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Abstract. This work proposes colour opponent features that are based on low-
level models of mammalian colour visual processing. A key step is the construc-
tion of opponent spatio-chromatic feature maps by filtering colour planes with
Gaussians of unequal spreads. Weighted combination of these planes yields a
spatial center-surround effect across chromatic channels. The resulting feature
spaces – substantially different to CIELAB and other colour-opponent spaces
obtained by colour-plane differencing – are further processed to assign local spa-
tial orientations. The nature of the initial spatio-chromatic processing requires a
customised approach to generating gradient-like fields, which is also described.
The resulting direction-encoding responses are then pooled to form compact de-
scriptors. The individual performance of the new descriptors was found to be
substantially higher than those arising from spatial processing of standard oppo-
nent colour spaces, and these are the first chromatic descriptors that appear to
achieve such performance levels individually. For all stages, parametrisations are
suggested that allow successful optimisation using categorization performance as
an objective. Classification benchmarks on Pascal VOC 2007 and Bird-200-2011
are presented to show the merits of these new features.

Keywords: Colour descriptors, image categorization, colour-opponency,
biologically-inspired, pooling, Bird 200, Pascal VOC.

1 Introduction

In image classification, colour is often treated as an auxiliary feature that can be called
on to boost classification rates. To be specific, a common approach to the incorporation
of colour has been to fuse chromatic features with achromatic features such as SIFT
[16]. Colour features on their own have, to date, not been shown individually to produce
good classification performance. This might be attributed to the substantial information
about image structure that is contained within achromatic gradients; it may also be
that illumination variations and shadows can cause strong shifts in hue and saturation.
Both of these factors may be important considerations. Clearly, with the exception of
effects in perception that are induced by higher cognition, one would wish that, for two
arbitrary image patches, descriptor similarities should follow perceptual similarity. It is,
therefore, not unreasonable to explore how biological mechanisms of processing colour
information might differ from existing techniques for generating colour descriptors. We
first review the existing relevant literature on colour descriptors.
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1.1 Related Work in Colour Description

Prior research on colour descriptors has included the effects of different colour repre-
sentations on classification performance in standard datasets [18], [12]. This has led to
four main variants of descriptor that are relevant to the work reported in this paper:

Colour SIFT. Previous work [18] has explored various colour-spaces in image clas-
sification, but used a common descriptor sampling approach: in essence, SIFT-based
descriptors were applied on the channels of various colour spaces. The two feature
types most relevant to the current paper may be described as “OpponentSIFT and “C-
SIFT, and both are derived from opponent colour spaces. The difference between these
two features is that C-SIFT makes use of C-invariants as suggested by [12] to pro-
vide confidence on the colour channels, whereas OpponentSIFT relies only on the raw
colour-opponent channels.

HSV-SIFT. Another recent approach [2] computed SIFT descriptors over all three chan-
nels of the HSV color space, yielding one descriptor for each channel. HSV channels,
however, produce a description which is not purely invariant to light intensity; different
lighting conditions affect the colour encoding in the hue and saturation channels. This
lighting sensitivity feeds into the descriptors produced by such an approach.

Hue-SIFT. The technique of [20] combines the achromatic SIFT descriptor with a hue
histogram. The hue channel of HSV space is known to exhibit unstable behaviour for
colour pixels that lie close to the grey axis of a bi-conical colour-space model. To ad-
dress this, the implementation proposed in [20] uses the saturation values to weight
the bins of the hue histogram. This weighting reduces the effect of low-confidence hue
values, improving the reliability of the hue histogram over an unweighted version.

MS-SIFT. Multi-spectral SIFT [5] is an extension of SIFT into an opponent colour
space. Four channels of information – the RGB and near infra-red channels – are decor-
related, producing a space that is closely related to the opponent-colour model. A SIFT-
type feature is then constructed from the decorrelated data. The experiments discussed
in [5] departed from the (currently) more widely used classification pipelines, in that
sparse and scale-selective keypoints, rather than dense sampling, were used to assess
the performance of the multi-spectral features.

SO-DO units. A biologically-inspired descriptor, proposed by Zhang et al. [22], imi-
tates the colour processing thought to be found in the early stages of some mammalian
visual systems. The SO-DO scheme employs colour opponent processing units that
split the signed outputs of weakly oriented filters applied separately on colour channels;
other authors [21,11] have used similar processing models. The single-opponency (SO)
units were extended to double-opponency (DO) units by applying another set of ori-
ented filters to each colour opponency channel obtained from the SO units. One critique
of this system – at least from a biological perspective – is that primate vision applies
opponent processing as early as the retina. Directionally-selective neuronal responses
in primates only emerge (neglecting feedback) further in the feed-forward visual path,
at the level of the primary visual cortex. Nevertheless, we consider this approach to be
quite relevant, and its performance is discussed in Sec. 5.
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Discriminative Colour Descriptors. A recent suggestion for incorporating colour infor-
mation in classification is the approach of the so-called “discriminative color descrip-
tors” [14], in which the spatial colour information is clustered according to criteria that
minimize the mutual information of colour features obtained from the CIELAB colour
space. The clusters are assigned to the original image using a bag-of-words approach to
build up a classification pipeline.

2 Motivation

A digital image acquisition typically yields values in three channels of RGB colour
space. Because of the broad wavelength sensitivity functions of pixel sensors and the
spatial interpolation (for example, to compensate for Bayer pattern sampling) on many
sensing devices, a change in the light falling at some point in the imaging plane will
manifest itself on all three channels of nearby image pixels. Consequently, if gradi-
ent fields are computed for each of the three channels, the change introduced by illu-
mination will be distributed across all bins of all gradient histograms. Decorrelating
transformations, such as Principal Components Analysis (PCA) or Zero-Phase Com-
ponents Analysis (ZCA) [6] can be used to remove this linear correlation, and it has
been noted that the resulting transformed colour spaces appear quite similar to the so-
called opponent colour space, which contain channels that explicitly encode differences
in red-green and blue-yellow components.

Standard chromatic opponency is thought to encode spatial colour efficiently, and in
simple colour grouping tasks leads to results that are more closely aligned with human

Fig. 1. A comparison illustrating the apparent loss of visual information from the raw a∗ and
b∗ channels of CIELAB space relative to the equivalent Opponent Difference of Gaussians (Op-
DoG). The first image on the top row shows the original image and detail region. The top middle
and top right images show the proposed opponent R-G and B-Y OpDoG channels. Both circled
regions are at a zoomed scale so that detail can be seen. The leftmost image of the bottom row
shows the detail of the original image at the zoomed scale; the middle bottom panel shows the
R-G component of La∗b∗ space (i.e. a∗), and the right panel, the B-Y channel (b∗). Note (detail)
the difference in responses near to edges.
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perception than “raw” RGB space. A well-known opponent colour space is CIELAB,
but there are related spaces, such as LUV. The CIELAB space is produced from the
trichromatic colour space CIEXYZ. This trichromatic colour space is calculated by
“projecting” raw RGB space to the perceptual colour triangle. The three main colour
coordinates of the CIEXYZ descriptions are used in an antagonistic organisation in
order to capture the two main colour opponencies of red-green, blue-yellow and a third
channel which provides only luminance information.

Commonly used opponent colour spaces, such as CIELAB, bear some similarities
to colour processing found in mammalian retinal physiology [13,7]. For example, an
appropriate non-dynamic model to describe the mapping from photoreceptor activation
through to the firing rates of retinal ganglion cells is a Difference-of-Gaussians applied
to distinct colour channels. This model does indeed process colour channels in an antag-
onistic manner. However, the operation of smoothing with different spatial kernels and
colour channel differencing is non-commutative. At this point, it is worth comparing bi-
ological spatial and wavelength colour opponency with CIELAB space to highlight the
difference. Roughly, with CIELAB, or any other common opponent channel, pixel-wise
differences are used to yield the opponent channels or planes. We have found that direc-
tional colour boundaries are visibly less distinctive in standard CIELAB space (see Fig.
1, bottom middle and right panels). On the other hand, by paying attention to the order
of computation involving smoothing and channel differencing, we can preserve much
chromatic boundary information (Fig. 1, detail, top middle and top right panels). By us-
ing a custom approach to building descriptors from a more biologically accurate colour
opponent space, performance from chromatic channels is greatly improved. Descriptors
can, of course still be constructed for CIELAB space, but the gradient information that
would be captured is less likely to contain salient information. The evidence for this
is also present in the literature in classification experiments reported elsewhere, see for
example [18]. Often, low performance in colour space is addressed by the continued
use of the achromatic channels in final classifiers.

Before detailing this “Opponent Difference of Gaussians” space, we will outline the
main contributions of this paper. We first use a colour processing model with a center-
surround (isotropic) structure in order to generate colour representation channels that
capture spatio-chromatic opponencies. The approach taken to tune a series of parame-
ters for opponency, gradient estimation and pooling is discussed in Sec. 4. Because of
the introduction of this spatial filtering model which modifies the Fourier content of an
image (see Sec. 3.1), a custom gradient-like field estimation method is required. A gen-
eralised form of transfer function, allowing more freedom than partial derivatives of a
Gaussian, is used in place of gradient field calculations. New pooling patterns are then
learned using an optimisation approach. We demonstrate the individual performance
of these joint spatial and colour descriptors, then show that feature fusion adds further
improvements to classification rates.

2.1 Modelling Biological Opponent Colour Channels

The peak firing rate of neurons with isotropic spatial receptive fields occurring early
in the visual system can be roughly approximated in a variety of ways. Two com-
mon alternatives from computational neuroscience are Difference, (not “Derivative”)
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of Gaussians (DoG) and the Laplacian of Gaussian (LoG), also known in computer vi-
sion. In an algorithmic implementation of a luminance-only retinotopic model, either
DoG or LoG functions could be spatially sampled to produce a convolution mask. If
modelling luminance-only receptive field responses, the difference between these two
options is not substantial, though one has a larger number of parameters to play with in
the DoG model. When one is attempting to model biological colour-opponent channel
processing, the difference between an LoG and a DoG is crucial, as we shall next see.
For a single achromatic channel, the opponent model can be understood in terms of
the center-surround spatial weighting, D, described in Eq. (1), using a two-dimensional
coordinate vector r, with respect to a centre r0:

D(r|r0, σce, σsu) = Ace exp

(
− |r− r0|2

2σ2
ce

)
−Asu exp

(
− |r− r0|2

2σ2
su

)
(1)

Because this Difference of Gaussians is isotropic, parameter subscripts “ce” and “su”
refer to the centre and surrounding regions, respectively, around a central spatial loca-
tion r0; A·· refers to the amplitude scalings, σ·· controlling spread, and σsu > σce.

In primates, biological colour-opponent processing has different colour channels
contributing to the centre and surround regions of a single unit. This cannot be achieved
by applying a single D (as in Eq. (1)) or LoG function to the difference of colour
channels. This is because although convolution itself is commutative with addition (or
subtraction), the fully distributive property of convolution suggests that, for most non-
trivial functions, f, g, h1, h2 of one, two or a higher number of dimensions in general:

(f − g) ∗ (h1 ± h2) �= f ∗ h1 ∓ g ∗ h2 (2)

In the context of two-dimensional colour planes, f and g are arbitrary real-valued chro-
matically selective channels and h1 and h2 are pairs of spatial convolution masks; ∗
denotes two-dimensional convolution. For the inequality expressed in (2), equality can
only be reached iff h1 = h2 or f = g, or any of the 4 operands on the Left Hand Side
(LHS) is identically 0. The net effect is that the Right Hand Side (RHS) of (2), in which
two different blurring functions h1 and h2 are applied to channels f and g respectively,
captures different information to either sum or difference of spatial blurring functions
applied to an opponent (f − g) channel (LHS of (2)). This appears to be important.

A first step in our colour-opponent DoG descriptor is therefore obtained by convolv-
ing the raw colour channels with the two Gaussian functions, denoted by Gce and Gsu,
for the central and surrounding colour planes, respectively:

OpDoG = Wc×̄3(I ∗Gce)−Ws×̄3(I ∗Gsu) (3)

The two Gaussian spatial kernels are applied through convolution across each of the
three colour channels of an RGB image, denoted by I . The desired opponency channel
is obtained by applying the two mixing vectors to the convolution outputs. In (3) we
describe this with a tensor-vector product along mode 3, using the notation of Kolda
[15], and treating both the M × N × 3 result of I ∗ Gce and the M × N × 3 result
of I ∗Gsu as order 3 tensors. The result of a tensor-vector product is one less than the
order of the tensor, and so the terms to either side of the “-” sign are order-2 tensors,
and may be treated as 2D scalar fields.
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Fig. 2. This illustrates the opponent DoGs that have been used to encode chromatic contrast. The
opponent colours were not restricted to Red-Green and Blue-Yellow, but allowed to vary in order
to identify useful combinations. These are the actual kernel sizes used to generate the OpDoG
results. Best viewed in colour; see text for details.

The terms Wc and Ws are both 3 × 1 mixing vectors containing the coefficients for
the desired colour components of the opponency, and both take the form [wr, wg, wb]

T.
For any pair of selected centre and surround mixing vectors, the output of Eq. (3) is
therefore a single 2D array which incorporates a single opponency. There are, of course,
many mixing combinations of these channels. A subset of all possible opponent DoGs
was examined in this work, and these are presented in Fig. 2, which illustrates 12 op-
ponent DoGs, organised into 4 columns. The first column has the red component as
the surround characteristic. The central components on the first column use the remain-
der channels of green and blue, as well as their blend (cyan). In the second column,
the green component is used in the surround, with the remaining channels (and their
blends) forming the center components. The same approach was taken for the third and
fourth columns.

3 From Opponency to Descriptors

The feature maps from the opponent DoGs were further processed to capture directional
information. In most single-channel descriptor constructions, derivative estimators are
applied directly to the intensity channel to yield a gradient field. However, given that
spatial filtering has already been applied to generate the OpDoG feature planes, the
estimation of directional information from the “modified” image data requires an ap-
propriate operator to be designed.

3.1 Directional Responses

Because of the approximate similarity of the OpDoG operator to an isotropic Laplacian,
one might expect that its effect on a single opponent channel would be similar to a band-
pass filter. However, it turns out that in order to achieve an overall (net) response that is
closer to that of a Gaussian derivative, expressed in 2D Fourier space (ux, uy) as:
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T̂GDD ∝ ux exp

[
−
(

u2
x

2σ2
ux

+
u2
y

2σ2
uy

)]
(4)

(see Fig. 3(b)), a spatial kernel is required such that the cascade of operators – OpDoG
followed by some direction selective operators – will yield a field that encodes some-
thing similar to gradient direction in the relevant opponent channel. This has an almost
direct biological analogy in the computational structure of higher mammals, in which
afferent projections of neurons with isotropic receptive fields in the Lateral Geniculate
Nucleus (LGN), a thalamic structure, are collected and weighted to yield direction-
sensitive responses in visual cortex. Recognising this, we opted to take a more general
approach to designing the subsequent gradient-field operators, doing so in the Fourier
domain (see Fig. 3).
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Fig. 3. This series of figures illustrates magnitude spectra in Fourier-domain (ux, uy). (a) The
approximate effect of an OpDoG operator at a fixed slice in colour space; (b) a Gaussian Direc-
tional Derivative (GDD) imposes a spatial pattern that is clearly anisotropic. To build descriptors,
(a) has to be processed to be direction selective, as in (b), and multiple directions must be synthe-
sized. We found that the magnitude spectrum in (c) performs well, and is referred to as a shifted
gradient (compare with (b)). Note that because opponency is applied across colour space, these
illustrations are only approximate.

Fig. 3 (a) shows the effective range of frequencies that the OpDoG responses produce
in Fourier space. Comparing Fig. 3 (a) with (b), it can be noted that a single-channel
DoG Fourier response down-weights a large circular region in the middle (low frequen-
cies); some of these frequency components are retained in a GDD operator. However,
due to the combination of spectral bands in the OpDoG, it is unknown precisely which
spatial frequency bands are modified, relative to a single-channel GDD. Thus, a flex-
ible directional (i.e. tunable) transfer function (see Fig. 3 (c)) is proposed to produce
a directional filter (Eq. (5)) when taken with the effect of the OpDoG. The new band
pass selective filter (see Fig. 3 (c)) is applied on the output of OpDoG (Fig. 3 (a)), and
falls inside the effective region of the OpDoG Fourier response; because it will have a
frequency response quite different to a GDD, we refer to it as a shifted gradient operator.

We propose a Transfer Function of a generalised “Shifted Gradient”, in the Fourier
domain. The form of this function is:

T̂TFSG ∝ exp

[
−
( | logκ ux − logκ ux0 |γ

(logκ σux)
γ

+
| logκ uy − logκ uy0 |γ

(logκ σuy )
γ

)]
(5)
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The components of Fourier space of each OpDoG channel that correspond to anti-
symmetry in image space were extracted from the magnitude spectrum illustrated in
Fig. 3 (c). The form of T̂TFSG is appropriate to introduce orientation selectivity into
Fourier space following the application of OpDoG filtering. It also allows parameter
optimisation to be applied to improve classification performance. In Sec. 4, we will
describe the range of the parameter values of Eq. (5) in order to produce directional
responses. We will also describe the method used to optimise performance. Briefly,
the final directional channel design was found by optimising the effect of the five pa-
rameters of the TFSG function on classification performance: the logκ term in Eq. (5)
modulates the radial skewness of the function; real parameter γ modulates the shape
of the pass-band, changing its spatial kurtosis; parameter pair of (ux0 , uy0) translates
the band-pass regions and the parameter pair of (σxy , σuy ) controls the width and the
aspect ratio of the transfer function. A π/2 rotation of the pattern shown in Fig. 3(c)
was also used to generate the second component of a directional field.

3.2 Pooling Patterns

Having generated directed responses for opponent colour space, we pursued an ap-
proach to build descriptors that would enable parameter tuning to be easily achieved.
At the same time, we sought to keep the dimensionality of the resulting descriptors com-
parable to a SIFT-type approach. In addition to a new pooling approach, which we will
now describe, we also applied SIFT grid and histogram-binning methods to produce
descriptors from the post-filtered (i.e. TFSG-processed) OpDoG fields. Comparisons of
performance between both of these pooling approaches are presented in Sec. 5.

The directional responses from the shifted gradient operators can be captured over
discrete image space by applying a descriptor pooling scheme similar to that used in
SIFT features [16] or a Gaussian arrangement of pooling sectors [19,4]. The SIFT de-
scriptor uses histograms to describe the gradient patterns in a local region of image
space; there is no sub-patch weighting when producing the descriptor entries (though
there is for the overall patch orientation estimate). Yet, two other studies [19,4] have
shown that application of local spatial weighting during pooling can improve the per-
formance of a descriptor. Both of these studies applied Gaussian pooling functions. We
wished to explore whether non-Gaussian patterns could be applied successfully.

Using the two-dimensional form of:

Φ̂ = exp

[
−α

∣∣∣∣logb
(
x2 + y2

d2n

)∣∣∣∣
p

− β|θ − θm|p
]

(6)

we designed two-dimensional templates for use as pooling functions to encode the
shifted spatial gradient outputs into the elements of colour patch descriptors. The terms
on the RHS of Eq. (6) allow spatial kurtosis (p), skewness (logb), spatial-scale (α and

β) and translation (radial (x2+y2)
d2
n

and angular θ − θm). The discrete indices (m,n)

refer to pooling regions in angular (m = 0, 1, ..., 7) and radial (n = 1, 2) fashion. Fig.
4 illustrates the distributions after they have been tuned following the procedures to be
described in Sec. 4.



Spatio-chromatic Opponent Features 89

Fig. 4. These 16 spatial pooling patterns were learned from a set of training data. They are applied
by Frobenius inner product to the outputs of eight directed channels of opponent colour, leading
to comparable descriptor sizes to a “standard” SIFT descriptor. The borders of these patterns
incorporate smooth weight decay. Novel factors of this design are the polar arrangement of these
patterns, and their strong degree of spatial overlap. Each pooler produces 8 entries in the final
descriptor for each OpDoG channel.

The poolers are applied over 16× 16 patches spaced every 6 pixels, following TFSG
filtering of each OpDoG channel. The operation between the pooling pattern and a
channel patch of the same size as the pooler is a simple Frobenius inner product.

4 Optimisation

A classification pipeline was set up to use the Pascal VOC 2007 dataset in order to tune
descriptor construction. A data selection process identified the minimum size of a sub-
set of images from the training data that would lead to reliable performance increments
through a classification module. This reduced the likelihood of overfitting, whilst re-
moving the need to use all descriptors from all images during an intensive optimisation
process. On the selected subset of images, the pooling arrangement was then tuned with
the objective of maximizing classification performance, again on training data. The en-
coding of image to descriptor is described in the order of Sec. 2.1, 3 and 4, but the final
design used the optimisation described in this Section.

The harvested features, each in the form of 128-dimensional vectors, are projected
onto their 80 principal components to reduce dimensionality. The projected features are
clustered by fitting 256 Gaussian models using a standard Gaussian Mixture Model.
A diagonal covariance matrix structure was enforced. A spatial pyramid of two levels
(0,1) and three horizontal stripes, similar to the approach of Van de Sande et al.[18],
was used to define the descriptor-codebook relationships using Fisher vector encoding
[17]. There are two separate learning stages, with the first stage learning the parameters
discussed in Sec. 2.1 (by seeking in Eq. (3) the σce and σsu of Gce and Gsu within
(0.1, 2) with a stride of δce,su = 0.25) and Sec. 3 for the directional OpDoG channels.
The second stage uses the learned parameters of the OpDoGs with subsequent gradient
field approximation to learn the pooling patterns.

We used the mAP to tune all parameters using Powells multidimensional direction
set method within the bounds (and a stride of δ(·)) outlined in Eq. (7) and Eq. (8):
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T̂TFSG =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

κ : {κ ∈ (0.1, 4), δκ = 0.5}
γ : {γ ∈ (0.1, 4), δγ = 0.5}
ux0 : {ux0 ∈ (0.1, 0.4), δux0

= 0.05}
uy0 : {uy0 ∈ (0.1, 0.4), δuy0

= 0.05}
σux : {σux ∈ (0.1, 5.5), δσux

= 0.05}
σuy : {σuy ∈ (0.1, 5.5), δσuy

= 0.05}

(7) Φ̂ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α : {α ∈ (0.01, 8), δα = 0.5}
β : {α ∈ (0.01, 8), δβ = 0.5}
p : {p ∈ (0.5, 4.5), δp = 0.5}
dm : {dm ∈ (0.1, 0.9), δdm = 0.1}
θm : {θm ∈ [0, 2π), δθm = π/4}

(8)

The parameters that were learned for the TFSG improved performance over the GDD
by 1.1% (mAP) in the Pascal VOC dataset. The new pooling patterns improved per-
formance over SIFT-type pooling schemes by 2.3% (mAP) and 3.4% (mAP) for the
Gaussian based configuration as (“Daisy”) in [18,4] using 17 pooling regions. In Sec.
5, individual OpDoG channel performance is reported, as are comparisons of different
pooling techniques and colour spaces.

5 Classification Benchmarks

Classification performance was assessed using a series of experiments designed to iden-
tify consistent causes (e.g. parameter settings) of improvement in categorization perfor-
mance. This included parameters of the OpDoGs, the gradients, and the pooling patterns
found in Sec. 4. We built a standard categorization pipeline for both the Bird-200 [3]
and Pascal VOC 2007 [10] datasets. The parameters found through optimisation (see
Sec. 4) using a VOC2007 training subset were evaluated on the VOC2007 test set and
on the Bird-200 dataset without further optimisation. This shows that the parameter
tuning does generalise, leading to satisfactory performance on a completely different
dataset. Although we performed comparisons using standard smoothed gradient esti-
mators (“SIFT” in the Tables), we also built an independent, parallel path of processing
that allowed us to vary the mixing of the basic colour channels. In the performance re-
sults, these are referred to by the opponent components involved “-RG”, “-RB”, “-RC”,
“-GB”, “-GM” and “-BY” (red-green, red-blue, red-cyan, green-blue, green-magenta,
blue-yellow), all being produced from Eq. (3) and sampled by the pooling patterns
presented in Fig. 4. The experiments were separated into single scale and multiscale
versions, leading to different sets of results. This approach was necessary in order to
tease out the nature of any performance differences, particularly as the complexity of
the encoding increases by a factor of approximately 4 in moving from single-scale
to multi-scale methods. To enable performance comparisons, the nearest relevant op-
ponent filtering system – the SO method – is included in the Pascal evaluation. The
performance in this test did not warrant further evaluation in the Bird-200 dataset.

Single/Multiscale. The single scale classification rates were obtained using the follow-
ing setup. The low-level feature spaces resulting from the OpDoG channels were sam-
pled using the pooling patterns shown in Fig. 4. The number of pooling regions (16) was
selected to be as comparable to the commonly-used 128-element SIFT descriptor [16]
as practical. For all descriptors, 16 × 16 patches were sampled and these were spaced
(dense grid) every 3 pixels, as described in the relevant experimental section (referred to
using the suffix “SNG”). The multiscale classification setup is performed by following
a previously described [9] arrangement of 4 scales. For these experiments, the descrip-
tor sampling density was fixed at 3 pixels. Similar to the experiments of Chatfield et al.
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[9], the spatial pooling size of the SIFT descriptor for the multiscale case (referred to
with suffix “MLT”) was set to 4, 6, 8 and 10 pixels.

Classification Pipeline. For the experiments on both datasets, a Gaussian Mixture
Model was employed to produce 256 components for use in Fisher-vector encoding
[17]. A spatial pyramid of two levels (0,1) and 3 horizontal stripes [18] was also applied
to allow comparison with other recent work. Finally, an SVM employing a Hellinger
kernel was used for the Fisher vectors, to maintain consistency with other recent work
[17]. In order to accommodate the different pyramidal levels in the classifier, the kernels
generated from each level of the pyramids were averaged and fed into an SVM for each
class. The testing protocol of Pascal VOC was used to report class-specific average pre-
cision. The authors of the Bird-200 dataset provide the splits for the training and testing
without a specific classification measure. Thus, the mAP and per- class classification
accuracy are reported and discussed.

5.1 Experiments on Pascal VOC 2007

The mean average precision (mAP) is provided for the Pascal VOC 2007 dataset [10].
In Fig. 5, results from six combinations of possible colour opponencies are presented
in order to assess individual OpDoG channel performance. The performance of the
OpDoGs is compared with a state-of-the-art approach which is based on the implemen-
tation described in [9] and is denoted as “SIFT-MLT”. Actually, using this particular
classification pipeline, two scale sampling approaches were taken and compared: a mul-
tiscale (SIFT-MLT) and a single scale (SIFT-SNG). The proposed colour features were
used only in single scale and are directly comparable to SIFT-SNG. However, the new
colour opponent channels are not used in a multiscale fashion because of the computa-
tional cost that would be incurred in Fisher vector encoding when combining multiscale
features with multi colour-opponency.

Despite the lower performance of single-scale OpDoG-based descriptors relative to
an achromatic SIFT-MLT, a more direct comparison is facilitated by using a single
scale of the basic pipeline. For example, OpDoGs that include green chromatic chan-
nels perform better than SIFT-SNG, even though in some cases the relative improve-
ments are marginal. To our knowledge, this is the first comparable colour feature with
a performance that surpasses achromatic SIFT-SNG. Instead of extending single-scale
OpDoG features to multiscale versions, we opted to use late fusion to seek performance
boosts. The OpDoGs-FUSED feature is created by merging all OpDoG flavours with
SIFT-MLT. The resulting performance is indicative of a complementary effect between
chromatic and achromatic channels of processing. Although not shown in Fig. 5, it was
found that merging SIFT-MLT with OpDoG-SNG-RG and OpDoG-SNG-GM yielded
rates as high as 62% mAP – suggesting that green spatial/chromatic opponent channels
significantly enhance performance.

Specific improvements may be assessed by noting how much each processing stage
affects the performance; to keep the results succinct (see Sec. 4), we used average per-
formance of all colour opponent flavours (lower half of Fig. 5). The lowest performing
descriptor is C-SIFT [1], which is a standard dense-SIFT implementation applied on
the colour channels modulated by the C-invariant as described in [1,18]. SplitGrad-SD
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Fig. 5. The mAP is presented for each feature using the Pascal VOC 2007 dataset and pro-
tocol. This figure provides two sets of comparisons. The first presents the best performance of
colour-opponent channels, including the use of feature fusion (from OpDoGs-FUSED to OpDoG-
SNG-BY). The next set of results, starting from OpDoG-SG-PP and ending with C-SIFT [18] as-
sesses changes in low-level processing modules, such as the gradient computation and the pooling
schemes.

is quite similar to the SO units [22], but splits the positive and negative parts of gra-
dient into two channels. Sampling is done with the SIFT approach i.e. a 16 × 16 grid
and 128-bin histogram, “SD”. The “OpDoG-GD-SD” feature represents the average of
all colour opponent channels, Gaussian derivatives (referred to as “GD”) and the SIFT
descriptor (referred as “SD”). The feature “OpDoG-SG-SD” shows improved perfor-
mance over “OpDoG-GD-SD” by replacing the gradient estimation with the shifted
gradients (referred to as “SG”), described in Sec. 3. Finally, the “OpDoG-SG-PP” im-
proves relative to “OpDoG-SG-SD” by replacing the SIFT descriptor with the pooling
patterns (referred as “PP”) from Fig. 4.

Comparing the rates of Fig. 5 with other recent results in the literature, we found
the performance closest to ours was obtained by recent work of Khan et al. [14] (62%
mAP); see also [18], which reports 56.6% mAP for C-SIFT. However, these approaches
provide results of fused versions and not individual colour-channel performance; the
proposed OpDoG features appear to stand out, significantly exceeding the individual
channel performance of techniques such as the discriminative colour descriptors [14]
(12% mAP).

5.2 Experiments on Bird-200-2011

The Bird-200 [3] dataset was selected for several reasons. First, it has a far larger num-
ber of sub-categories than Pascal VOC (200 species of bird - 11,788 images), and it is
considered that colour and shape are equally important for fine-grained discrimination
within this dataset. It is, thus, quite an appropriate challenge that is not overly dependent
on either shape or colour features alone.
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Fig. 6. Three different classification metrics were used to assess classification performance. The
mAP rates are produced by using all of the training set, whilst the “Accuracy” and “Multiclass”
measurements were obtained by randomly selecting 30 training examples for 10 iterations.

This dataset is also accompanied with suggested train-test splits, but the exact pro-
tocol for reporting the performance is optional. Thus, using the suggested data parti-
tioning, three classification metrics are reported. In the red bars of Fig. 6, the mAP is
reported as per the Pascal VOC protocol, using all of the training examples; classifi-
cation accuracy (green bars) was calculated as per the Caltech 101 protocol (using 30
training examples), and Multiclass accuracy using 30 training examples, is displayed
using blue bars. Baseline categorization performance is established with SIFT-MLT
and SIFT-SNG to be able to identify relative improvements. In Fig. 6, all OpDoG fea-
tures perform better than the SIFT-SNG. It is surprising that OpDoG-SNG-RB and
OpDoG-SNG-RC perform closely to SIFT-MLT (comparing the mAPs), which is a fea-
ture with 4 times the computational effort of OpDoG and SIFT-SNG. Hence, this pair
of features suggests that the OpDoG channels which capture red-opponent contrast are
highly appropriate for this dataset. This claim is supported by noting that (not shown in

Table 1. Performance comparisons. Columns with (*) combine grey-scale and colour features,
usually SIFT. Others are only colour. OpDoG is the fusion of all OpDoG channels, OpFused*
combines these with SIFT-MLT. ALL uses all features in [18].

(a) VOC2007

Feature Type OpFused* OpDoG ALL*[18] C-SIFT*[18] DCD*[14] SODOSIFT[22]

mAP 62.5% 58.5% 60.5% 56.6% 12%-62% 46.5%

(b) Bird200

Feature Type OpFused* OpDoG DCD*[14] TriCos*[8] C-SIFT[14]

Accuracy 48.1% 46.5% 26.7% 25.5% 21.1%
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figures) the fused version of SIFT-MLT, OpDoG-SNG-RC and OpDoG-SNG-RB
reached 18.4% mAP. The different OpDoG features are merged (as for Fig. 5) with
SIFT-MLT so as to illustrate the complementary behaviour of these features when added
to multiscale intensity descriptors (SIFT-MLT) which, on their own, only perform at an
Accuracy of 28%.

The classification accuracy (green bars) is higher than other reported approaches
such as 26.7% [14] and 25.5% [8]. One factor that is worth mentioning is that the
updated dataset of “Bird-200-2011” was used in this work, instead of “Bird-200-2010”,
which is of half the size. During our experiments, it was found that a very small number
of training images (e.g. 30) is insufficient to reveal discriminating behaviour in features,
partly because of the variance in performance (±10% in Accuracy).

6 Conclusions

This work suggests a new method for generating colour descriptors. Spatio-chromatic
channels are created by differences between chromatic channel pairs that have been
smoothed with Gaussians of different widths. Second, directional responses are created,
using a customised filter design in the discrete Fourier domain. Pooling functions are
then applied to create descriptors. In order to tune the process behind the OpDoG chan-
nels, a learning approach was introduced. This learning approach was sufficiently gen-
eral to allow performance tuning by altering the mixing and center-surround parameters
of the OpDoGs, the subsequent gradient estimators, and the design of the spatial pool-
ing patterns. To our knowledge, the resulting descriptors are the first chromatic-sensitive
descriptors, i.e. capturing both chromatic and structural information, that yield high per-
formance when used on their own. They were also amenable to clustering and dictionary
generation, and when tested alongside multiscale chromatic features, appear to provide
additional performance gains, showing that they contain complementary information.
Also, it is worth repeating that some of the OpDoG features – for example, containing
green channel opponency – appear to exceed the performance of standard achromatic
SIFT in single-scale comparisons with a minimal computational effort (10 ms per im-
age). A more general observation is that differences in feature performance cannot be
reliably found using a CalTech-like testing protocol: larger amounts of data are needed
in training, along with a performance measure such as mean-Average Precision (mAP).
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