrimination term in the state-of-the-art Fisher discrimination dic-
tionary learning (FDDL) method can be explained as a special case of our
model, where the weights are simply determined by the numbers of sam-
ples of each class. We then propose a parameterization method to adap-
tively determine the weight of each coding vector pair, which leads to a
support vector guided dictionary learning (SVGDL) model. Compared
with FDDL, SVGDL can adaptively assign different weights to different
pairs of coding vectors. More importantly, SVGDL automatically selects
only a few critical pairs to assign non-zero weights, resulting in better
generalization ability for pattern recognition tasks. The experimental re-
sults on a series of benchmark databases show that SVGDL outperforms
many state-of-the-art discriminative dictionary learning methods.

Keywords: Dictionary learning, support vector machine, sparse repre-
sentation, Fisher discrimination.

1 Introduction

Sparsity has become an appealing concept for data representation and it has
been successfully applied in a variety of fields, e.g., compressed sensing [1], im-
age restoration [2, 3], subspace clustering [4] and image classification [5, 6], etc.
In sparse representation, a signal is approximated by the linear combination of
a few bases sparsely selected from an over-complete set of atoms, i.e., a dictio-
nary. Such a sparse coding strategy can be explained from the perspective of
neuroscience [7] and it brings some desirable properties for signal reconstruction
[8]. In sparse representation, the dictionary can be simply predefined as some
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off-the-shelf dictionaries such as wavelets [9], but it has been demonstrated that
learning a dictionary from exemplar images can lead to much better signal re-
construction performance [10]. Some typical reconstructive dictionary learning
methods include K-means, method of optimal direction (MOD) [11], K-SVD [10]
and analysis K-SVD [12].

Sparse representation can also be used for pattern recognition. The sparse
representation based classification (SRC) has achieved competitive performance
on face recognition [13]. Moreover, sparse coding as a soft vector quantization
technique [14] adopted in Bag-of-Words based image representation [15] has also
been recognized as a thought-provoking idea in image classification [5, 6]. Simi-
lar to signal reconstruction, in pattern classification a discriminative dictionary
learned from given examples can also improve much the performance.

A number of discriminative dictionary learning (DDL) methods [16–25] have
been proposed. One type of DDL methods dedicate to improving the discrimi-
native capability of signal reconstruction residual. Rather than learning a dic-
tionary for all classes, these methods exploit structural assumption on dictio-
nary design and impose the learned dictionary with category-specific property,
e.g., learning a sub-dictionary for each class [18, 22, 23]. Ramirez et al. [22] in-
troduced the structured incoherence term to promote the independence of the
sub-dictionaries associated with different classes. Gao et al. [23] learned both
the category-specific sub-dictionaries and a shared dictionary for fine-grained
image categorization. However, these dictionary learning methods might not be
scalable to the problems with a large number of classes.

Another type of DDL methods aim to seek the optimal dictionary to improve
the discriminative capability of coding vectors. These methods learn concur-
rently a dictionary and a classifier by incorporating some prediction loss on the
coding vectors. In this spirit, Zhang et al. [16] extended the original K-SVD
algorithm by simultaneously learning a linear classifier. Jiang et al. [19, 20] in-
troduced a label consistent regularization term to enforce the discrimination
of coding vectors. The so-called LC-KSVD algorithm exhibits good classifica-
tion performance. Mairal et al. [17] proposed a supervised dictionary learning
scheme by exploiting logistic loss function and further presented a general task-
driven dictionary learning (TDDL) framework [21]. Wang et al. [25] formulated
the dictionary learning problem from a max-margin perspective and learned the
dictionary by using a multi-class hinge loss function. By considering the discrim-
ination from both reconstruction residual and coding vectors, Yang et al. [18]
proposed a Fisher discrimination dictionary learning (FDDL) method, where the
category-specific strategy is adopted for learning a structured dictionary and the
Fisher discrimination criterion is imposed on the coding vectors to enhance class
discrimination.

In most of the above DDL methods, the discrimination of the learned dictio-
nary is enforced by either imposing structural constraints on dictionary or im-
posing a discrimination term on the coding vectors. Several discrimination terms
have been proposed by assessing the prediction loss (e.g., logistic regression) or
class separation criterion (e.g., Fisher discrimination criterion) on coding vectors
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[16–20, 22]. In this paper, we provide a new scheme for DDL, where the discrim-
ination term is formulated as the weighted summation of the squared distances
between all pairs of coding vectors. This weighted squared distance principle has
been widely adopted in unsupervised manifold regularization, where the coding
vectors can preserve the geometric structure of original data samples to benefit
clustering and classification. Recent advances in sparse coding, such as GraphSC
[26], LLC [27] and LSC/HLSC [28, 29], utilized the similarity between pairs of
samples to assign the weight and achieved significant improvements in Bag-
of-Words based image classification. Unlike these methods, we incorporate the
sample label information into the design of weight. With the proposed scheme,
the design of discrimination term can be regarded as the design of a paradigm of
weight assignment, which provides a new insight in developing new DDL models.
Actually, the discrimination term on coding vectors in the FDDL method can
be explained as a special case of our model, where the weights are deterministic
and are simply determined by the numbers of samples of each class.

To make weight assignment more adaptive and flexible, we then propose a pa-
rameterization method, which consequently leads to the proposed support vector
guided dictionary learning (SVGDL) model. One promising property of SVGDL
is that, by incorporating the weight parameterization with the symmetry, consis-
tency and balance constraints, the optimization problem on weight assignment
is equivalent to the dual form of linear support vector machines (SVM) [30].
This property allows us to use the multi-class linear SVM [5] for efficient DDL.
Another important insight from SVGDL is that, most weights will be zero and
only the weights of pairs of support vectors are nonzero. Such a fact indicates
that the weights are sparse and only the coding vectors near the decision bound-
aries play a crucial role in learning a discriminative dictionary. Compared with
FDDL, SVGDL adaptively assigns weights to pairs of coding vectors in the sup-
port vector set, and is superior in terms of classification performance.

Another interesting point of SVGDL is its robustness to the regularizer of
coding vectors. Almost all DDL methods impose the sparse �0-norm or �1-norm
regularizers on coding vectors. However, some recent works [31, 32] argue that
sparsity may not be always helpful for classification. Mehta and Gray [33] ana-
lyzed the working mechanism and generalization error bound of predictive sparse
coding, but several open problems remain on the necessity of sparsity in DDL.
Furthermore, the complexity of �1-norm sparse coding generally is much higher
than that of �2-norm coding, and the inefficiency would be exacerbated for DDL
with �1-norm regularizer when the number of atoms or training samples is high.
For SVGDL, fortunately, our experimental results show that the classification
performance is insensitive to the choice of �2-norm or �1-norm regularizer. This
can be owed to the fact only a few support coding vectors (with non-zero weights)
are automatically selected to guide the learning of dictionary, i.e., the sparsity
lies in the weights but not the coding vectors. Consequently, the time complex-
ity of SVGDL can be greatly reduced, especially in the testing stage where the
coding step can be replaced by matrix-vector multiplication.
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2 Problem Formulation

Assume that x ∈ R
m is a m dimensional signal with class label y ∈ {1, 2, . . . , C}.

The training set with n samples is denoted as X = [X1, X2, . . . , XC ] =
[x1, x2, . . . , xn] ∈ R

m×n, where Xc is the subset of nc training samples from
class c. Denote the learned dictionary by D = [d1, d2, . . . , dK ] ∈ R

m×K (K > m
and K � n), where dis are the atoms. Z = [z1, z2, . . . , zn] are the coding vectors
of X over D. A general DDL model can be described as:

< D,Z >= argmin
D,Z

R(X,D,Z) + λ1‖Z‖pp + λ2L(Z), (1)

where λ1 and λ2 are the trade-off parameters, R(X,D,Z) is the reconstruction
term, p denotes the parameter of the �p-norm regularizer (e.g., �1-norm or �2-
norm), and L(Z) denotes the discrimination term for Z.

Note that apart from the discrimination term, discrimination can also be en-
forced by imposing structural constraints on the learned dictionary. For example,
FDDL [18] learns the structured dictionary D = [D1, D2, . . . , DC ], where Dc is
the sub-dictionary corresponding to class c. Then R(X,D,Z) can be divided
into the sum of the reconstruction errors under the sub-dictionaries. Although
this class-customized setting for dictionary learning is effective when there are
sufficient training samples for each class, it is not scalable to the problem with a
great number of classes. Thus, in our formulation we only consider the discrim-
ination term and learn a single dictionary shared between all classes.

Intuitively, the discrimination can be assessed by the similarity of pairs of
coding vectors from the same class and the dissimilarity of pairs of coding vectors
from different classes. Thus, it is reasonable to use the weighted sum of the
squared distances of pairs of coding vectors as an indicator of discrimination
capability, resulting in the discrimination term:

L(Z,wij) =
∑

i,j

‖zi − zj‖22wij . (2)

Next we will show that the Fisher discrimination criterion adopted in FDDL can
be reformulated as a special case of the discrimination term in Eq. (2).

In FDDL, the discrimination term is defined as L(Z) = tr(SW (Z)) −
tr(SB(Z)), where tr(SW (Z)) and tr(SB(Z)) denote the within-class and
between-class scatters, respectively. Based on the definitions of SW and SB,
L(Z) in FDDL can be reformulated as the weighted sum of the squared dis-
tances of pairs of coding vectors. We have the following Lemma 1.

Lemma 1. Denote by z̄c and z̄ the mean vectors of Zc and Z, respectively, where
Zc is the set of coding vectors of samples from class c. Then L(Z) in FDDL is
equivalent to the weighted sum of the squared distances of pairs of coding vectors:

L(Z) =

C∑

c=1

(
∑

yi=c,yj=c

(
1

nc
− 1

2n
)‖zi − zj‖22 +

∑

yi=c,yj �=c

(− 1

2n
)‖zi − zj‖22). (3)

Please refer to Appendix A for the proof of Lemma 1.
From Eq. (3), we can see that if two samples are from the same class, the

weight 1
nc

− 1
2n is positive, and the Fisher discrimination term would encourage
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to learn a dictionary that minimizes the difference between coding vectors from
the same class. Meanwhile, if two samples are from different classes, the weight
− 1

2n is negative, and the Fisher discrimination term would encourage to learn a
dictionary that maximizes the difference between coding vectors from different
classes.

Using the discrimination term in Eq. (2), we define a general model for DDL:

< D,Z >= argmin
D,Z

‖X −DZ‖2F + λ1‖Z‖pp + λ2

∑

i,j

‖zi − zj‖22wij , (4)

where wij ≥ 0 when xi and xj are from the same class, and wij < 0 when xi

and xj are from different classes. One choice of the discrimination term is the
Fisher discrimination criterion. However, as we show above, the weight assign-
ment adopted in the Fisher discrimination term is deterministic. The weight of
pairwise coding vectors from different classes is fully determined by the number
of samples n, and the weight of pairwise coding vectors from the same class is
fully determined by n and the number of samples of this class nc. Note that
some pairs of coding vectors may play more important roles than other pairs
in learning a discriminative dictionary. The deterministic weight assignment in
Fisher discrimination term ignores this fact and thus may result in less effec-
tive classification. In the next section we propose a parameterization method for
adaptive weight assignment.

3 Support Vector Guided Dictionary Learning

3.1 A Parameterized Perspective on Discrimination

Rather than directly assigning weight wij for each pair, we assume that all the
weights wij can be parameterized as a function with variable β, and define the
parameterized formulation of the discrimination term L(Z) as follows:

L(Z,wij(β)) =
∑

i,j

‖zi − zj‖22wij(β). (5)

In order to choose a proper manner for the parameterization of wij , we claim
that the following three properties should be satisfied:

a) Symmetry: wij(β) = wji(β);
b) Consistency: wij(β) ≥ 0 if yi = yj , and wij(β) ≤ 0 if yi �= yj;
c) Balance:

∑n
j=1 wij(β) = 0, ∀i.

The above three properties give a specific explanation of the model in Eq. 4. The
symmetry can be achieved naturally; the consistency means that the weight wij

should be non-negative when zi and zj are from the same class while the weight
wij should be non-positive when zi and zj are from different classes; since the
number of pairs with different class labels is much larger than that with the same
class label, the balance constraint is introduced to balance the contributions of
positive and negative weights.

We then give an instance of the constructed parameterization for wij(β). For
convenience, we consider the two-class classification problem with label yi ∈
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{−1, 1}. Then we can define wij(β) = yiyjβiβj and
∑n

j=1 yjβj = 0, where the
variable β = [β1, β2, . . . , βn] is a nonnegative vector. It is obvious to see that
wij(β) satisfies all the three properties above. Based on this setting of wij(β), we
can then transform L(Z,wij(β)) into the new form as described in the following
Lemma 2.

Lemma 2. Let wij(β) = yiyjβiβj. If
∑n

j=1 yjβj = 0, then the discrimination
term L(Z) can be written as:

L(Z,wij(β)) = −2
∑

i,j

yiyjβiβjz
T
i zj = βTKβ, (6)

where K is the negative semidefinite matrix.

Please refer to Appendix B for the proof of Lemma 2.
Since K is a negative semidefinite matrix, to obtain an extremum of β, we

could maximize the objective function of L(Z,wij(β)):

< β >= argmax
β

βTKβ + r(β)

s.t. βi ≥ 0, ∀i,∑n
j=1 yjβj = 0,

(7)

where r(β) is some regularization term to avoid the trivial solution with β = 0.
Overall, we have the following parameterized formulation of DDL:

<D,Z>=argmin
D,Z

(‖X−DZ‖2F+λ1‖Z‖pp+λ2 max
β∈dom(β)

(
∑

i,j

‖zi−zj‖22wij(β)+r(β))), (8)

where the domain dom(β) of variable β is dom(β) : β 	 0,
∑n

j=1 yjβj = 0 ac-
cording to the previous definition. We can see that the general weight assignment
in coding space falls into the appropriate selection of dom(β), wij(β) and r(β).
In particular, the model in Eq. (4) is a special case of Eq. (8) when β is given
by a fixed matrix [wij ].

3.2 Dictionary Learning Model

By choosing r(β) = 4
∑n

i=1 βi and adopting the wij(β) and dom(β) described
above, the model in Eq. (8) can be rewritten as:

< D,Z >= arg min
D,Z

(‖X −DZ‖2F + λ1‖Z‖pp + λ2 max
β

(4
∑n

i=1 βi

− 2
∑

i,j yiyjβiβjz
T
i zj))

s.t. βi ≥ 0, ∀i and ∑n
j=1 yjβj = 0.

(9)

Note that the subproblem for β is exactly the Lagrange dual of hard-margin
binary SVM, which can be solved using some classical algorithms like sequential
minimal optimization (SMO) [34]. To further reduce the adverse effect of outliers,
we impose β with the additional constraint βi ≤ 1

2θ for all i, where θ is a fixed
constant. Thus the subproblem for β reduces to the dual formulation of soft-
margin binary SVM. Then we replace the subproblem of β with its primal SVM
form, leading to the support vector guided dictionary learning (SVGDL) model:

< D,Z, u, b >= arg min
D,Z,u,b

‖X −DZ‖2F + λ1‖Z‖pp + 2λ2L(Z, y, u, b), (10)
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where u is the normal to the hyperplane of SVM, b is the corresponding bias,
y = [y1, y2, . . . , yn] is the label vector, and L(Z, y, u, b) is defined as:

L(Z, y, u, b) = ‖u‖22 + θ
∑n

i=1
�(zi, yi, u, b), (11)

where �(zi, yi, u, b) is the hinge loss function.
The solution < u, b > can be represented as the linear combination of a few

coding vectors (support vectors), i.e., we have βi �= 0 only if zi is the support
vector. The sparsity of β further leads to the sparsity of weight matrix [wij ] based
on our parameterization method. Thus, the model in Eq. (4) can be written as:

< D,Z >= argmin
D,Z

‖X −DZ‖2F + λ1‖Z‖pp + λ2

∑

i,j∈SV

‖zi − zj‖22wij(β), (12)

where SV is the set of support vectors. From the model in Eq. (10), there are
two distinct characteristics of SVGDL. First, unlike FDDL which adopts a de-
terministic method for weight assignment, SVGDL adopts an adaptive weight
assignment. Second, rather than assigning non-zero weights for all pairwise cod-
ing vectors, SVGDL only assigns non-zero weights for pairwise support coding
vectors, which indicates that only the coding vectors near the classification hy-
perplane play a dominant role in learning the discriminative dictionary. These
two characteristics are consistent with our intuitive understandings: the coding
vectors near the boundary are more crucial for DDL.

Another noticeable advantage of the proposed model is that the classification
performance of SVGDL is insensitive to the choice of �1-norm or �2-norm regular-
izers on the coding vectors. Note that most existing dictionary learning methods
take the sparsity as a primary requirement for learning a discriminative dictio-
nary. However, our experimental results indicate that sparsity has little impact
on the discriminative capability of the learned dictionary by SVGDL, while it
will greatly increase the computational burden in both the training and testing
stages. Figure 1 shows the classification accuracy of SVGDL with the �1-norm
regularizer and the �2-norm regularizer on the Caltech-101 database using dif-
ferent numbers of training samples per class. One can see that, SVGDL with the
�2-norm regularizer always achieves higher accuracy than SVGDL with the �1-
norm regularizer. We argue that, other than the sparsity of coding vectors, the
sparsity of the weight matrix [wij ] seems to play a more crucial role in learning
a discriminative dictionary. To verify this, we evaluate the model in Eq. (10) by
utilizing the quadratic hinge loss (will be discussed later) and squared loss, which
induce the sparse and non-sparse weight matrix [wij ] respectively, and compare
the recognition results on several face databases (the detailed settings are pre-
sented in Section 4.3). As shown in Table 1, the results using quadratic hinge
loss are much better than that using squared loss, which further emphasizes the
importance of sparse weight matrix. Thus, we choose �2-norm regularizer on Z
for SVGDL in the later discussion due to its computational efficiency.
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Fig. 1. Accuracy curves on Caltech-101 database using �1-norm and �2-norm for reg-
ularization in SVGDL

Table 1. The recognition rates by using quadratic hinge loss and squared loss on
different face databases

Extended Yale B AR Multi-PIE Test 1

Quadratic hinge loss 0.961 0.946 0.955

Squared loss 0.933 0.921 0.937

For multi-class classification, we simply adopt the one-vs-all strategy by
leaning C hyperplanes U = [u1, u2, . . . , uC ] and the corresponding biases b =
[b1, b2, . . . , bC ]. The SVGDL is formulated as:

< D,Z,U, b >= arg min
D,Z,U,b

‖X−DZ‖2F+λ1‖Z‖pp+2λ2

∑C

c=1
L(Z, yc, uc, bc), (13)

where yc = [yc1, y
c
2, . . . , y

c
n], y

c
i = 1 if yi = c, and otherwise yci = −1.

3.3 Optimization and Complexity

The SVGDL model in Eq. (13) is a not a jointly convex optimization problem for
< D,Z,U, b >, but is convex with respect to each variable. Thus, we adopt an
alternative minimization scheme for updating D, Z and < U, b >, respectively.
The detailed procedure can be partitioned into three steps alternatingly.

When D and Z are fixed, the minimization of < U, b > can be formulated as
a multi-class linear SVM problem, which can be further divided into C linear
one-against-all SVM subproblems. We adopt the multi-class linear SVM solver
[5] proposed by Yang to learn all ucs and bcs one by one based on the gradient-
based optimization method. The quadratic hinge loss function �(zi, y

c
i , uc, bc) =

[max(0, yci [uc; bc]
T [zi; 1]−1)]2 in [5] is used in our implementation to approximate

the hinge loss due to its computational simplicity and the better smooth property
than hinge loss function.

When D, U and b are fixed, the coefficient matrix Z can be optimized by
columns. The optimization problem related to each zi is formulated as follows:

< zi >= argmin
zi

‖xi −Dzi‖22 + λ1‖zi‖22 + 2λ2 · θ ·
∑C

c=1
�(zi, y

c
i , uc, bc). (14)
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Algorithm 1. Algorithm of Support Vector Guided Dictionary Learning (SVGDL)

Input: Dinit, Zinit, Uinit, binit, X ∈ R
m×n, λ1, λ2, θ.

Output: D,U, b.
1:do until the terminal condition
2: for c = 1 to C do
3: uc, bc ← by one-vs-all linear SVM
4: end for
5: for i = 1 to n do

6: zi ← argmin
z
‖xi −Dz‖22 + λ1‖z‖22 + 2λ2 · θ ·∑C

c=1 �(zi, yi, uc, bc)

7: end for
8: D ← argmin

D
‖X −DZ‖2F s.t. ‖di‖2 ≤ 1, ∀i.

9:end do
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Fig. 2. The convergence of SVGDL on the AR database

In each iteration, for each c, if yciu
T
c zi+bc−1>0 in the previous iteration, we use

‖yciuT
c zi+bc−1‖2 to replace the squared hinge loss, and use 0 else. We repeat this

until convergence. Thus the optimization of each zi has a closed-form solution.
When Z, U and b are fixed, the optimization problem with respect to D can

be written as:

< D >= argmin
D

‖X −DZ‖2F s.t. ‖dk‖2 ≤ 1, ∀k ∈ {1, 2, . . . ,K}, (15)

where the additional constraints are introduced to avoid the scaling issue of the
atoms. The subproblem in Eq.(15) can be solved effectively by the Lagrange
dual method [35].

We use PCA to initialize the dictionary of each class, and concatenate these
sub-dictionaries as the initialized D. The initialized Z, U and b are set as zero
matrices and zero vector, respectively. The stopping criterion is the relative dif-
ference between D in 2 successive iterations with a maximum iteration number.
The overall optimization procedure of SVGDL is summarized in Algorithm 1.

In the training stage, the computational cost of the SVGDL algorithm comes
from tree parts: O(Cmn) for linear SVM, O(K3mn) for updating the coding vec-
tors and O(K3mn) for updating the learned dictionary. Since the optimization
model is non-convex, the algorithm can not converges to the global minimum.
Empirically, satisfactory solutions to the desired dictionaryD and the SVM clas-
sifier < U, b > can be obtained with the decreasing of the objective function.
Figure 2 shows an example to illustrate the convergence of SVGDL.
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3.4 Classification Approach

Once the dictionary D and the classifier < U, b > are learned, we perform clas-
sification as follows. For a test sample x, we first perform the coding step by
projecting x with a fixed matrix P : z = Px, where P = (DTD + λ1I)

−1DT .
Then we simply apply the C linear classifiers < uc, bc >, where c ∈ 1, 2, . . . , C,
on the coding vector z to predict the label of x by:

y = arg max
c∈1,2,...,C

uT
c z + bc. (16)

In the test stage, the computational complexity of SVGDL is O(Km).

4 Experiments

In this section, SVGDL is evaluated on three classification tasks, i.e., face recog-
nition, object recognition, and sport action recognition. For face recognition, we
use three face datasets: Extended Yale B [36], AR [37], and Multi-PIE [38]. For
object recognition, we adopt the Caltech-101 dataset [39]. For action recogni-
tion, we use the UCF sport action dataset. SVGDL is compared with both the
standard sparse representation based classification (SRC) method [13] and the
state-of-the-art dictionary learning methods, including DKSVD [16], LC-KSVD
[19, 20], dictionary learning with structure incoherence (DLSI) [22] and FDDL
[18]. For each dataset, we report the recognition accuracy, training and test
time of the competing methods. (In the following tables, ”N.A.” means that the
training stage is not needed and ”-” means that the run time is not available.)

4.1 Parameter Settings

We choose the parameter θ = 0.2 and it works well in all of our experiments.
Besides, there are two main parameters (λ1, λ2) to be tuned in the proposed
SVGDL method. The parameters λ1 and λ2 are evaluated by 5-fold cross val-
idation. For the face recognition tasks, we set λ1 = 0.002 and λ2 = 0.001 for
Extended Yale B [36], λ1 = 0.002 and λ2 = 0.001 for AR [37], and λ1 = 0.002
and λ2 = 0.001 for Multi-PIE [38]. We also evaluate our method on Caltech-101
dataset [39] for object recognition task. We use the 3,000 dimensional features
described in [20] for fair comparison. λ1 = 0.05 and λ2 = 0.002 are selected
in this setup. We finally apply SVGDL on the UCF sport action dataset [40],
where each sample has a dimension of 29,930 and the parameters are chosen as
λ1 = 0.02 and λ2 = 0.002.

4.2 Visual Illustration of SVGDL

Using two individuals from the Extended Yale B database, we provide a visual
illustration of the influence of SVGDL training on the coding vectors and classi-
fication hyperplane. For each individual, we select 32 images for training and use
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Recognition Rate: 95.31%; Iteration: 5 Recognition Rate: 96.88%; Iteration: 25

Fig. 3. The change of coding vectors and the classifying hyperplane in iterations

the remaining 32 images for test. Figure 3 plots the distributions of the coding
vectors obtained using SVGDL after 5 and 25 iterations. The hyperplanes and
margins are also provided to illustrate the discriminative capability of coding
vectors. The solid circles and triangles are the support vectors that need to be
assigned the weight to update dictionary. The green solid line and dotted line
depict the separating hyperplane and margin. From Figure 3, one can see that
the number of misclassified samples after 25 iterations is 2, which is less than
that after 5 iterations. The margin after 25 iterations is also larger than that
after 5 iterations. The recognition accuracy on the test set after 25 iterations
is 96.88%, which is also higher than that after 5 iterations. All these cues in-
dicate that SVGDL training is effective in learning a discriminative dictionary,
resulting in coding vectors with better discriminative capability.

4.3 Face Recognition

We evaluate the performance of the proposed algorithm on several face recog-
nition benchmark databases like the Extended Yale B, AR, and Multi-PIE. We
compare the proposed SVGDL with two typical classification methods, includ-
ing linear support vector machines (SVM) and SRC [13], five dictionary learning
based methods, including DKSVD [16], LC-KSVD [19, 20], DLSI [22] and FDDL
[18]. In all FR experiments, each face image has a reduced dimension of 300.

a) Extended Yale B: The Extended Yale B database consists of 2,414 frontal
face images of 38 individuals. Each individual has 64 images and we randomly
pick 20 images as training set and use the rest as testing set. The images were
cropped to 54 × 48. The number of dictionary atoms K is fixed as 380 here.
Table 2 summarizes the recognition accuracies. We can observe that SVGDL
gives a significant accuracy improvement compared to other methods and it has
the least testing time.

b) AR: The AR database consists of over 4,000 images of 126 individuals. For
each individual, 26 face images are collected from two separated sessions. Follow-
ing [18], we select 50 male individuals and 50 female individuals for the standard
evaluation procedure. Focusing on the illumination and expression condition, we
choose 7 images from Session 1 for training, and 7 images from Session 2 for
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Table 2. The recognition rates and run time on the Extended Yale B database

Methods SRC SVM DKSVD LC-KSVD DLSI FDDL SVGDL

Accuracy 0.900 0.888 0.753 0.906 0.890 0.919 0.961

Train(s) N.A. 0.51 - 75.3 4.5e2 4.4e3 2.2e2

Test(s) 3.1e-2 3.5e-5 - 4.0e-4 4.3e-2 1.4 7.9e-6

Table 3. The recognition rates and run time on the AR database

Methods SRC SVM DKSVD LC-KSVD DLSI FDDL SVGDL

Accuracy 0.888 0.871 0.854 0.897 0.898 0.920 0.946

Train(s) N.A. 1.24 - 53.7 4.9e2 2.1e4 7.6e2

Test(s) 3.4e-2 6.1e-5 - 4.2e-4 0.16 2.5 2.0e-5

testing. The face image is of size 60 × 43 and the learned dictionary has 500
atoms. The results are presented in Table 3. Although the experimental setting
is challenging, SVGDL still has at least 2% improvement over other methods,
and it has much less time consumption compared to FDDL.

c) Multi-PIE: The CMU Multi-PIE face database consists of 337 individuals
including four sessions with the variations of pose, expression and illumination.
We follow the same experimental setting adopt in [18]. We chose the first 60 indi-
viduals from Session 1 for training. For each training person, we use the frontal
images of 14 illuminations ({0,1,3,4, 6,7,8,11,13,14,16,17,18,19}) with neutral
expression (for Test 1) or smile expression (for Test 2) for training, and use
the frontal images of 10 illuminations ({0,2,4,6,8,10,12,14,16,18}) from Session 3
with neutral expression (for Test 1) or smile expression (for Test 2) for testing.
The images are normalized to 100×82 and K = 840. The recognition results and
the elapsed time of Test 1 are presented in Table 4. SVGDL performs the second
best in the experiment, only lags FDDL. Note that FDDL trains sub-dictionaries
for all individuals, while a single dictionary is enough to give good performance
by SVGDL.

4.4 Objection Classification

We also evaluate SVGDL on the Caltech-101 dataset for object classification.
This dataset contains 101 object categories and 29,780 images; each category
has at least 80 images. Following [20], we randomly select 5, 10, 15, 20, 25 and
30 images per object, respectively, for training and test on the rest. We also give
the run time in the case of 30 images. Figure 4 shows some samples from five
classes. We find K = 510 is sufficient in this experiment.

Table 5 compares the classification accuracies of SVGDL with SRC, K-SVD,
DKSVD, LC-KSVD and FDDL under the same experimental setting. As it
can be observed, SVGDL outperforms the other methods in all cases. SVGDL,
FDDL, LC-KSVD and DKSVD all give better results than SRC, which indicates
that the better performance can be achieved by learning a discriminative dic-
tionary. When 30 images involved in training, the improvements over LC-KSVD
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Table 4. The recognition rates and run time on the Multi-PIE database

Methods SRC SVM DKSVD LC-KSVD DLSI FDDL SVGDL

Test 1 0.955 0.916 0.939 93.7 0.941 0.967 0.955
Test 2 0.961 0.922 0.898 90.8 0.959 0.980 0.963

Train(s) N.A. 1.74 - 64.8 6.3e2 5.1e4 2.2e3

Test(s) 3.0e-2 5.2e-5 - 3.7e-4 6.9e-2 3.1 2.6e-5

Fig. 4. Some sample objects from the Caltech-101 database

and FDDL by SVGDL are 2.7% and 3.6%, respectively. The shorter training and
testing time also shows the superiority of SVGDL.

4.5 Action Recognition

Finally, we illustrate SVGDL on the UCF sport action dataset [40] for action
recognition. There are 140 video clips in the UCF sport action dataset that are
collected from various broadcast sports channels (e.g., BBC and ESPN). This
dataset contains 10 sport action classes: driving, golfing, kicking, lifting, horse
riding, running, skate-boarding, swinging (prommel horse and floor), swinging
(high bar) and walking. We follow the common experimental settings in [20].
The number of atoms is set to K = 50.

The results of SVGDL are evaluated via five-fold cross validation, where one
fold is used for testing and the remaining four folds for training. We compare
SVGDL with Qiu et. al. [41], Yao et. al. [42], Sadanand et. al. [43], SRC, K-SVD,
DKSVD, LC-KSVD and FDDL. The recognition accuracies, training and testing
time are shown in Table 6. SVGDL outperforms the state-of-the-art methods. It
is 200 times faster than FDDL, which has the second best accuracy in test.

Table 5. The recognition rates (%) and run time on the Caltech-101 dataset

training number 5 10 15 20 25 30 Train(s) Test(s)

SRC 48.8 60.1 64.9 67.7 69.2 70.7 N.A. 1.09
K-SVD 49.8 59.8 65.2 68.7 71.0 73.2 - -
DKSVD 49.6 59.5 65.1 68.6 71.1 73.0 - -
LC-KSVD 54.0 63.1 67.7 70.5 72.3 73.6 1.3e4 3.7e-3
FDDL 53.6 63.6 66.8 69.8 71.7 73.1 1.1e5 12.9

SVGDL 55.3 64.3 69.6 72.3 75.1 76.7 1.5e3 1.2e-5
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Table 6. The accuracies (%) and run time on the UCF sports action dataset

Methods Qiu Yao Sadanand SRC K-SVD DKSVD LC-KSVD FDDL SVGDL

Accuracy 83.6 86.6 90.7 92.9 86.8 88.1 91.2 94.3 94.4

Train(s) - - - N.A. - - 2.0 8.02 15.6

Test(s) - - - 1.8e-3 - - 8.6e-4 3.4e-2 1.6e-4

5 Conclusions

This paper provided a new insight on DDL by formulating the discrimination
term as the weighted summation of the squared distances between pairwise cod-
ing vectors. The proposed discrimination term not only can explain some existing
discrimination term, e.g., Fisher discrimination, but also is valuable in develop-
ing novel DDL methods by designing appropriate weight assignment scheme. To
overcome the limitation of Fisher discrimination, we adopt a parameterization
method for adaptive weight assignment, leading to the proposed support vec-
tor guided dictionary learning (SVGDL) method. SVGDL can adaptively assign
non-zero weights to only a few pairwise coding vectors which play a critical role
in learning a discriminative dictionary. Furthermore, in contrast to the standard
�1 sparsity based dictionary learning methods, SVGDL is more efficient by us-
ing the �2-norm regularizer on coding vectors. Experimental results on several
benchmark image classification datasets showed that SVGDL outperforms many
state-of-the-art DDL methods in terms of higher accuracy and faster test time.
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