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Abstract. This paper describes a novel approach to the fusion of mul-
tidimensional images for colour displays. The goal of the method is to
generate an output image whose gradient matches that of the input as
closely as possible. It achieves this using a constrained contrast map-
ping paradigm in the gradient domain, where the structure tensor of a
high-dimensional gradient representation is mapped exactly to that of
a low-dimensional gradient field which is subsequently reintegrated to
generate an output. Constraints on the output colours are provided by
an initial RGB rendering to produce ‘naturalistic’ colours: we provide a
theorem for projecting higher-D contrast onto the initial colour gradients
such that they remain close to the original gradients whilst maintaining
exact high-D contrast. The solution to this constrained optimisation is
closed-form, allowing for a very simple and hence fast and efficient algo-
rithm. Our approach is generic in that it can map any N-D image data to
any M -D output, and can be used in a variety of applications using the
same basic algorithm. In this paper we focus on the problem of mapping
N-D inputs to 3-D colour outputs. We present results in three applica-
tions: hyperspectral remote sensing, fusion of colour and near-infrared
images, and colour visualisation of MRI Diffusion-Tensor imaging.

Keywords: Image fusion, gradient-based, contrast, dimensional reduc-
tion, colour, colour display.

1 Introduction

As imaging technology has developed to solve a variety of problems, so the
richness of imaging systems data has increased. Hyperspectral imaging systems
used in remote sensing, for example, routinely capture > 200 channels of spectral
data [5], while medical imaging systems capture multi-dimensional, and multi-
modal image sets [19]. Ultimately these images are often interpreted by human
observers for analysis or diagnosis, and it is therefore crucial that dimensionality
is reduced such that the image can be displayed on an output device such as a
colour monitor. This process is termed image fusion.

Thus, in the image fusion problem, there can be 10, or 20, or hundreds of values
per pixel, and we are interested in reducing the number to 1 for a representative
greyscale output or 3 for colour visualization. The simplest way to visualise

D. Fleet et al. (Eds.): ECCV 2014, Part V, LNCS 8693, pp. 65–80, 2014.
c© Springer International Publishing Switzerland 2014



66 D. Connah, M.S. Drew, and G.D. Finlayson

the information is to simply average the values to produce a greyscale. This
approach preserves basic scene structure but suffers from metamerism, where
different multi-valued inputs are assigned the same output value.

Where the input values correspond to radiances at different wavelengths, a
colour output can be generated by mapping the visible part of the spectrum
to display RGB via projection onto a set of colour matching functions, which
represent human sensitivity to wavelength [20]. At least such an approach pro-
duces a ‘naturalistic’ RGB image, where we define ‘natural’ as the colours that
would be seen by a human observer, but it begs the question of how to take
into account the influence of spectral values beyond the human visual system’s
sensitivity. One idea is to simply stretch the colour matching functions over the
full wavelength range of the data [20]; in this case the displayed output pro-
duces a false-colour RGB visualisation of the entire spectral range. In general
false-colour visualisations can be hard to interpret when object colours are very
different from their natural appearance. Furthermore, these spectral projection
methods do not say how to fuse non-spectral multi-valued data, e.g. multi-modal
medical data.

In order to incorporate non-spectral data a more general approach is required.
Generic dimensionality techniques such as PCA [37] or ISOMAP [8] can be
applied to map multi-valued data to a 3-D space that is then interpreted as colour
values. These approaches maximise the separation of colours in the output image,
i.e. minimise the incidence of metamerism, but again produce false colourings.
Also, while the incidence of metamerism may be minimised relative to some
global objective function, there often aren’t enough degrees of freedom to remove
it completely.

To get closer to the preservation of all the multi-valued information in the out-
put image, spatial information must be taken into account [30]. This can be done,
for example, by transforming images into a multiscale representation, merging
information at each spatial scale, and then inverting the multiscale transforma-
tion to produce an output image [4,24]. Practically, while this has the potential
to preserve more information, artefacts such as haloing and ghost images are
common. Also, the outputs are rendered in greyscale, which is a disadvantage.
One way around this is to retain the RGB colour information whilst swapping in
the new greyscale to take the place of the original luminance (i.e., intensity) in-
formation [35,31]. However, while such an approach does produce colour output
in the fused image, the 3-D nature of colour is not fully harnessed.

An alternative approach to incorporating spatial information is to work in
the gradient domain, where edge information is represented. Gradient domain
processing has attracted significant interest due to the importance of edges in
human perception [7], and has been applied in a range of fields such as HDR
processing [12], image editing [28], and computational photography [3] among
others. In the area of image fusion a key paper is the contrast preserving vari-
ational algorithm of Socolinsky and Wolff [33] who generate a greyscale im-
age such that its gradient matches that of a multi-channel image as closely as
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possible. This approach preserves key image information in the output, but still
generates a greyscale output.

In this paper we present a gradient domain approach to image fusion that: gen-
erates colour outputs, incorporates constraints to allow a more ‘natural’ colour
labelling, and can be applied to both spectral and non-spectral data. The ap-
proach is motivated by the work of Socolinsky and Wolff and the colorisation
work of Drew and Finlayson [11], who use a gradient domain decomposition to
apply the gradient from a greyscale image to a colour image, which they use
to regulate the output of a colorization algorithm. The key contribution in the
present paper is a theorem similarly yielding a gradient decomposition, but one
which can be applied to the more general N -D to M -D mapping. This result
allows us generalise Socolinsky and Wolff’s work [33] to map N -D images to a
colour, rather than just greyscale, output while also exactly matching contrast1.

Our Spectral Edge (SpE) method is applicable to any domains where a) a
transformation is required from an N -D space to an M -D space, b) the images
in the individual channels are registered, and c) there is a a putative M -D image
available with a viable colour scheme; this image may be captured by a separate
device, or generated from the image data. The generality of the method makes
it applicable to a wide range of problems, including: mapping multispectral /
hyperspectral images to RGB; fusing RGB and NIR images; colour to greyscale;
mapping 3D colour images to 2D to enhance images for colour-deficient ob-
servers; pan-sharpening; multi-exposure; dark flash; and visualisation of high-D
medical image data such as MRI or time-activity curve data, to name a few. In
this paper we report results for the applications of remote sensing, RGB / NIR
fusion, and medical DTMRI data, with the output a colour image (M = 3) and
N > M . Clearly for visualising medical data there is no concept of a ‘natural’
colour image; in these cases we can constrain the output colours using a putative
false-colour labelling that is appropriate for the task.

The paper is organised as follows: in the next section we review related work
in the application areas that we tackle in this paper; in §3 we describe the
underlying mathematical formulation, and algorithmic details, of the method; in
§4 we show the results of the method for three representative applications; and
we conclude the paper in §5.

2 Related Work

The image fusion literature encompasses a wide range of applications and tech-
niques. Different channels are typically treated as independent greyscale images
and mapped to a single greyscale output, e.g. by averaging them. A popular
framework is to decompose each channel into a multi-scale representation, fuse
the images at each scale – e.g. by choosing the maximum wavelet coefficient
over all images for that pixel / region – and inverting the decomposition step
to recover a greyscale output. This approach has been followed using Laplacian

1 U.S. patent granted March 2014 [6].
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pyramids [4] and their variants [36], wavelets [24], complex wavelets [23], per-
ceptual transforms using centre-surround filters [38], bilateral filtering [21], or
multi-scale representations of the first fundamental form [32]. These methods
are often complex and intensive to compute, as well as being prone to generat-
ing artefacts when conflicting information appears in different image channels,
making them more suited to fusing pairs of images rather than multiple chan-
nels. Finally, the base layer of the pyramid, or wavelet decomposition, is often
a low-pass average image, which can lead to poor colour separation at edges for
low spatial scales.

Socolinsky and Wolff [33] cast image fusion as a variational problem, where
the goal is to find a greyscale output with gradient information as similar as
possible to the input image set. This approach solves the problem of greyscale
separation at low spatial scales, but can also be prone to warping artefacts
close to edges. These are exacerbated by the ambiguity of gradient ordering
at each pixel [15]. Piella [29] uses a variational approach to generate an output
that simultaneously preserves the underlying geometry of the multivalued image,
similarly to Socolinsky and Wolff, and performs an edge enhancement to improve
greyscale separation at object boundaries. The integration of gamut constraints
means that potential for artefacts is greatly reduced using this method, but
necessitates that the objective function is minimised using an iterative gradient
descent scheme, which restricts the speed of the method. As with the wavelet-
based approaches, the outputs are in greyscale only.

Several strategies exist for mapping high-dimensional images to RGB, rather
than just greyscale. Jacobson et al. [20] investigate different fixed projections;
these have an advantage over adaptive methods that colours remain fixed across
different visualisations, but the disadvantage that they preserve less information.
Adaptive approaches using standard decompositions such as PCA and ICA have
also proved popular. Tyo et al. [37] use PCA to extract a 3-D subspace from
the spectral data, and then rotate the basis of this space so that the final 3D
co-ordinates form a plausible RGB image. While this approach is information
preserving, the false coloured output can deviate from the ‘natural’ representa-
tion, and the global nature of the transform means that localised metamerism
may still be common.

In particular applications greyscale fusion schemes can also be applied to gen-
erate colour outputs. Schaul et al. [31] employ fusion of near-infrared (NIR)
and RGB images as part of a de-hazing scheme. They firstly decompose the
RGB image into an opponent-based representation and then use an edge-aware
multiscale representation to fuse the NIR and luminance channels into a single
greyscale. This greyscale is then swapped into the original image as the lumi-
nance component. Our approach differs in that it maps the contrast of each of
the R, G and B, channels as well as the NIR image, rather than just luminance
and NIR. Fay et al. [13] use dual-band RGB / long-wave infrared (LWIR) to im-
prove night-vision in low-light settings. This work, which results in fused colour
imagery, is specifically focused on a low-light-sensitive visible-light CCD imager.
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The approach we outline here is generic, in that it can be applied to a range of
input and output dimensions. In this respect our work is closely related to that of
Lau et al. [22] who proposed an optimisation based approach to colour mapping.
They firstly cluster input colours into groups, and then maximise separation
of those groups in a target colour space. They also include constraints on how
far resulting colours can deviate from the colours in the target colour space
such that the output remains ‘naturalistic’. Although the goal and application
of our technique is similar, our approach is markedly different in that we work
on gradients, thus focusing the colour separation on spatial boundaries between
objects or segments. The speed and low complexity of our method also makes it
more suitable for visualising hyperspectral images.

In medical imaging, high-D information such as Time-Activity Curve multi-
dimensional data is routinely reduced to RGB output, using various strategies
such as false-colour renderings of the final sample or of the integral under the
curve (cf. [19]). Our approach can be adapted to any application where a viable
3D colour output is available, whether one that is natural or colour obtained as
a pseudocolour rendering. Our gradient domain approach focuses on separating
colours at object boundaries, and can be used to improve colour visualisations
derived from global mappings such as ICA or PCA.

3 Spectral Edge Image Fusion (SpE)

3.1 Definition of Gradient and Contrast

The goal of our method is to preserve the gradient of a high-dimensional image
in a low-dimensional representation. The gradient of a multi-channel image C at
a single pixel is given by the gradient matrix:

∇C =

⎡
⎢⎣
C1

,x C1
,y

...
...

CN
,x CN

,y

⎤
⎥⎦ , (1)

where the function Ci is the ith channel of an N -channel imageC and subscripts
x and y denote derivatives in the x- and y-directions. The gradient matrix ∇C
contains the partial derivatives of C in the x and y directions; the gradient in
direction d = [cos θ, sin θ]

T
is ∇C d . Assuming a Euclidean metric, the squared

magnitude of the gradient in direction d is given by:

m2 = d T (∇C )T∇C d . (2)

The 2 × 2 matrix ZC = (∇C )T∇C is known in differential geometry as the
First Fundamental Form, and was introduced to the image processing literature
by Di Zenzo [10] as the structure tensor.

The structure tensor representation is powerful because it encodes magnitude
information for the N -dimensional matrix in 2 dimensions: given ZC we can
compute the gradient magnitude in any direction d .
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A fundamental idea behind our method, therefore, is: in order for a low-
dimensional image (low-D) to have an identical contrast to a high-dimensional
image (high-D), the structure tensor for both must be identical.

3.2 Exact Contrast Mapping

In Socolinsky and Wolff [33], the authors have a similar goal in mapping high-D
contrast, defined by the the structure tensor, to a scalar image, approximately.
In the first stage of their algorithm they define a scalar gradient field ∇I by
multiplying the first eigenvector ofZC by the first eigenvalue ofZC ; the resulting
gradient field has the closest possible possible structure tensor – ZI – that a
scalar field can have to ZC in the least squares sense.

In the novel approach presented here, instead of creating a scalar gradient-
field we create M gradient fields, where M is the number of channels in our
output image; we refer to this set of gradient fields as an M -D gradient-field. By
doing this we can now generate an M−D gradient field whose structure tensor
matches the original structure tensor ZC exactly.

In order to ensure that the output is coloured naturally, we suppose that we
have access to a putative low-D version R̃ of the high-D image data which has
naturalistic colours: this image may either be captured by a specific device (e.g.
an RGB camera), or generated from the high-D using some algorithm (e.g. a true
colour rendering of remote sensing data). We then use the contrast information
from the high-D image, and the colour information from the putative low-D
image, to generate a new low-D gradient field, which we finally reintegrate to
generate a colour output. This idea motivates the following theorem:

Spectral Edge (SpE) Projection Theorem:

Given a multidimensional image C and a putative RGB “guiding” image R̃, we
can generate a new RGB gradient matrix ∇R that is as close as possible to the
gradient of the RGB image, and whose contrast matches that of C exactly.

For the most common application of our method, we start with anN -D higher-
dimensional input image H , with the goal of generating a 3-band colour image
R = (R,G,B). We denote the desired colour gradient at each pixel by ∇R ,
which is a 3× 2 gradient matrix:

∇R =

⎛
⎝

R,x R,y

G,x G,y

B,x B,y

⎞
⎠ (3)

This is the output of our algorithm, which is subsequently to be reintegrated.
We also have a putative RGB colour image, generated by some initial al-

gorithm or captured by a colour camera, which we denote R̃. We denote the

gradient matrices of these images as ∇H , ∇̃R , and ∇R for respectively the

high-D image, putative RGB image, and output RGB image. We notate ∇̃R
carefully since it is in fact the putative colour gradient we wish to alter to create
an output RGB gradient.
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For our 3 gradient fields, the Di Zenzo matrices are defined as:

ZH = (∇H )T (∇H ) , ZR = (∇R )T (∇R ) , Z̃R = (∇̃R )T (∇̃R ) (4)

Now we aim to satisfy two conditions: (1) For a generated ∇R , i.e. the result
of the theorem, we wish ZR to equal ZH , the structure tensor for the higher-
D image, so that contrast is mapped exactly from high-D to low-D; and (2)
the output gradient ∇R should approximate as closely as possible the putative

gradient ∇̃R , so that no large colour shifts are obtained. That is, we desire an

altered colour gradient ∇R � ∇̃R , subject to (1) and (2).
A solution obeying (1) can be found easily if we keep only within the span of

colour gradient ∇̃R , and seek a 2× 2 linear matrix transform A such that

∇R = ∇̃R A (5)

so that the colour gradient will not differ greatly from the approximation.
In that case the desired relation between Di Zenzo matrices is as follows:

ZR ≡ ZH

⇒ ZR = ∇R T∇R = A T ∇̃R
T ∇̃R A ≡ ZH

⇒ A T Z̃R A ≡ ZH

(6)

Given this relation, we satisfy (1) above provided matrix A is any solution of
(6). For example, one solution is given by:

A =

(√
Z̃R

)+ √
ZH (7)

where the matrix square root is the unique symmetric root [18] of the real positive

semi-definite symmetric matrices Z̃R andZH , and + indicates theMoore-Penrose

pseudoinverse (even though

√
Z̃R is square, nonetheless we guard against insta-

bility by using the pseudoinverse rather than the inverse).
To show that A is indeed a valid solution we can see that:

A T Z̃RA = (
√
ZH

√
Z̃R

+

)Z̃R(

√
Z̃R

+√
ZH) = ZH (8)

since
√
ZH and

√
Z̃R

+

are symmetric.
The complete set of solutions solving (6) then consists of all matrices A that

are any 2× 2 orthogonal transform O away from (7):

A =

(√
Z̃R

)+

O
√
ZH , O T O = I 2 (9)

since any such solution satisfies (6):

A T Z̃RA = (
√

ZHO T

√
Z̃R

+

)Z̃R(

√
Z̃R

+

O
√
ZH) = ZH (10)
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To produce realistic colours we also wish to fulfil constraint (2) , that the
adjusted gradient ∇R approximates as closely as possible the putative colour

gradient ∇̃R . From (5), this implies a constraint on rotation O as follows:

∇R � ∇̃R

⇒ ∇̃R A � ∇̃R
⇒ A � I 2

⇒
√
Z̃R

+

O
√
ZH � I 2

⇒ O
√
ZH �

√
Z̃R

(11)

with I 2 the 2 × 2 identity matrix. The last line of (11) says that O should

be chosen to rotate
√
ZH such that it is as close as possible to

√
Z̃R. This

problem is known as the Orthogonal Procrustes Problem [18]; the solution in
the least-squares sense is to firstly use a singular value decomposition to express
the product of square roots of Z̃R and ZH :

√
Z̃R

(√
ZH

)T

= D Γ E T (12)

with Γ diagonal (the transpose on the second term above is actually unnecessary

since

√
Z̃H is symmetric but we include it to agree with the formulation in [18]).

Then the solutionO that minimises the last line of (11) in terms of Least Squares
is given by:

O = D E T (13)

We can now obtain A by substituting this solution for O into equation (9),
and then directly derive a modified colour gradient ∇R using (5). �

Importantly, we note that in this theorem ZH is not in fact restricted to being
derived from a higher-dimensional image — it can be any Di Zenzo matrix from
an image of any dimension, e.g. that for a greyscale Near-Infra-Red (NIR) image,
or alternatively that for a 4-D image generated by appending the NIR image to
RGB. SimilarlyR could refer to an output of any dimension, provided a putative

gradient ∇̃R can be specified.
In summary, starting from a lower-D image containing a naturalistic rendering

of the scene R̃, at each pixel we find a transform A of the M×2 gradient matrix
of the lower-D image such that (i) the altered gradient has an identical contrast
as that for the higher-D image – i.e. we transfer the higher-D contrast to the
lower-D image; and (ii) the altered lower-D gradient ∇R remains in the span
of the unaltered gradient, at each pixel; i.e. the new M × 2 gradient is a 2 × 2
linear transform away from the putative gradient.

3.3 Reintegration

The contrast mapping process results in an M -D gradient matrix ∇R at each
pixel location. We would like to treat ∇R as a set of M gradient fields, one
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for each output channel, defined by the rows of ∇R . The final phase of the
algorithm is to reintegrate each gradient field in turn to generate M new output
channels. However, in general each of the approximate gradient fields will be
non-integrable, i.e. will not in fact be the gradient for a scalar image. An output
image must therefore be reconstructed by computing an image whose gradient
matches that of the target field as closely as possible, by minimising some error
function. Interestingly, however, we have more information available here than
in the traditional reintegration problem of forming a greyscale image I from a
gradient-approximation – we have the actual, N -D image dataset itself.

If we denote the approximate gradient field from the i-th channel of ∇R as
P i =

(
Ri

,xR
i
,y

)
, then we seek a scalar image I such that:

Ri = argmin
I

‖P i −∇I‖n (14)

where n defines the norm used in the error function. For n = 2 the solution could
be given by the solution to Poisson’s equation, and a number of approaches have
been applied to do this, e.g. [16,1]. However since here we also have the N -D
data H , we can use the look-up-table approach of Finlayson et al. in [15,14],
which minimises the error function in (14) for n = 2 using a LUT mapping from
the high-D image H to each Ri. This constraint means that the final image is
guaranteed to be free of artefacts, and facilitates the operation of the algorithm
in real time. Importantly, in [15] it was shown that if a multi scale gradient
is approximately integrable across multiple scales then a LUT mapping is the
correct reintegrating function.

3.4 Implementation Details

To compute the gradient matrices ∇̃R and ∇H we use local finite differencing,
i.e. for an imageC at pixel (x, y) and channel i, Ci

,x(x, y) = Cp(x−1, y)−Ci(x, y)
and Cp

,y(x, y) = Cp(x, y − 1)− Cp(x, y), although other gradient operators, e.g.
Sobel operators, would serve the purpose just as well. Furthermore, given the
global nature of the reintegration approach in [15], the gradient operator could
also be applied at different spatial scales, and reintegrated simultaneously. For
other reintegration techniques the finest spatial scale is advised to reduce blur-
ring in the output. There is a potentially large discrepancy in image dimension-
alities between input and output, i.e. N � M for input dimensionality N and
output M , and as a result the total high-D contrast may not be displayable
within the low-D gamut. Here, we mitigate this with a simple contrast scaling
approach whereby 99% of pixel values are mapped within the image gamut, al-
though more complex gamut mapping strategies could also be employed [25] as
post-processing after applying the algorithm.

The complexity of the contrast projection algorithm is O (P ), where P is
the number of pixels. The complexity of the reintegration is also O (P ) [15],
although using other approaches, such as iterative Poisson solvers, can increase
the complexity. Memory requirements are low, since most of the calculations are
performed on 2×2 structure tensor matrices. In our case the chosen reintegration
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[15] increases memory requirements since the high-dimensional image needs to
be stored and used in the reintegration. But the chief advantage of this method
is its ability to remove artefacts.

The method is general in the choice of output colour space. We represent
images in sRGB for the applications here, but the putative low-D image could
be represented in a different space, e.g. a perceptually uniform space such as
CIELAB, and then mapped to sRGB for display. This would be a good approach
in applications where Euclidean distances in sensor-space should correlate with
the magnitude of perceived differences in the output.

4 Experiments

4.1 Experiment Paradigms

In this paper we show results of our method in three application areas: i) hy-
perspectral / multispectral remote sensing, ii) fusion of NIR / LWIR (thermal
imaging) with RGB; and iii) medical MRI diffusion-tensor imaging. Each of the
applications falls naturally within the same computational framework; we ex-
plain below how to adapt this framework for each application.

Remote Sensing Applications. Images captured for remote sensing applica-
tions, e.g. from satellite or airborne imaging systems, typically span the visible,
near infra-red and far-infra red wavelength spectrum. Here we use data from two
publicly available datasets: a) Landsat 7 [27], and b) AVIRIS [26]. The Landsat 7
satellite captures 8 separate images; 3 in the visible range, 4 IR images (including
one thermal image) and a panchromatic detail image; these images are captured
using a scanning radiometer. The three visible images are captured from 450-
515nm (blue), 525-605 (green), and 630-690 nm (red), and we use these as the B,

G and R channels respectively of R̃; H then consists of the three RGB channels,
and three IR images captured at: 750-900nm (NIR); 1550-1750nm (SWIR); and
2090-2350nm (SWIR). We omit the thermal and panchromatic channels as they
have different spatial resolutions than the other images.

The AVIRIS data is captured from an airborne imaging system, and uses a
“sweep-broom” hyperspectral camera with 224 adjacent spectral channels, which
span a spectral range 380-2500 nm and are sampled at approximately 10nm
intervals. To generate R̃ in this case we project the visible wavelengths, 380-
730nm, onto the sRGB colour matching functions [34], to generate a true-colour
sRGB rendering; H is composed of all 224 channels.

Visualising NIR / LWIR Images. Pairs of RGB and NIR (or thermal)
images can be captured using different methods, e.g. using a beamsplitter and
two CCD arrays to capture registered NIR and RGB, or taking successive pho-
tographs with an IR filter (“hot mirror”) present and absent.

To apply our technique to this problem we construct a 4-D image H by ap-
pending the NIR channel to the colour image. This 4D image is used to calculate
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the high-D gradient ∇H while the original RGB image is used to calculate the

putative gradient ∇̃R .
We compare our technique with: (a) “alpha blending”, where the RGB out-

puts, Rout Gout, and Bout are constructed as convex combinations of the RGB
and NIR input images, e.g. Rout = αR + (1 − α)NIR for 0 ≥ α ≤ 1; (b) “lu-
minance replacement”, where the RGB image is firstly mapped to YIQ space,
and the luminance component, Y, is then replaced by the NIR image; (c) the
colour-cluster optimisation method of Lau et al. [22].

Medical Applications. In some fusion applications there is no “true-colour”
rendering of the input image available, but labelling the input data using colour
still has value for interpreting the data. In medical imaging, for example, mul-
timodal and multidimensional imaging devices such as PET, MRI and diffusion
tensor imaging (DTI) systems are used to gather physiological data that is dis-
played as an image, and used by clinicians to aid diagnosis.

Here we apply our algorithm the problem of visualising MRI Diffusion-Tensor
data. In this application the data consists of 3×3 symmetric positive semi-definite
matrices at each spatial location, and is hence 6-D. To preserve its character,
6-D vectors are formed respecting a Log-Euclidean metric [2]. The most common
method for visualising such data is to display loadings on the first 3 principal
component vectors [37]. A more perceptually meaningful approach than PCA
is to carry out multi-dimensional scaling (MDS) on the 6-vectors, descending
to 3-D [19]; then the result is conceived as approximately perceptually uniform
CIELAB colour and then mapped to standard gamma-corrected sRGB display
space. To apply our algorithm we use both PCA and MDS approaches to generate

different putative RGB outputs ∇̃R , and the 6-D tensor output to calculate
∇H .

4.2 Results

Results from the multispectral Landsat data are shown in Figs. 1 and 2, and
a result from the hyperspectral AVIRIS data is shown in Fig. 3. Each exam-
ple includes the RGB rendering, an example IR image, and the output of our
method. For Fig. 3 we also show the result of using a stretched colour-matching
function approach (cf. [20]). In each case the content of the output SpE image
shares the same colour scheme as the putative true-colour RGB output, and as
well integrates the information from the additional channels. In particular, be-
cause of the inclusion of IR data, the presence of bodies of water becomes more
pronounced than in the original.

Figures 4 and 5 show results for the problem of merging RGB and NIR images.
In Figs. 4(c,d) alpha-blending and luminance replacement outputs significantly
alter the natural colouring. The method of Lau et al. Fig. 4(e) attempts to incor-
porate detail from the NIR image and does keep natural colours. Our approach
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(a) RGB (Putative) (b) SWIR (c) SpE output

Fig. 1. A remote sensing example using images from Landsat [27] (see text for details)

(a) RGB (putative) (b) MWIR (c) SpE output

Fig. 2. A second image set taken from the Landsat database

focuses on preserving the information content in all four input image planes; as
a result the presence of the NIR image is much more noticeable in regions of
low contrast in the original RGB, e.g. around the trees. In Fig. 5 we succeed in
keeping colour information intact while displaying NIR information more visibly.
As in the non-gradient approach [17], age-spots are removed, along with freckles;
but as well, more of the NIR content is displayed using the SpE method.

We also demonstrate that our method can be used to fuse RGB with longer-
wave, even thermal, IR (wavelengths > 10μm). Figure 6 shows fusion results for
an image from the OTCBVS dataset [9], which contains registered RGB and
thermal images. The fusion is successful, with hidden structures made visible.

In Fig. 7 we show results for the medical, DTI, application. This data consists
of 55 axial images of brain slices, each representing a different depth plane. In
Fig. 7(a), we use PCA weightings to generate a putative RGB for a single axial
slice, mapped to RGB and with each colour channel mapped to [0..1]. In Fig. 7(b)
we show results of the SpE method for the same slice; the image clearly better
incorporates full 6-D contrast information.

In Fig. 7(c) we show the same slice, where the putative RGB is generated
from an MDS scaling; this image is taken from [19]. In Fig. 7(c) the output is
already optimising information content as global data, but our SpE projection in
Fig. 7(d) shows the substantive effect of SpE in including more of the higher-D
information, and focusing colour separation on boundaries between regions.
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(a) RGB (putative) (b) Stretched RGB

(c) SWIR (d) SpE output

Fig. 3. Example of hyperspectral image fusion; images taken from AVIRIS dataset [26].
In (b), the largely blue output is due to most of the energy measured in each pixel
spectrum residing in the visible band, which is on the small-wavelength end in the full
measured spectrum extending from 370.5nm to 2507.6nm.

(a) RGB (putative) (b) NIR (c) Alpha-blend; α = 0.5

(d) Luminance replacement (e) Lau et al (f) SpE approach

Fig. 4. Comparison of SpE with other methods for an RGB + NIR fusion application
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(a) RGB (putative) (b) Result from [17] (c) SpE approach

Fig. 5. RGB + NIR fusion application

(a) Thermal (7-14μm) (b) RGB (putative) (c) SpE output

Fig. 6. Example of thermal + RGB fusion; images taken from OTCBVS dataset [9]

(a) PCA (putative) (b) PCA+ SpE (c) MDS (putative) (d) MDS+SpE

Fig. 7. Visualization of 6-D DTMRI data: (a,b) PCA approach, (c,d) MDS method

5 Conclusion

In this work we have presented a novel, gradient-domain, approach for map-
ping images of any dimension to images of any other dimension. The method is
based on mapping contrast, defined by the structure tensor matrix, exactly onto
a low-dimensional gradient field, and incorporates constraints on the natural-
ness of output colours borrowed from a putative RGB rendering. The approach
is formulated as a constrained optimisation with a closed-form solution, mak-
ing the method both fast and efficient. We have demonstrated applications in
mapping high-dimensional images to RGB outputs for display, and will expand
the applicability to new areas in future work.
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