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Abstract. Structure from motion (SfM) is a common technique to re-
cover 3D geometry and camera poses from sets of images of a com-
mon scene. In many urban environments, however, there are symmetric,
repetitive, or duplicate structures that pose challenges for SfM pipelines.
The result of these ambiguous structures is incorrectly placed cameras
and points within the reconstruction. In this paper, we present a post-
processing method that can not only detect these errors, but successfully
resolve them. Our novel approach proposes the strong and informative
measure of conflicting observations, and we demonstrate that it is robust
to a large variety of scenes.
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1 Introduction

In the last decade, structure from motion (SfM) has been taken out of the lab and
into the real world. The achieved progress is impressive and has enabled large-
scale scene reconstruction from thousands of images covering different scenes
around the world [2,9,11,27]. In crowd-sourced reconstructions of large-scale en-
vironments, SfM methods do not have any control over the acquisition of the
images, leading to many new challenges. One major challenge that arises is
the ambiguity resulting from duplicate structure, i.e. different structures with
the same appearance. Fig. 1 shows an example of duplicate scene structure on
Big Ben, where every side of the clock tower has the same appearance. SfM meth-
ods often erroneously register these duplicate structures as a single structure,
yielding incorrect 3D camera registrations (see Fig. 1). We propose a method
that can correct the misregistrations caused by the duplicate scene structure in
the final SfM model (see Fig. 1 for the corrected reconstruction of Big Ben).

To correct the misregistration caused by duplicate structure, it is important
to understand the nature of the ambiguity that causes the error. The most com-
mon SfM methods operate as an incremental reconstruction, i.e. they start from
an initial pair or triplet and subsequently extend the reconstruction one-by-one
for each remaining image. However, the decision of which image to add next to
the reconstruction is not arbitrary. This choice is typically driven by an image
similarity metric used to find images that are similar to the ones already reg-
istered [2,4,7,11,18,20]. It is within this process that sometimes SfM algorithms
select images which do not actually overlap with the current reconstruction, but
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Fig. 1. Left: example camera placements in a misregistered and correct SfM model.
Right: example illustration of conflicting observations between two images.

do overlap with a different instance of the duplicate structure. These images are
then erroneously registered to the wrong instance of the duplicate structure. An
indication for this erroneous registration is that only points on the duplicate
structure register. Unfortunately, a priori knowledge of the duplicate structure
is not available at registration time. Subsequent registrations extend the recon-
struction further, but with the two copies of the duplicate structure combined
into a single model. This erroneous reconstruction contains incorrectly placed
unique structures due to the incorrect registration of the duplicate structure.

Fig. 2 shows an incremental SfM pipeline that results in erroneous geometry.
The images are sequentially registered and added to the reconstruction, and upon
reaching the fourth image in the set (which is taken from a different location than
the first three), it registers, but only to the facades of the tower. This registration
is incorrect, as the camera should have been rotated 90◦ around the tower. Now,
when registering the remaining cameras (which should also be rotated 90◦) they
will correctly register to the fourth image and start to triangulate 3D structure.
However, because of the fourth camera’s mislocation, the new structure (and
camera poses) will be incorrectly placed within the scene.

Given the difficulties of detecting erroneous registration during reconstruction,
we propose a method which can correct the errors upon completion of SfM. Our
method identifies incorrectly placed unique scene structures, and from this we
infer the points belonging to the duplicate structure. Once our system identifies
the duplicate structure, it attempts registration of cameras and points using only
the distinct unique structures to obtain a correct model.

2 Related Work

Duplicate structure has been of recent interest in the research community and
has motivated a variety of applications [3,8,14,22,23,25,28]. Generally, there are
different types of duplicate scene structures, ranging from duplicate instances
caused by 3D rotational symmetries, separate identical surfaces, or repetitive or
mirrored structures often found on facades (a survey of symmetry is provided in
[17]). Duplicate structures are prone to lead to misregistered scene reconstruc-
tions, though mirror symmetries do not typically contribute to these errors.



782 J. Heinly, E. Dunn, and J.-M. Frahm

1 2 3 

4 5 6 

1 2 

3 

4 5 
6 

1 2 

3 

4 1 2 

3 

Fig. 2. Illustration of how duplicate structure causes incorrect reconstructions. Left to
right: 1) Input images ordered for reconstruction, 2) Reconstruction after first three
images, 3) Fourth camera registers, but only to duplicate structure on Big Ben facades,
4) Remaining images register, and an erroneous structure is created (circled in red).

Symmetric and repetitive structures can generally be detected in images through
techniques that detect symmetric or repetitive patterns [5,6,13,15,16,31,32].Meth-
ods have leveraged these patterns for urban geolocalization [3,22,25] and recon-
struction of a scene from only a single image [14,23,28]. Furthermore, there has
been recent work on utilizing symmetry as a constraint in bundle adjustment to
improve the accuracy of an SfM result [8].

The class of duplicate structures originating from 3D rotational symmetries
and different identical copies of the same surface in the scene is typically not
detectable by purely image-based measures. It is this class of duplicate structures
that we target for correction. Next, we discuss several related approaches also
aiming at mitigating the effects of this class of duplicate structures.

Zach et al. [29] introduce the concept of missing correspondences. The main
idea is to identify image triplets that have consistent sets of three-view feature
observations, while minimizing the number of features observed in only two of
the images. The valid triplets are then combined into the correct reconstruction.
The intuition is that if a substantial fraction of observations are missing from
the third image, then that third image is incorrectly registered. They use a
Bayesian framework that has a belief network for image triplets in order to
verify their correctness and relation to each other. However, the authors enforce
the very conservative assumption that a pair of images deemed to be incorrectly
registered cannot exist within the same single reconstruction. This is conservative
as the images could be viewing a duplicate instance within a single scene that
could later be reconciled. In contrast, our method performs the inference over all
cameras in the SfM model, and allows incorrectly matched images to correctly
register to different parts of the same single reconstruction.

Roberts et al. [21] also utilize the idea of missing correspondences by exploit-
ing them as a metric within an expectation-minimization framework to identify
incorrectly registered image pairs. They improve over the original formulation
of Zach et al. [29] by relying on image timestamps to provide approximate se-
quence information. Hence, they implicitly assume an association between the
temporal and spatial order of the images. This allows their method to function in
potentially challenging scenarios, but prevents it being applied to unordered In-
ternet photo collections. Our method, in contrast, does not require any temporal
information for the images and does correctly handle Internet photo collections.
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Loop constraints were exploited by Zach et al. [30] to detect incorrect camera
registrations. Their algorithm analyzes loops (cycles) of connected cameras in a
graph in which cameras are nodes and pairwise transformations between cameras
are edges. When traversing a loop and chaining the transformations between the
images, one should achieve the identity transform (with some natural drift) upon
matching to the first image in that loop (loop closure). If this criterion is broken,
then at least one of the transformations in the loop is assumed to be incorrect.
Even if there is no drift, assuming an identity transformation over a loop is not
sufficient for detecting all erroneous loops in the graph [12].

Jiang et al. [12] minimize the number of missing correspondences across the
entire reconstruction instead of triplets [29]. To find the minimum they evaluate
a set of possible reconstructions and make the key assumption that the set of im-
ages under consideration forms one connected model. This assumption fails when
the images are actually from two separate scenes, or when there is insufficient
overlap between views of a duplicate structure. Our method overcomes these
shortcomings by correctly splitting and maintaining separate partial models of
the scene (such as datasets 7–9 in Fig. 7).

Instead of using missing correspondences explicitly, Wilson and Snavely [26]
utilize the bipartite local clustering coefficient over the visibility graph of an SfM
model. This measure identifies tracks of 3D point observations that are suspected
of incorrectly linking separate structures. They require prior knowledge of the
desired number of splits as an input. Then, their method removes a large number
of erroneous tracks and will split incorrectly generated models. Their primary
mode of failure is over-segmentation (even splitting already correct models [26]).
They do not propose a conclusive technique to merge the split components as
they only use medoid SIFT features, matching, and estimating an alignment via
RANSAC to fix oversplitting in one of their datasets. Additionally, the authors
state that their method is not well suited for the “laboratory-style” datasets of
previous papers (datasets limited to a few hundred images). Our method, in con-
trast, leverages an automatic merging technique, and circumvents oversplitting
by detecting if an SfM model is already correct. Furthermore, we demonstrate
successful results on both laboratory and large-scale real-world datasets (Fig. 7).

In summary, missing correspondences (an intuition used by many previous
methods) report on structure that was expected. This implicitly assumes the
repeatability of the correspondence mechanism, which can fail because of noise,
occlusion, or changes in viewpoint [19]. This assumption severely limits the range
and type of incorrect registrations that can be detected. Therefore, the remain-
ing unsolved challenges for model correction include robustly handling duplicate
instances without oversplitting, while at the same time being able to correctly re-
cover one or more final models (depending on the configuration of the underlying
scene). It is this challenge that our paper successfully addresses.

3 Algorithm

We propose using conflicting observations to identify the incorrect registrations
caused by duplicate structure as a more powerful alternative to using missing
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Fig. 3. Method overview: ❶ Input SfM model, ❷ Candidate camera graph splits,
❸ Conflicting observations, and ❹ Model merging

correspondences. Conflicting observations are 3D points that when projected,
using the corresponding 3D reconstruction information, into and across pairwise
registered images, conflict in their spatial location, i.e. there are observations
of alternative structures in the same spatial location in the image plane. For
instance, consider two separate views of duplicate structure (like the facades of
Big Ben, shown in Fig. 1). Each image contains observations of the duplicate 3D
points, but the observations of the disjoint secondary structures in the scene are
unique. The unique structure in the first image, when projected into the second,
overlaps with the second image’s unique structure. It is this unique structure that
we analyze for conflict, as it is separate from the duplicate object and provides
distinct information about the layout of the scene.

3.1 Overview

Given the difficulty of detecting the duplicate structures during the initial regis-
tration, our method is a post-processing step to SfM, i.e. the input to our system
is the output of a sparse 3D reconstruction pipeline. The registered cameras and
the 3D points define a camera graph (CG) where nodes correspond to the cam-
eras, and edges exist between nodes whenever the two cameras view a common
set of 3D points. Our method uses a recursive processing procedure whose goal is
to determine if there are any errors in the current reconstruction (step ❷ and ❸

in the method outline shown in Fig. 3). During this procedure, step ❷ proposes
candidate CG splits, dividing the cameras in the current CG into two subgraphs,
which are then evaluated for conflict in step ❸.

For step ❸, each 3D point of the model is assigned to one of three classes:
points seen by cameras in both subgraphs (potentially duplicate structure),
points seen by only the cameras in the first subgraph (unique structure for this
subgraph), and points seen only by the cameras of the second subgraph (unique
structure in the second subgraph). Then, the unique structures are used to test
for conflict between the two subgraphs by counting the number of conflicting
observations between camera pairs where both cameras observe common points
but the cameras originate from different subgraphs. The number of conflicting
observations for such a camera pair provides a conflict score for the CG split.
If there is considerable conflict between the subgraphs, the CG is permanently
split and the two subgraphs are independently recursively evaluated for further
conflict. If a CG has no considerable conflict it is accepted as valid.
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After identifying the separate subgraphs of the model, our method (step ❹)
attempts to merge the subgraphs to recover the correct model. It proposes can-
didate alignments between the split 3D models (subgraphs), and then evaluates
the conflict for the merge (leveraging conflicting observations). If an alignment
with sufficiently low conflict is found, then the two subgraphs are combined;
otherwise, they are output as independent components of the reconstruction.

To review, we propose a conflict measure to detect overlap between structures
that should be spatially unique. Applying this measure both to candidate CG
splits and merges, we can successfully correct a misregistered SfM model.

3.2 Step ❶: Input Reconstruction

As our method is a post-processing step for SfM, we require as input typical
outputs of such a system [2,11,24,27]. In our results we used [27] and [24]. Our
method assumes the availability of known 3D camera poses (positions and orien-
tations), the original images (for step ❸ of our method), and the locations of the
3D points and their visibility with respect to each camera. To perform sub-model
merging (step ❹), the original feature inliers are required, i.e. which features were
verified geometric inliers between a pair of images. In the case that some of the
above input information is missing, (e.g. SfM without correspondences [10]) it
can always be computed from the images and camera poses.

3.3 Step ❷: Candidate Camera Graph Splits

We wish to generate candidate CG splits, where each split divides the cameras
into two distinct subgraphs. These two subgraphs will then be passed to step ❸,
which will evaluate the conflict between them.

Näıve potential splits can be proposed by enumerating all possible camera
groupings. Given that the CG contains m cameras and is potentially densely
connected, there would be at most 2m−1−1 possible ways to assign the cameras
to two different groups where each is a connected component (subgraph). This is
exponential in m and computationally prohibitive for most large-scale models.

Minimum Spanning Tree. To reduce the number of candidate splits, we
propose to leverage a minimum spanning tree (MST) representation similar to
the one constructed in [12], and illustrated in Fig. 4, step 2. Jiang et al. [12]
assigned to each edge a weight that was inversely proportional to the number of
3D point observations shared between the two cameras. We adopt a similar idea,
but reformulate the edge cost to account for the fact that if duplicate structure
is present, many of the images will have a large number of common points.
Accordingly, this raw number of points should not be overemphasized, hence
our edge cost leverages the following ratio where eij is the edge cost between
cameras i and j, and Oi, Oj are the sets of 3D points that are visible in each
camera:

eij = 1− |Oi ∩Oj |
|Oi ∪Oj | (1)
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Conceptually, an MST formed using this edge cost tends to link cameras together
that share similar content, and in contrast to [12], avoids biasing the results for
cameras with relatively few or many point observations.

If two cameras see the same set of 3D points then eij will be zero. Accord-
ingly, two views seeing the same instance of the duplicate structure and the cor-
responding surrounding unique structure will have a low edge cost. We denote
these edges as desired edges. Conversely, two cameras, which see two different
instances of the duplicate structure but do not see a common unique structure,
will have a significantly higher eij value and are denoted as confusing edges.

Intuitively, the MST prefers utilizing desired edges (low edge cost) to connect
cameras seeing the same instance of the duplicate structure and will only retain
confusing edges (high edge cost), when necessary, to connect cameras seeing
different instances of the duplicate structure. Accordingly, the MST will group
cameras together that see the same instance of the duplicate structure and the
confusing edges will bridge between these groups. With this observation, we can
now limit our CG splits to those that are defined by the MST, as removing a
confusing edge creates two separate subgraphs defining a candidate split. Defin-
ing the search space of candidate model splits in terms of an MST representation
reduces the number of potential candidate splits from one that is exponential in
the number of cameras to m − 1, the edges in the MST. Refer to Fig. 4, steps
1-3 for an illustration of a split in the MST resulting in two subgraphs.

3.4 Step ❸: Conflicting Observations

After leveraging the MST, the next step evaluates the conflict between the two
subgraphs produced by each split of the graph to obtain a reduced set of splits.

Common and Unique Structure. First, our approach classifies each 3D point
into one of three categories as defined below:

D = {Pk : (∃Oik ∈ O) ∧ (∃Ojk ∈ O)}
U1= {Pk : (∃Oik ∈ O) ∧ ¬(∃Ojk ∈ O)}
U2= {Pk : ¬(∃Oik ∈ O) ∧ (∃Ojk ∈ O)}

(2)

where {P} is the set of 3D points, Pk is the k-th point in {P}, O represents
the visibility of points in the cameras (Oik ∈ O if Pk is visible in camera i,
otherwise it is false), and i, j referring to camera i in the first set of cameras
and the j-th camera in the second set of cameras. The common points (the
candidate duplicate structure) between the two camera groups are denoted by
D, with U1,U2 denoting the unique points to each subgraph.

To improve our robustness to noisy scene geometry we enforce a minimum
number of observations for each 3D point, where i is any arbitrary camera:

P =
{
Pk : |{i : Oik ∈ O}| ≥ ρ

}
(3)

By setting ρ = 3 (as we did in all of our experiments), we maintain only those
3D points that are more likely to be stable and properly triangulated.
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Fig. 4. 1. Full camera graph, 2. Minimum spanning tree, 3. Candidate minimum span-
ning tree split defining two camera groups, 4. Camera pairs from the full camera graph
that were assigned to different groups

Split Camera Pairs. To evaluate the conflict of a candidate split, we analyze
the image pairs from the full CG that had originally matched but are now split
due to the images being assigned to different subgraphs. For an example of such
pairs, refer to Fig. 4, step 4. We require a minimum number γ of 3D points that
the cameras of a pair must observe in common in order to avoid images that are
weakly connected as they do not represent a reliable measure of conflict.

Next, we project the unique points observed in each image to the other image
in the pair, and test for conflicting observations. To mitigate the effects of occlu-
sion or large viewpoint change, only cameras observing the same points from a
similar surface incidence angle are considered. The difference in surface incidence
angle β between the cameras i and j with their centers (Ci, Cj) and the centroid
of their common 3D points p̄, where p̄ = mean

({
Pk : (∃Oik ∈ O)∧ (∃Ojk ∈ O)

})

(also by construction, {Pk} ⊆ D) is defined as:

β = arccos

(
dot

( Ci − p̄

||Ci − p̄|| ,
Cj − p̄

||Cj − p̄||
))

(4)

Given the limitations in matching over large viewpoint changes, our method dis-
regards camera pairs with a difference in surface incidence angle β greater than
a predefined threshold θ. The threshold θ is chosen according to the robustness
of the SfM system’s features with respect to viewpoint changes (for example,
around 20◦ for SIFT features in our experiments).

Splitting at each of the m − 1 MST edges leads to a cubic complexity of
the evaluated splits given that there is potentially a quadratic number of pairs
of cameras (for a fully connected graph) for a given split. To boost efficiency,
instead of evaluating all split camera pairs, we propose to inspect only those
pairs with the smallest surface incidence angles β, which still allows us to detect
the conflict. Specifically, we can inspect the s smallest pairs, giving quadratic
overall complexity when s is a function of m, or a fixed number of smallest pairs
(e.g. s = 100) to achieve a linear overall complexity. In our experiments, we have
found both strategies to be valid, and thus opt for the linear time approach.

As opposed to using an MST to determine the locations to evaluate conflict,
one could imagine that we could instead use a clustering or graph-cutting ap-
proach on the full CG. We avoided these as they would necessitate computing
conflict (t from the next step) between all (or a very large fraction) of the camera
pairs which could quickly become computationally prohibitive for larger CGs.
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Fig. 5. Example SLICO [1] superpixel segmentations

Conflict Measure. Our conflict measure leverages the unique points in the
scene by projecting them into the other image of the camera pair, and expecting
that they should not overlap with the unique points of that image. If there
is substantial overlap, then we have reason to believe that there is an error
in the current reconstruction (refer to Fig. 1 for an example). How does one
measure overlap in two projected sparse point sets? Ideally, spatially nearby (in
the image) unique points on the same structural surface should conflict, whereas
nearby points on separate surfaces that lie at different depths should not conflict.

To establish the surface association of the sparse points, we leverage SLICO su-
perpixels [1], whose only parameter is the desired number of superpixels. SLICO
will automatically adapt to the texture in the image in order to maintain regular-
sized superpixels (examples of which are shown in Fig. 5). To guard against arbi-
trary superpixel divisions along the same structural surface, we perform multiple
(eight in our experiments) different segmentations of each image by providing
mirrored and rotated versions of an image to SLICO. This proved to generate
a different segmentation for each (there are only eight different combinations of
90◦ rotations and mirror operations). With these segmentations, we now define
two points to be nearby if their projections lie within the same superpixel in any
of the candidate segmentations.

By leveraging the current potential duplicate (D) and unique point sets (U1,
U2) for every single camera pair, we can evaluate the subsets of these points that
are currently visible in the camera pair to identify the conflicting observations.

While we focus on conflicting unique points, the locations of the common
points (D) also provide useful information. Both [21] and [29] emphasized the
usefulness of considering the spatial location of these observations. For instance,
the presence of a matched point between two images would down-weigh the
contribution of any nearby missing correspondences. Utilizing this concept, we
obtain reduced sets (U1, U2) by ignoring unique points (from U1, U2) that occupy
the same superpixel as a common point (from D) in any of the segmentations.

For a given pair of images, we define the conflict t between them to be the min-
imum number of points from U1 or U2 that conflict in both images. If proj(U1)
is the projection of the points U1 into the second image, and proj(U2) is the
projection into the first, then the conflict t is defined as:

N = near
(
U1, proj(U2)

) ∩ near
(
U2, proj(U1)

)
(5)

t = min
(∣
∣{u1 : u1 ∈ U1 ∧ u1 ∈ N}∣∣, ∣∣{u2 : u2 ∈ U2 ∧ u2 ∈ N}∣∣

)
(6)
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where near() returns the points that are nearby as defined by the superpixel
segmentations. To provide further intuition, consider the case where one unique
point from U1 conflicts with many from U2. This single point from U1 could be
an extraneous structure, and should not count as significant conflict even though
it conflicts with many points from U2. Therefore, we leverage the minimum of
the two set sizes, as this enforces a stronger indication of the presence of conflict.

Given the conflict t for a single split camera pair, the conflict over the split
CG is the average of the conflicts from all split camera pairs between the two
subgraphs (step 4 in Fig. 4). This average is then independently computed for
each split in the MST. If the MST split with the highest conflict is above a
predefined threshold τ , we remove the corresponding edge from the MST to
generate two separate subgraphs. Each of these subgraphs is then processed by
reapplying steps ❷ through ❹ with the exception of not recomputing the MST.
This is recursively repeated until we are left with a set of subgraphs that are
free from conflicting observations, i.e. their conflict is below our threshold τ .

3.5 Step ❹: Model Merging

Once we have a set of camera subgraphs that are free from significant conflict,
we now seek to merge them together and recover a correct reconstruction (if one
is possible, as the images may come from entirely separate scenes).

The key concept that we leverage here is the idea of disconnected inliers.
Disconnected inliers are pairs of 3D points whose 2D features had been identified
as inliers during the two-view geometric verification of an image pair in the SfM
processing. However, due to the duplicate structure in the scene (or potentially
other factors, such as feature mismatches) the inlier ended up being triangulated
as two separate 3D points. Therefore, to recover candidate merges, we estimate
3D similarities that would align and reconnect the disconnected inlier points.

To estimate the similarity between the split subgraphs (and their associated
disconnected inliers), we leverage a RANSAC technique, once again enforcing
that a candidate solution should be made up of at least γ points in order to be
considered further. Note that when generating candidate similarities, we ignore
any common points that are shared between two or more subgraphs (a union
of the final D sets from each of the split subgraphs, which we denote DFinal).
These points are the final duplicate structure, and as such, are not reliable for
merging as they define the duplicate structure within the scene. However, once
a candidate similarity has been proposed, we recompute the similarity inlier set
using all disconnected inliers (even including duplicate points).

For each candidate solution, we transform the camera poses using the simi-
larity T and update the unique 3D point structure of the subgraph. The points
shared between subgraphs (the duplicate structure) are duplicated and trans-
formed using T to correctly represent the duplicate scene structure. Then, the
conflict between the two merged subgraphs is computed. In order to compute
this conflict, inliers to T are identified as common structure D. Furthermore,
we load any existing 2D inliers for an image pair (from two-view geometric ver-
ification) and mark superpixels containing the 2D inlier locations as common
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Table 1. Statistics showing the number of cameras and points in the dataset, the time
required for our method, and the software used to generate the initial reconstruction

Dataset Name # Cams # Points Time SfM

1 Big Ben (using iconics) 13590 167375 20.5 m [27]

2 Berliner Dom 1618 245079 9.8 h [27]

3 Sacre Coeur [26] 1112 378882 4.4 h [24]

4 Notre Dame [26] (iconics) 885 176099 1.8 h [24]

5 Alexander Nevsky Cathedral 448 92948 16.6 m [27]

6 Arc de Triomphe 434 93452 16.3 m [27]

7 Radcliffe Camera 282 71107 31.9 m [27]

8 Church on Spilled Blood 277 76582 1.4 h [27]

9 Brandenburg Gate 175 23933 3.0 m [27]

10 Indoor [12] 152 69632 3.1 m [27]

11 Cereal [21] 25 12194 36 s [27]

12 Street [21] 19 7607 39 s [27]

structure. We do the latter to recover correspondences that would otherwise not
have existed because the SfM algorithm ended up placing the cameras at sep-
arate locations within the scene (and choosing not to incorporate the relative
pose initially computed between the images).

If the conflict is less than τ , the merge is considered correct. Otherwise, we
ignore the points that were inliers to T , and attempt to estimate a different
similarity. This continues until either a correct merge is found, or no solution can
be computed with γ or more inliers. By repeating this process between all split
camera groups, we merge all subgraphs that have valid overlapping geometry
and recover a more complete and correct representation of the scene.

Now that we have correctly identified the duplicate structure within the scene
(DFinal), this information can be used to allow additional images to be registered
to the reconstruction. For instance, when registering a new image, the image
should not be allowed to register only to points contained within DFinal, but
should instead incorporate unique points not in DFinal. In this manner, new im-
ages will not be incorrectly registered to the duplicate structure. Furthermore,
this process could be embedded into an incremental SfM pipeline, so that disam-
biguation would occur at certain intervals to detect and mark as confusing any
duplicate structure that is found. This would successfully addresses the source
of the problem (the behavior of incremental SfM) as described in Section 1.

4 Results

In order to evaluate our method, we applied it to a wide variety of datasets (see
Table 1 for a detailed overview of the datasets that led to misregistered models,
not including those in Fig. 6 that were already correct). First, we evaluated
our method on datasets from previous papers [12,21,26], using their qualitative
evaluation metric for the correct camera and model arrangement. Fig. 7 (models
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3, 4, 10–12) illustrates the output of our method on these existing benchmark
datasets. Upon close inspection, we perform equally well or better than previous
methods on their datasets as we split their models correctly (avoiding oversplits)
and merge the ones that are mergeable (datasets 10–12). For instance, in dataset
4, we avoid oversplitting the front from the back of Notre Dame, as in [26], though
our method did output a small nighttime model, as there were day and nighttime
versions of local image features that corresponded to the same geometry, and
thus generated conflict. We did leverage iconic selection [11] for this dataset,
and for dataset 3, we used the set of images that viewed Sacre Coeur in the
covering subgraph from [26]. In addition, we also ran our method on the Seville
Cathedral and Louvre datasets from [26]. For the Seville Cathedral, our method
split the model into three main components, whereas [26] had oversplit into four.
For the Louvre, we had to set τ = 2.0, and were able to split it into two main
sub-models. As a note, [26] split the Louvre into three sub-models, the difference
being that their method split two components that were correctly oriented with
respect to each other but reconstructed at different scales.

To validate that our method only alters misregistered models, we tested it on
reconstructions that were already correct (eight of which are shown in Fig. 6).
In these cases, our method correctly identified them as having negligible conflict
and did not attempt further processing.

Beyond benchmark comparisons, we evaluated our approach on seven novel
datasets downloaded from Flickr (Fig. 7, models 1, 2, 5–9). These datasets con-
tain several duplicate structures, and are common examples of the types of am-
biguities found in urban scenes. They also represent the originally targeted (and
previously unsolved) challenge of robustly disambiguating duplicate structure
without making a priori assumptions on the number of correct final models to
output. For datasets 1, 2, 5, 6, our method correctly split and merged the recon-
structions into a single large model. It even handled the difficult challenge of Big
Ben (dataset 1) where there were three split subgraphs in the reconstruction. For
dataset 6, our method did output a small nighttime model. The remaining three
novel datasets (7–9) successfully split and then remained as separate models, as
we manually verified that there were insufficient overlapping views to support a
merge. The primary reason for this lack of overlapping views is the layout of the
scene itself, where photographers are limited in the number of accessible vantage
points from which a desirable photo can be taken.

For further comparison, we ran the code from [26] on our novel datasets. For
Big Ben, [26] split it into only two sub-models, failing to distinguish the front and
back of the tower. The Berliner Dom split into five models, two of which failed to
split the front of the building from the side. Alexander Nevsky Cathedral failed
to split at all, but the Arc de Triomphe was correctly split into two components.
Radcliffe Camera was oversplit into three models. The Church on Spilled Blood
was split into two correct models, but the third smallest camera group was
discarded as it was not included in the covering subgraph. Additionally, the
Brandenburg Gate remained as one model, but all cameras from the back side
of the structure had been discarded. Note that in the generation of these results,
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Fig. 6. Example error-free reconstructions correctly identified by our method. From
left to right: Trevi Fountain, Sistine Chapel Ceiling, Harmandir Sahib, Colosseum,
Notre Dame Facade, Stonehenge, Statue of Liberty, and CAB [8].

Fig. 7. Example results from our system. Within each dataset cell: top-left is the
original reconstruction, top-right is the final merged or split result (split results are
separated by a vertical dashed line), and the bottom shows example images from the
different split camera subgraphs. Dataset ordering (1-12) corresponds to Table 1.

we extracted 2D tracks (the required input to [26]) from already triangulated
3D points. This should be a benefit to the system, as they are already cleaner
than the tracks typically used as input in [26].

While our method exercises approximately linear computational complexity,
for large datasets the corresponding overhead can still be reduced by leveraging
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the idea of iconic view selection from Frahm et al. [11]. Please note this reduction
is not required but provides computational savings. For the Big Ben dataset
(13,590 images) we extracted 402 iconics in approximately linear time. Then, we
split and merged a reconstruction built from only iconic images and registered the
remaining cluster images to the reconstruction by attaching them to their iconic,
along with other nearby images of the same camera subgraph. By only registering
to images within the same subgraph, we ignore the effect of multiple instances
of duplicate structure in the scene and only register to the instance viewed
in the current subgraph. Leveraging the iconics yields the desired corrected 3D
model while boosting efficiency due to the significantly reduced number of images
considered in the splitting and merging.

While our method performed well on the datasets that we tested, the key
assumption enabling our method is the existence of unique structure. If, for
instance, the set of images or resulting reconstruction consists only of duplicate
structure, our method cannot identify that the images may have come from
different instances of the duplicate structure. However, this is rarely the case for
real-world datasets, thus making our approach a viable option for general use.

For all experiments (except where previously noted) the same set of param-
eters (γ = 8, θ = 20◦, 100 superpixels per image, s = 100, and τ = 7.0) was
used, underlining the robustness of our method. Execution times are from our
MATLAB implementation on a 3.3 GHz Xeon processor with 48 GB of RAM.

5 Conclusion

We have presented a novel post-processing method to detect and resolve recon-
struction errors caused by duplicate structure (a common occurrence in urban
environments). Our method is based on the strong and informative measure of
conflicting observations. Our data-driven recursive formulation allows us to not
only split an incorrect reconstruction, but to merge it back together (if possible)
to recover an error-free result without making assumptions on the final num-
ber or configuration of distinct scene elements. In this regard, our experiments
confirm that we outperform existing state-of-the-art methods.
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