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Abstract. We present a generative, probabilistic model that decom-
poses an image into reflectance and shading components. The proposed
approach uses a Dirichlet process Gaussian mixture model where the
mean parameters evolve jointly according to a Gaussian process. In con-
trast to prior methods, we eliminate the Retinex term and adopt more
general smoothness assumptions for the shading image. Markov chain
Monte Carlo sampling techniques are used for inference, yielding state-
of-the-art results on the MIT Intrinsic Image Dataset.
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1 Introduction

Intrinsic image analysis, first introduced in [2], is the problem of decomposing an
image into various scene characteristics. Assuming a Lambertian surface model,
where the perceived illumination is constant from all angles of incidence, the ob-
served image decomposes into the product of the intrinsic shading and reflectance
images. The reflectance image contains the albedo of the object surface, whereas
the shading image captures the amount of reflected light from the surface. An
example decomposition using the proposed approach is shown in Figure 1.

Fig. 1. An example of the intrinsic image problem. Left-to-right: original image, in-
ferred shading and reflectance images under the proposed method.

While interesting in its own right, intrinsic image analysis is also important
for other fields of computer vision. For example, the shading image can be ex-
ploited in shape-from-shading algorithms to reveal the underlying 3D structure

� This research was partially supported by the Office of Naval Research Multidisci-
plinary Research Initiative (MURI) program, award N000141110688, and the Defense
Advanced Research Projects Agency, award FA8650-11-1-7154.

D. Fleet et al. (Eds.): ECCV 2014, Part IV, LNCS 8692, pp. 704–719, 2014.
© Springer International Publishing Switzerland 2014



Bayesian Nonparametric Intrinsic Image Decomposition 705

of an object or to infer elements of the scene illumination, such as the number,
location, and color of the light sources. Use of the reflectance image improves
many segmentation algorithms, where shading effects often introduce artifacts.

We consider the problem of intrinsic reflectance and shading decomposition
from a single observation. The Retinex algorithm [3,11,12], one of the first pro-
posed solutions, detects edges in the observed image and solves for a reflectance
image that has matching gradients at the detected edges. Surprisingly, many
methods still require these gradient-matching terms to achieve good results. We
show that these terms are not required to achieve state-of-the-art results. While
aspects are related to previous methods, the presented formulation differs by:
(1) using a Dirichlet process Gaussian mixture model for the reflectance image
instead of setting a fixed number of components; (2) using a Gaussian process to
model the shading image for added expressiveness; (3) treating the image as an
observation from a generative, stochastic process; and (4) developing inference
techniques that are robust to initialization.

2 Related Work

Many algorithms have been developed to decompose images into their intrinsic
components. Some use multiple images to disambiguate the decomposition (e.g.,
[21]), while others use data-driven, patch-based algorithms (e.g., [6]).

The original Retinex algorithm [12], which many algorithms build upon (e.g.,
[3,7,8,11,14,17,20]), still performs well decades after its original inception. Re-
sults on the MIT Intrinsic Image Dataset [9] show that the original formulation
in 1971 outperforms all other algorithms prior to 2009. The different flavors of
Retinex all include two underlying concepts: sharp edges should occur in the
reflectance image, and the shading image should be smooth. Edges in the image
are first detected, typically by thresholding intensity or chromaticity gradients.
Gradients of the reflectance image are then favored to match gradients in the
observed image at the detected edges. This type of interaction is often referred
to as the “Retinex term”. A smoothness assumption in the shading image is then
used to propagate the bias of the Retinex term away from the edges.

Some recent extensions to the Retinex algorithm have improved results. Many
authors have observed that a small set of distinct colors can often be used to
model the reflectance image (e.g., [1,8,17,18,22]). In particular, Shen et al. [17,22]
group reflectance values based on a local texture patch. They develop a “match
weight” for each pairwise match that is used as a heuristic to weight reflectance
differences in their energy functional. Gehler et al. [8] explicitly partitions the
pixels based on their reflectance colors into K clusters. However, it is unclear
how to set K a priori , since one would expect this value to be dependent on the
particular image. In contrast, we model the reflectance image with a Dirichlet
process mixture model that does not predefine a model order.

Smoothness in the shading image is most commonly enforced with a Markov
random field (MRF) and an L1 or L2 penalty on the difference of neighboring
shading pixels. We note that an L2 penalty is equivalent to using an improper
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Table 1. Differences in Algorithms for Intrinsic Image Decomposition

Gehler et al. [8] Proposed Model

Shading Smoothness 4-connected GMRF Gaussian process
Reflectance Prior Uniform over fixed K clusters Dirichlet process
Observations Noiseless Log-Normal noise
Probabilistic Model Discriminative Generative
Retinex Term Yes No
Inference Iterative optimization Marginalized MCMC

Gaussian MRF (GMRF) prior [13]. These types of model are used in [8], [17],
and every method in the survey paper of [9]. In this work, we place a similar
prior on the shading image. However, instead of restricting the smoothness to be
a 4-connected GMRF as was done previously, we allow for a much broader class
of smooth functions by placing a Gaussian process (GP) prior on the shading
image. Stationary GMRFs are approximately finite realizations of GPs with
stationary covariance kernels. However, as we shall see, framing the model using
a GP allows us to exploit two advantages: (1) inference is simplified with GPs;
and (2) changing the smoothness is a matter of altering the covariance kernel
without having to explicitly adapt to a different graphical MRF structure.

The two current state-of-the-art algorithms take quite different approaches.
SIRFS [1], the current best-performing algorithm on [9], differs from most meth-
ods by inferring 3D geometry and treating the shading image as a by-product
of the lighting conditions and 3D surface. One might draw the conclusion from
these results that modeling the 3D structure is essential to good performance;
however, as we will show, that is not necessarily the case. Furthermore, training
and inference in SIRFS is challenging due to the large set of parameters.

Our model can be thought of as the Bayesian nonparametric extension to the
second best-performing algorithm of Gehler et al. [8]. Table 1 summarizes explicit
differences between the two approaches. While [8] has shown that the Retinex
term improves results, it is difficult to incorporate such a term in a generative
model. Moreover, our experiments show that by using a more expressive shading
model and improved inference, the Retinex term is unnecessary to achieve state-
of-the-art results. This work also departs from [8] by placing Bayesian priors
that adapt to different noise characteristics and object complexities.

3 Generative Model

As is common in intrinsic image analysis, we assume a Lambertian surface model,
where an image decomposes into the product of a shading image and a reflectance
image. We now present a generative model, depicted in Figure 2, that contains
this explicit decomposition. For the remainder of this paper, we will work in the
log domain where the log of the observed image, x, is assumed to be generated
from the sum of the log shading and the log reflectance image.



Bayesian Nonparametric Intrinsic Image Decomposition 707

Fig. 2. The generative graphical model. See text for description. λμ = {θ,Σμ} and
λg = {κ, σ2

g , ν, l} denote sets of hyper-parameters.

The log reflectance image is generated from a standard Dirichlet process Gaus-
sian mixture model (DPGMM) as follows: (1) infinite-length mixture model
weights, π, are drawn from a stick-breaking process [16]; (2) the mean RGB
color for each cluster, μk, is drawn from a multivariate Gaussian prior; and (3)
the cluster assignment for each pixel, i, denoted zi, is drawn from a categor-
ical distribution with parameters π. The following expressions summarize this
process:

p(π) = GEM(π ; 1, α), (1)

p(μ) =
∏

k
p(μk) =

∏
k
N(μk ; θ,Σμ) , (2)

p(z|π) =
∏

i
p(zi|π) =

∏
i
Cat(zi ; π). (3)

The hyper-parameters, α, θ, and Σμ, are chosen to specify broad priors. The
3K×1 vector of means is denoted by μ, whereK is the number of realized clusters
for 3 color channels. The log reflectance image, denoted μz, is then formed by
setting each pixel, [μz ]i, to the corresponding cluster mean: [μz ]i = μzi . The
reflectance image is then a 3N × 1 vector for an image with N pixels.

The log shading image, denoted g, is generated from a zero-mean Gaussian
process (GP) with a stationary covariance kernel, κ. Shading images of interest
(e.g., in the MIT Intrinsic Image Dataset [9]) are often generated from white-
colored incident light. However, we find that allowing colored shading images
generally results in better convergence. As such, we model g as a 3D Gaussian
process with a covariance kernel that is a function of location and color. Fur-
thermore, we are only interested in the values at the fixed grid locations. Since
any subset of variables in a GP is jointly Gaussian, we can express the GP as

p(g) = GP(g ; κ) = N(g ; 0,Σg) , (4)

where Σg denotes the finite-dimensional covariance matrix obtained by evaluat-
ing the kernel, κ, at the grid points. The specific covariance kernel parameters
govern the smoothness properties of g and are learned from training data.

Finally, we assume that the observed pixels in the log image are drawn inde-
pendently from the following Gaussian distribution:

p(x|μ, z, g,Σx) =
∏

i
p(xi|μ, zi, gi,Σx) =

∏
i
N(xi ; μzi + gi,Σ

x) . (5)
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While one could assume a fixed observation covariance, Σx, we have found that
it is difficult to set a priori , and instead treat Σx as a latent variable. One
possibility is to use a cluster-specific covariance instead of a global covariance
(e.g., via a Normal Inverse-Wishart prior). However, as described in Section 4, a
global observation covariance that is also Toeplitz lends itself to efficient inference
of g. As we are unaware of conjugate priors on positive definite Toeplitz matrices,
the prior on Σx is uniform over a discrete set of covariances, SΣ:

Σx = SΣ(u), u ∼ Uniform(|SΣ|). (6)

The elements of SΣ are chosen to be 3 × 3 matrices with color correlations log-
arithmically spaced in [2−10, 20] and marginal variances logarithmically spaced
in [2−7, 20]. This choice does not affect results significantly as long as the range
is sufficiently broad. Visualizations can be found in [4].

Relation to DPGMMs. Typical DPGMMs draw each pixel from one of the
infinite Gaussians with mean μk, regardless of the pixel location. The proposed
model departs from the DPGMM by jointly changing the μk’s in space according
to g. One can view each pixel, i, as being drawn from a Gaussian with spatially-
varying mean, μk(i) = μk + gi. As such, we refer to this model as the spatially-
varying DPGMM (SV-DPGMM). Additional details are included in [4].

4 Posterior Inference

One motivation for generative models is that computation of marginal event
probabilities are generally more robust to noise as compared to point esti-
mates such as the maximum a posteriori estimate. Consequently, we reason
over the full distribution of the SV-DPGMM rather than use optimization ap-
proaches. MCMC methods, such as Gibbs sampling or the Metropolis-Hastings
algorithm, are commonly used in complex probabilistic models such as the
SV-DPGMM.

Before developing the inference techniques, we introduce some notation. Co-
variance matrices are denoted by Σ, possibly superscripted by an associated
random variable. Corresponding precision matrices are denoted by Λ � Σ−1.
We use i and j for pixel indices in [1, N ], k and � for cluster indices in [1,K],
and m and n for color channel indices in [1, 3]. As the posterior inference is
complex, we build the algorithm over the next three sections.

4.1 Iterative Posteriors Inference without Marginalization

Conditioned on the GP, g, the SV-DPGMM simplifies to a traditional DPGMM.
We sample this via the DP Sub-Cluster method [5], which restricts each Gibbs
iteration to the current non-empty clusters and proposes split and merge moves.
The relevant posterior distributions can expressed as:
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Algorithm 1 SV-DPGMM Iterative Inference via MCMC

1. Initialize z and g to be all 0.
2. Sample (z, μ,Σx|g, x) using the DP Sub-Clusters algorithm [5].
3. Sample (g|μ,Σx, z, x) from Equation (11) using equivalent kernel [19] techniques.
4. Repeat from Step 2 until convergence.

p(π|z) = Dir(π ; N1, . . . , NK , α), (7)

p(μ|Σx, z, g, x) =
∏K

k=1
N
(
μk ; θ(xIk

− gIk
,Σx),Σ

μ
(xIk

− gIk
,Σx)

)
, (8)

p(Σx|μ, z, g, x) ∝
∑|SΣ|

u=1
p(x|μ, z, g,Σx = SΣ(u)), (9)

p(z|π, μ,Σx, g, x) =
∏N

i=1

∑K

k=1
1I[zi = k]πk N(xi ; μk + gi,Σ

x) , (10)

where Ik � {i; zi = k} is the set of pixel indices assigned to cluster k, Nk � |Ik|
counts the number of pixels assigned to cluster k, and θ and Σ

μ
denote posterior

hyper-parameters that are functions of the data through the conjugate prior.
We note that the posterior on Σx is just the prior weighted by the likelihood
because of the uniform prior over a discrete set (see Equation (6)).

Conditioned on the cluster assignments, z, and cluster parameters, μ, the
posterior on g is known to be Gaussian with the following distribution (cf. [15]):

p(g|μ, z,Σx, x) = N(
g ; ΣgΛg+x(x− μz),Σ

g − ΣgΛg+xΣg
)
, (11)

where Λg+x � (Σg+x)−1 � (Σg +Σx⊗ IN )−1, ⊗ denotes the Kronecker product,
and IN denotes anN×N identity matrix. We note that Σx⊗IN is a 3N×3N block
diagonal matrix where each 3×3 block represents the observation covariance for a
3-channel, colored pixel. If the GP uses a stationary covariance kernel, sampling
from Equation (11) is well approximated using equivalent kernel methods [19].
Details of the approximation are shown in [4].

Equations (7)–(11) express the conditional distributions of all latent variables.
Posterior inference can then alternate between sampling these expressions, as
described in Algorithm 1. This procedure is very closely related to the procedure
of [8], except that we solve Equation (11) analytically while [8] utilizes conjugate
gradient iterations. Algorithm 1 empirically converges to local extrema and is
sensitive to initialization. The method of [8] attempts to circumvent this issue
by choosing the best solution from multiple initializations.

4.2 Marginalized Posterior Inference

Both the reflectance, μ, and shading, g, contribute additively in the log domain.
Consequently, errors in one can be incorrectly explained by the other. Such prob-
lems are addressed in Bayesian inference by treating one variable as a nuisance
parameter and marginalizing it out. While this is often intractable, marginaliza-
tion of the shading image in the SV-DPGMM results in a closed-form expression.



710 J. Chang, R. Cabezas, and J.W. Fisher III

Since each distribution conditioned on z and Σx is Gaussian, the joint distribu-
tion, p(x, μ, g|z,Σx), must be jointly Gaussian, and any marginal or conditional
distribution must also be Gaussian. We show in [4] that marginalizing over g
results in p(μ|z,Σx, x) = N (μ ; θ∗,Σ∗), where each element of the mean, θ∗,
and precision, Λ∗ = (Σ∗)−1, is defined as

Λ∗
km,�n = Λμ

m,n +
∑

i∈Ik

∑
j∈I�

Λg+x
im,jn, ∀k = �, (12)

Λ∗
km,�n =

∑
i∈Ik

∑
j∈I�

Λg+x
im,jn, ∀k �= �, (13)

[Λ∗θ∗]km = [Λμθ]m+
∑

i∈Ik

∑
j

∑
n
xjnΛ

g+x
im,jn. (14)

Equations (12)–(14) define a system of 3K linear equations for the reflectance
colors that differs from Equation (8) by marginalizing over the shading image.
This modification avoids dependence on possibly erroneous estimates of g. The
current form requires the inversion of Σg+x, a large 3N × 3N matrix, which is
computationally burdensome. The covariance matrix, Σg+x, is evaluated on a
square grid and will be Toeplitz for stationary covariance kernels. In the limit as
the domain of observations extends to infinity, the precision will also be Toeplitz.
If we approximate Λg+x as Toeplitz, Equations (12)–(14) become convolutions
and are efficiently computed in the Fourier domain. In practice, we find that this
approximation does not work well and consider the following alternative.

We note that the system of equations in Equations (12)–(14) only contains
4.5(K2 +K) variables estimated from approximately N2 variables. We remind
the reader that K is the number of reflectance clusters (typically < 10) and
N is the number of pixels (typically > 50,000). As such, there are many more
observations than are necessary to reliably categorize θ∗ and Λ∗. We therefore
approximate the posterior on μ from a random subset of the data, where each
cluster has at least 10 pixels and there are a total of at least 1,000 pixels.

Denoting the subset of pixel indices as S, we then define a new realization
of the GP on the subset of indices as gS which is distributed according to
p(gS) = N (gS ; 0,ΣgS ). Following the same formulation as above, we can then
approximate the posterior on the mean colors as

p(μ|z,Σx, x) ≈ p(μ|zS ,Σx, xS) = N (μ ; θ̂∗, Σ̂∗), (15)

where the approximate mean and precision are defined as

Λ̂∗
km,�n = Λμ

m,n +
∑

i∈Ik∩S

∑
j∈I�∩S ΛgS+x

im,jn, ∀k = �, (16)

Λ̂∗
km,�n =

∑
i∈Ik∩S

∑
j∈I�∩S ΛgS+x

im,jn, ∀k �= �, (17)

[Λ̂∗θ̂∗]km = [Λμθ]m+
∑

i∈Ik∩S

∑
j∈S

∑
n
xjnΛ

gS+x
im,jn. (18)

Due to the subsampling process, ΛgS+x = (ΣgS + Σx ⊗ I|S|)−1 can now be
computed efficiently. We note that this approximation performs well in practice.
The resulting inference procedure is summarized in Algorithm 2.
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Algorithm 2 SV-DPGMM Marginalized Inference via MCMC

1. Initialize z and g to be all 0.
2. Sample (z, μ,Σx|g, x) using the DP Sub-Clusters algorithm [5].
3. Sample (μ|Σx, z, x), marginalizing out g, from Equation (15).
4. Sample (g|μ,Σx, z, x) from Equation (11) using equivalent kernel [19] techniques.
5. Repeat from Step 2 until convergence.

4.3 Marginalized Split/Merge Posterior Inference

In this section, we describe an improved procedure that changes z while marginal-
izing out both μ and g. As mentioned previously, we exploit the recent DP Sub-
Cluster sampling algorithm [5] to sample from the posterior of z. The core idea
underlying the DP Sub-Cluster algorithm is to form two “sub-clusters” for each
regular-cluster, and to use the sub-clusters to propose split moves. The prior
distributions for the sub-clusters are chosen such that the posteriors are of the
same form as Equations (7)–(10). Conditioned on the sub-clusters, a proposed
split or merge is then used in a Metropolis-Hastings MCMC [10] framework that
accepts the proposal with what is known as the Hastings ratio (cf. [5] for details).

Similar to the marginalization of the shading image g, we show in [4] that a
related derivation can be used to express p(x|z,Σx) as

p(x|z,Σx) =
|Λg+x|1/2|Λμ|K/2

(2π)3N/2|Λ∗|1/2 exp
[
1
2

(
θ∗�Λ∗θ∗ −Kθ�Λμθ − x�Λg+xx

)]
(19)

where the dependence on z and Σx are implied through Equations (12)–(14) for

θ∗ and Λ∗. A split of cluster k into clusters k̂ and �̂ using the DP Sub-Clusters
algorithm, marginalizing over μ and g, is accepted with Hastings ratio

Hsplit =
αΓ(Nk̂)Γ(N�̂)

Γ(Nk̂+N�̂)
· p(x|ẑ,Σx)
p(x|z,Σx)

∏
i∈Ik

πk̂ N (xi ;μk̂,Σ
x)+π�̂ N (xi ;μ�̂,Σ

x)

πẑi
N (xi ;μẑi

,Σx) , (20)

where ẑ is the newly split cluster labels, and π and μ are sub-cluster parameters
defined in [5]. Note that p(x|z, g,Σx) integrates out the mean parameter. A sim-
ilar marginalization applies to merge moves, resulting in the following Hastings
ratio for a proposed merge of clusters k and � into cluster k̂:

Hmerge =
Γ(Nk+N�)

αΓ(Nk)Γ(N�)
· p(x|ẑ,Σx)
p(x|z,Σx)

∏
i∈Ik̂

πzi
N (xi ;μzi

,Σx)

πk N (xi ;μk,Σx)+π� N (xi ; μ�,Σx) . (21)

This marginalized split/merge sampling method is summarized in Algorithm 3.

5 Parameter Learning

We now present two methods for learning model parameters. The first is su-
pervised and uses training data to find the set of parameters that works best
across all training examples. The second is unsupervised and places Bayesian
hyper-priors on the parameters. The only parameters to learn are those of the
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Algorithm 3 SV-DPGMM Marginalized Split/Merge Inference via MCMC

1. Initialize z and g to be all 0.
2. Run DP Sub-Clusters to find likely splits conditioned on g (Σx is concurrently

sampled within DP Sub-Clusters).
3. Sample (z|Σx, x) via Metropolis-Hastings MCMC by proposing all splits or merges

and accept with the Hastings ratios in Equations (20) and (21).
4. Sample (μ|Σx, z, x) marginalizing over g from Equation (15).
5. Sample (g|μ,Σx, z, x) from Equation (11) using equivalent kernel [19] techniques.
6. Repeat from Step 2 until convergence.

covariance kernel in the GP, g. We use the Matérn class of kernels. Additionally,
as mentioned previously, allowing for small amounts of color in the shading im-
ages improves convergence. As such, we alter the Matérn kernel to the following:

κ(c, r ; σc, σ
2
g , ν, l) = σ1I[c �=0]

c σ2
g

21−ν

Γ(ν)

(
r
√
2ν
l

)ν

Kν

(
r
√
2ν
l

)
, (22)

where c is the change in the color channel, r is the change in 2D location, Kν(·)
is a modified Bessel function of the second kind, and λg � {σc, σ

2
g , ν, l} is the set

of hyper-parameters to learn.

Supervised Learning. In the following sections, we test on the MIT Intrinsic
Image Dataset [9]. Unfortunately, because the 20 images from [9] were released
in two batches, some published methods are only trained or tested on a subset
of the images. For example, [8] uses 16 of the 20 images, while [1] uses all 20
images. Furthermore, each method uses different training and test sets; [8] per-
forms leave-one-out-cross-validation (LOOCV), while [1] separates the set into
10 training images and 10 test images. For an accurate comparison, we learned
separate parameters using LOOCV and the separate training/test sets used in
[1]. For each image, we ran the inference algorithm under a discrete set of pa-
rameter choices. The set of parameters that minimized the arithmetic mean of
RS-MSE was chosen (similar to [8]). This error metric will be described shortly.

Unsupervised Learning. An alternative, Bayesian approach for unsupervised
learning is to place a hyper-prior on the parameters, λg. For simplicity, we place
a uniform prior on λg over a discrete set of plausible values. Inference then
proceeds in the same sequence as before, with the added step of sampling λg

from the posterior distribution, λg ∼ p(λg|g) ∝ p(g|λg). This requires computing
the likelihood of a GP realization with parameters λg, and can be efficiently
approximated with methods described in [4].

6 Post-processing for Color Constancy

One ambiguity in the shading and reflectance decomposition has not been ex-
plicitly addressed; namely, any color channel of the log-shading image can be
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Original Ground Truth SV-DPGMM SV-DPGMMpost

Fig. 3. An example of correcting color constancy as a post processing step

shifted by an arbitrary amount if the log-reflectance image is shifted by the neg-
ative of the same amount. For example, this could correspond to changing the
color of the light in the shading from white to blue and adding a yellow tint to
reflectance image. The SV-DPGMM approach implicitly restricts these ambigui-
ties. Because the GP is assumed to be zero-mean with correlated color channels,
the shading image largely favors white lights and grayscale shading images. This
is undesirable in some situations, one of which is shown in Figure 3.

Barron and Malik [1] address this color constancy issue by placing a prior
on log reflectance values and assuming spherical harmonic lighting models. We
take a slightly different approach since neither is easily applicable. We learn the
distribution of the log shading and log reflectance values from the ground truth
training data via a kernel density estimate. It would be ideal if these distributions
could be incorporated into the generative model, but the non-parametric nature
of the distributions eliminate the exploited conjugacy in the inference. As such,
we perform a post-processing step that finds the optimal global color-shift in the
coupled shading/reflectance space. Additional details can be found in [4]. We
note that this procedure can be used with any intrinsic image algorithm.

7 Experimental Results

For each image in the MIT Intrinsic Image dataset [9], we run Algorithm 3 for
50 iterations to ensure convergence, which typically occurs with 5–10 iterations.
We then take the mean of 25 samples from the stationary distribution. This
takes approximately 1–20 minutes, depending on the image. Since the simulated
Markov chains tend to explore a local mode, we run 10 chains independently and
show the resulting pixel-wise median shading and reflectance images. Each chain
essentially explores a local mode of shading and reflectance, and the median of
the 10 independent chains finds the mode that is in the middle. As we soon show,
while this procedure slightly improves results, running a single chain still achieves
state-of-the-art results. Publicly available source code can be downloaded from
http://people.csail.mit.edu/jchang7/.

In the following section, we compare SV-DPGMM with Retinex and the two
state-of-the-art methods from [1] and [8]. For an accurate comparison, we train
the model parameters using the same training and test sets described in each
of the previous methods. We compute three metrics from [1]: S-MSE, R-MSE,
and RS-MSE. S-MSE and R-MSE compute the global scale-invariant shading

http://people.csail.mit.edu/jchang7/
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and reflectance mean squared error, respectively. RS-MSE is the metric from
[9], which computes the average of local scale-invariant MSEs. We evaluate both
the arithmetic and geometric mean (denoted with a ‘g’) across the images. We
note that [8] and [9] use the arithmetic mean while [1] uses the geometric mean.

7.1 SV-DPGMM Ablation Testing

We first compare different inference methods for SV-DPGMMs using LOOCV on
the 16 images of the original dataset presented in [9]. We consider the following
inference methods: iterative inference via Algorithm 1 (SV-DPGMMit1); itera-
tive inference via Algorithm 1 while sampling shading first (SV-DPGMMit2);
marginalized inference via Algorithm 2 (SV-DPGMMmarg1); marginalized in-
ference via Algorithm 2 while sampling shading first (SV-DPGMMmarg2); and
marginalized split/merge inference via Algorithm 3 (SV-DPGMM). Addition-
ally, we consider a procedure which replaces all sampling steps of Algorithm 3
with optimization (SV-DPGMMopt). Table 2 summarizes the different inference
schemes. We see that the methods based on Algorithms 1–2 are quite sensitive
since their results vary dramatically based on whether the shading or reflectance
is first estimated. In contrast, Algorithm 3 computes these jointly and does not
suffer from this sensitivity. Since the training is based on RS-MSE, it is reason-
able that SV-DPGMM does not perform the best across all metrics.

Next, we consider the following variants of the SV-DPGMM model: unsuper-
vised training (SV-DPGMMunsup); supervised training on a single Markov chain
(SV-DPGMMsingle); supervised training and computing the median across 10
Markov chains (SV-DPGMM); and SV-DPGMM with the color constancy post-
processing (SV-DPGMMpost). Additionally, we compare to a model using a 10-
component Dirichlet distribution mixture model instead of the Dirichlet process
(SV-DPGMMK=10). The results for SV-DPGMMsingle were obtained by averag-
ing the errors for 10 Markov chains, instead of combining the 10 Markov chains
with a median image. Table 3 summarizes results from the different variants.
The unsupervised method generally performs worse than the supervised train-
ing. In principle, unsupervised learning has an advantage, in that it yields a set
of parameters for each observed image. However, the sample space that includes
the GP covariance kernel may be too complex to sufficiently explore. Combining
multiple chains, using a Dirichlet process, and post-processing to enforce color
constancy all improve results. We note that the RS-MSE does not change with
post-processing since it is invariant to global shifts in any color channel.

7.2 Algorithm Comparison

Table 4 compares SV-DPGMMpost with the Retinex algorithm and the method
of [8] with ([8]+Ret.) and without ([8]−Ret.) Retinex. S-MSE is the only metric
on which the SV-DPGMM yields worse performance. Upon examination of the
individual results, we have found that this abnormally high error is due to mak-
ing a large error in one of the shading estimate. We remind the reader that the
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Table 2. Comparing SV-DPGMM Inference Methods

S-MSE R-MSE RS-MSE gS-MSE gR-MSE gRS-MSE

SV-DPGMMit1 0.0548 0.0309 0.0362 0.0202 0.0196 0.0205
SV-DPGMMit2 0.0532 0.0238 0.0302 0.0193 0.0146 0.0181
SV-DPGMMmarg1 0.0300 0.0146 0.0248 0.0097 0.0085 0.0121
SV-DPGMMmarg2 0.0321 0.0175 0.0271 0.0106 0.0109 0.0154
SV-DPGMM 0.0321 0.0144 0.0239 0.0093 0.0078 0.0111
SV-DPGMMopt 0.0352 0.0172 0.0286 0.0120 0.0104 0.0157

Table 3. Comparing SV-DPGMM Model Variations

S-MSE R-MSE RS-MSE gS-MSE gR-MSE gRS-MSE

SV-DPGMMunsup 0.0298 0.0166 0.0260 0.0096 0.0098 0.0136

SV-DPGMMsingle 0.0328 0.0151 0.0249 0.0100 0.0087 0.0124

SV-DPGMMK=10 0.0321 0.0147 0.0241 0.0095 0.0083 0.0120
SV-DPGMM 0.0321 0.0144 0.0239 0.0093 0.0078 0.0111
SV-DPGMMpost 0.0317 0.0135 0.0239 0.0072 0.0060 0.0111

Table 4. Leave-One-Out-Cross-Validation on 16 images from [9]

S-MSE R-MSE RS-MSE gS-MSE gR-MSE gRS-MSE

Retinex 0.0400 0.0292 0.0297 0.0219 0.0225 0.0185
[8]−Ret. 0.0311 0.0172 0.0304 0.0107 0.0134 0.0156
[8]+Ret. 0.0287 0.0205 0.0277 0.0119 0.0150 0.0166
SV-DPGMMpost 0.0317 0.0135 0.0239 0.0072 0.0060 0.0111

Table 5. Separate Train/Test Validation on 20 images from [9]

S-MSE R-MSE RS-MSE gS-MSE gR-MSE gRS-MSE

SIRFS Reported - - - 0.0064 0.0098 0.0125
SIRFS Locally Run 0.0201 0.0158 0.0247 0.0068 0.0115 0.0125
SV-DPGMM 0.0306 0.0148 0.0229 0.0113 0.0092 0.0136
SV-DPGMMpost 0.0303 0.0141 0.0229 0.0092 0.0074 0.0136

only differences between SV-DPGMM and [8]−Ret. are the DP prior, a more ex-
pressive GP shading smoothness, and more robust inference. Moreover, many of
the simplified inference algorithms of Tables 2–3 also outperform current meth-
ods. We believe that our optimization procedure for a more expressive model
is only comparable to [8] due to the particular realization converging to a local
extrema. Multiple initializations can circumvent this issue, as was done in [8].

Table 5 compares results with SIRFS [1] when training on half the images
and testing on the other half. We note that published results from [1] and those
obtained with their public source code are slightly different. SV-DPGMM per-
forms better in three of the six metrics without needing to model the 3D scene
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Original Truth [8]−Ret. [8]+Ret. SIRFS SV-DPGMM SV-DPGMMpost

Fig. 4. Visual comparison of results. The rows show the estimated reflectance and
shading images, respectively. SIRFS is trained via separate train/test sets. All other
algorithms are trained using LOOCV.
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Orig. Reflectance Images Shading Images

Fig. 5. Visual comparison of results. Left to right: original, reflectance images, and
shading images. The reflectance and shading images from left to right: ground truth,
[8]−Ret., [8]+Ret., SIRFS, SV-DPGMM, and SV-DPGMMpost.

Fig. 6. Performance with additive noise

geometry. We visualize results of each algorithm from the LOOCV training in
Figure 4. In general, the reflectance image is more piecewise constant in color
and there is less bleeding of the reflectance into the shading. Figure 5 shows
additional images. SV-DPGMM occasionally makes large errors (e.g., first row
in Figure 5), which are likely due to allowing color in the shading images. The
prior could be changed on a per-image basis to correct these errors.
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7.3 Sensitivity to Noise

Lastly, we consider the case of noisy observations. Images from [9] do not have
any camera noise, so we inject artificial additive Gaussian noise in the observed
image. We note that this synthetic noise does not contain the same noise char-
acteristics assumed in SV-DPGMM, which models Gaussian noise in the log
domain. Results for varying levels of noise variance are shown in Figure 6. This
plot illustrates that SV-DPGMM, which explicitly characterizes noise, outper-
forms other methods in the noisy regime even with the model mismatch.

8 Conclusion

We have presented the spatially-varying Dirichlet process Gaussian mixture
model, a generative, Bayesian nonparametric model for intrinsic image decompo-
sition. A Dirichlet process reflectance image is coupled with a Gaussian process
shading image. Efficient marginalized MCMC inference results in state-of-the-art
performance without modeling 3D geometry or using the Retinex term.
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