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Abstract. The spectrum behavior of a typical fluorescent object is regulated by
its reflectance, absorption and emission spectra. It was shown that two high-
frequency and complementary illuminations in the spectral domain can be used
to simultaneously estimate reflectance and emission spectra. In spite of its accu-
racy, such specialized illuminations are not easily accessible. This motivates us to
explore the feasibility of using ordinary illuminants to achieve this task with com-
parable accuracy. We show that three hyperspectral images under wideband and
independent illuminants are both necessary and sufficient, and successfully de-
velop a convex optimization method for solving. We also disclose the reason
why using one or two images is inadequate, although embedding the linear low-
dimensional models of reflectance and emission would lead to an apparently
overconstrained equation system. In addition, we propose a novel four-parameter
model to express absorption and emission spectra, which is more compact and
discriminative than the linear model. Based on this model, we present an ab-
sorption spectra estimation method in the presence of three illuminations. The
correctness and accuracy of our proposed model and methods have been verified.

Keywords: Fluorescence, reflectance, hyperspectral imaging.

1 Introduction

Recently, fluorescence has aroused much interest in the computer vision community,
due to its quite special Stokes wavelength shift effect and its color invariance under
varying spectra illuminations [23]. Specifically, as an inherent physical property, a pure
fluorescent object would absorb energy in a certain wavelength range, and re-emit it
in a longer (or more exactly, redder) wavelength range. Irrespective of the illumination
spectra, the spectra distribution of emission keeps constant except its magnitude.

The necessity of accounting for fluorescence has been justified in computational
color constancy [4] and accurate color relighting [9,11,13], when nontrivial fluorescent
components are present in the scene. Its unique spectral properties have also facilitated
some important applications. For example, the wavelength shift effect was utilized to
suppress highlights and inter-reflections in photometric stereo [19, 22], while the color
invariance used in [10] for camera spectral sensitivity calibration. These applications
and perhaps more in prospect warrant the ongoing endeavors of exploring fluorescence.

However, a typical fluorescent object is usually a composite of reflective and fluo-
rescent components. The reflective component reflects back the irradiance at the same
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Fig. 1. Using ordinary illuminants for fluorescence and reflectance separation. (a) shows the three
incandescent, LED and fluorescent bulbs used in the experiments on real images, whose spec-
tra are presented in (b). The scene under LED is shown in (c), and its recovered reflective and
fluorescent components are given in (d) and (e), respectively.

wavelength, thus interacting with the illuminant quite differently from the fluorescent
component. It is therefore the prerequisite to segment the fluorescent from the reflec-
tive component (see Fig.1(c-e) for an example). Some existing works have achieved
solid progress toward this end in RGB images. Zhang and Sato [23] separated these
two components under two different illuminations by means of independent component
analysis. In contrast, Han et al. [10] used a single RGB image with the assistance of a
reflectance color checker.

As demonstrated in those works on reflectance-only scenes, like [7,12,17] and many
others, multispectral or hyperspectral information is essential in scenarios where color
accuracy takes precedence, such as high-definition color production and e-heritage
archiving. Similarly, when dealing with a fluorescent-reflective scene, it would be more
desirable to recover the full spectra information, rather than being satisfied with the
RGB color only. In the following, we briefly review the most closely related works on
fluorescence-reflectance spectra estimation.

1.1 Related Works on Fluorescence Spectra Estimation

Some researchers have tried to recover the spectra of fluorescence. For example, Tomi-
naga et al. [21] adopted two different light sources to estimate the fluorescent emission
spectra. Alterman et al. [1] tried to unmix multiplexed images and obtain the appear-
ance of individual fluorescent dye, while Boyd et al. [5] estimated the reflectance and
fluorescent emission spectra of coral, without recovering the absorption spectra. In all
these works, only a portion of the spectra are recovered.

Actually, reflectance and fluorescent emission are naturally detached under narrow-
band illuminations. Rooted in this observation, the classical bispectral method for full
spectra measurement is widely known, and has been well documented in the litera-
ture [14]. However, this bispectral method in its original form is very laborsome and
thus appropriate to measure a single point only. Lam and Sato [13] successfully ex-
tended it to measure a whole scene by using a monochromatic camera and a pro-
grammable filter. Similar to reflectance [15,18], it was noted therein that the fluorescent
emission and absorption can also be well represented by the linear subspace models,
which are usually leaned from principle component analysis (PCA) of training data.
Such PCA-based linear models were utilized in [13] to reduce the number of images.
In spite of that, about 30 images are necessary to estimate the complete spectra of a
fluorescence-reflectance scene.
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The classical bispectral method also links directly to the latest bispectral coding
scheme [20], which used multiplexed narrowband illuminations and images to recover
the full spectra of a fluorescent-reflective scene.

Instead of capturing dozens of images, Fu et al. [9] proposed an appealing method to
separate the reflective and fluorescent components of a scene by using two hyperspec-
tral images taken under high-frequency and complementary illuminations in the spectral
domain. Although it is highly accurate and convenient, to generate high-frequency il-
luminations requires some specialized devices, like a programmable lighting source,
which are very expensive thus not widely available. As for absorption spectra estima-
tion, they developed a data driven method under the assumption that the emission and
absorption spectra have the same basis coefficients. As a result, the recovered absorption
spectra assume nontrivial error, when the underlying assumption is violated.

In a similar spirit to our work, Fu et al. [8] tried to simplify the hardware setup of [9]
by using instead multiple colored illuminations and a trichromatic camera. Compared
with a hyperspectral camera, a RGB camera is definitely desirable in terms of cost
reduction, yet tends to undermine the estimation accuracy of emission spectra due to the
classical metamerism hurdle in recovering spectra from trichromatic values. In addition,
the colored illumination spectra were still generated by a programmable lighting source
therein.

1.2 Overview of This Work

Rather than relying on specialized narrowband or high-frequency illuminations, we aim
to propose a new method for fluorescence and reflectance separation by using such or-
dinary illuminants as LED bulbs and fluorescent lamps (see Fig.1(a-b) for the three
illuminants used in the experiments of this paper), without sacrificing accuracy nor in-
creasing much human workload. We show that three hyperspectral images under arbi-
trarily independent illuminations are both necessary and sufficient to this task. Actually,
due to linear dependence between the PCA-based linear model of reflectance and that
of emission, using one or two images tends to be inaccurate, although embedding the
linear models into the imaging equation would lead to an apparently overconstrained
system. However, using three images would result in a nonconvex bilinear program-
ming problem, which is challenging to solve in general. Fortunately, through proper
transformation, we successfully reformulate it into an elegant linear system. On the ba-
sis of this system, we develop a convex optimization method, whose solution can be
further polished via a few alternating iterations. Experiments on simulated data have
verified that our proposed method is as accurate as the state-of-the-art method [9], al-
though only ordinary illuminants are used. Our method has also been demonstrated to
be effective by using real images.

Since the absorption can not be directly observed in the image, we have to estimate
it in an indirect way. To facilitate this task, we propose instead a four-parameter non-
linear model to represent the emission and absorption spectra, which is much more
compact than the well-known PCA-based linear model, yet assumes almost compara-
ble representation power. Our inspiration is drawn from the observation that shapes of
typical emission and absorption spectra are very similar to the density function of the
skew Cauchy distribution [2, 3]. Relying on this model and the similarity between the
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emission and absorption spectra pair, we develop a new method for absorption spectra
estimation in the presence of three images, which is clearly advantageous in accuracy
over the heuristic method in [9].

To sum up, our major contributions are: (i). Revealing for the first time the lin-
ear dependence between the PCA-based linear models of reflectance and emission;
(ii). Deriving an elegant linear system for the imaging equations in the presence of
three hyperspectral images; (iii). Developing an effective method to separate fluores-
cent and reflective components by using ordinary illuminants; (iv). Proposing a novel
four-parameter nonlinear model to parameterize emission and absorption spectra on the
basis of the skew Cauchy distribution.

The remaining parts of this paper are organized as follows. In Sec.2, we show how
to separate the reflectance and fluorescent emission by using ordinary spectra illumina-
tions. Sec.3 includes the four-parameter nonlinear model for representing emission and
absorption spectra as well as the absorption spectra estimation method. We present ex-
periment results by using simulated data and real images in Sec.4, and briefly conclude
this paper in Sec.5.

2 Reflectance and Emission Spectra Separation

As mentioned above, a typical fluorescent object exhibits the mixed spectrum behav-
ior of reflectance and fluorescence. According to [9, 23], the radiance at wavelength
λ of a pure reflective surface is computed as l(λ)r(λ), in which l(λ) is the illumi-
nation spectra and r(λ) is the reflectance spectra. In contrast, due to the particular
absorption-emission mechanism, the radiance of a pure fluorescent surface is regulated
by

(∫
l(λ̂)a(λ̂)dλ̂

)
e(λ), in which a(λ) and e(λ) are the absorption and emission spectra,

respectively. Therefore, the total radiance p(λ) of a fluorescent-reflective surface can be
calculated by the following imaging equation

p(λ) = l(λ)r(λ) +

(∫
l(λ̂)a(λ̂)dλ̂

)
e(λ). (1)

Note that the absorption spectra a(λ) is merged into a scalar coefficient of emission,
i.e.

∫
l(λ̂)a(λ̂)dλ̂, thus it could not be directly observed in the radiance p(λ). Therefore,

the full spectra estimation problem is usually formulated as a separation problem of
reflectance and fluorescent emission at the first stage.

Rather than using specialized narrowband or high-frequency illuminations, we aim
at achieving this separation task by using ordinary illuminants. As shall be disclosed
later, we have found that, by using three hyperspectral images, the separation is fea-
sible under the mild assumption that the three illumination spectra are wideband and
mutually independent. This mild condition allows us to use such ordinary illuminants
in daily life as LED bulbs and fluorescent lamps.

2.1 Using Three Hyperspectral Images

Given three illumination spectra l j(λ) and their corresponding radiance p j(λ) recorded
by a hypersepctral camera with n bands, the imaging equation in eq.(1) can be rewritten
as
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p j(λi) = l j(λi)r(λi) + a je(λi), i = 1, 2, · · · , n, j = 1, 2, 3, (2)

where the scalar a j is introduced to represent the absorption coefficient
∫

l j(λ̂)a(λ̂)dλ̂.
Due to the scale ambiguity between a j and e, without loss of generality, we can simply
introduce a scale constraint such that a1 + a2 + a3 = 1. It causes no problem since a1,
a2 and a3 are positive for an excited fluorescent-reflective object.

Apparently, the three equations in eq.(2) provide 3n + 1 constraints, one of which is
the scale constraint a1 + a2 + a3 = 1 that we have introduced. The number of variables
is 2n + 3. It seems to tell that using three images would result in an overconstrained
system, without involving any low-dimensional models of reflectance and emission. To
obtain the reflectance and emission spectra, we need to solve the following bilinear
programming problem

min
aj ,r,e

∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 A1

L2 A2

L3 A3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
r
e

]
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
p3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥

2

2

, s.t.,
3∑

j=1

a j = 1, a j ≥ 0, r ≥ 0, e ≥ 0, (3)

in which L j, j = 1, 2, 3, represents diag{l j(λ1), · · · , l j(λn)}, while A j denotes the diago-

nal matrix of a j. In addition, p j =
[
p j(λ1), · · · , p j(λn)

]T
, r =

[
r(λ1), · · · , r(λn)

]T
and

e =
[
e(λ1), · · · , e(λn)

]T
.

The optimization problem in eq.(3) is very challenging due to its nonconvexity, aris-
ing from the bilinear correlation between a j and e. We can retrieve its global minimum
by using two-dimensional exhaustive search, which is extremely slow. In contrast, us-
ing certain local optimization method would require a reasonable initialization, which is
unknown yet. In the following, we reformulate the imaging equations into a linear sys-
tem, which in turn clearly reveals the condition on the illumination spectra for solution
uniqueness.

2.2 Reformulation and Practical Algorithm

For the current time being, let us assume that the absorption scalars a1, a2 and a3 are
known. Then, the first two equations in eq.(2) happen to have the same number (2n) of
constraints and variables, from which the reflectance r(λi) and the emission e(λi) can
be solved in closed form as

r(λi) =
a2 p1(λi) − a1 p2(λi)
a2l1(λi) − a1l2(λi)

, e(λi) =
p2(λi)l1(λi) − p1(λi)l2(λi)

a2l1(λi) − a1l2(λi)
. (4)

After plugging eq.(4) into the third equation of eq.(2), we obtain

p3(λi) =
l3(λi)

[
a2 p1(λi) − a1 p2(λi)

]
+ a3

[
p2(λi)l1(λi) − p1(λi)l2(λi)

]

a2l1(λi) − a1l2(λi)
. (5)

By multiplying the denominator a2l1(λi)−a1l2(λi) at both sides of eq.(5), a very compact
linear equation can be obtained after some basic algebraic operations

[
p2l3−p3l2 p3l1−p1l3 p1l2−p2l1

] [
a1 a2 a3

]T
= 0, (6)
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in which the wavelength index λi has been omitted for brevity. Therefore, all n bands
can be stacked into a matrix form

[
p2 � l3−p3 � l2 p3 � l1−p1 � l3 p1 � l2−p2 � l1

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0, (7)

where the operator � denotes element-wise multiplication of vectors. M is the n × 3
data matrix constructed from the radiance vectors p j and illumination spectra vectors
l j, j = 1, 2, 3.

In the noise-free case, eq.(7) has a unique solution, as long as the rank of M is 2.
This condition can be easily satisfied when the three illumination spectra are wideband
and independent.

In presence of image noise, the rank of M is usually 3. Based on eq.(7), we can easily
estimate the absorption scalars by solving the following convex quadratic program

min
a1,a2,a3

∥∥∥∥M
[
a1 a2 a3

]T
∥∥∥∥

2

2
, s.t., a1 + a2 + a3 = 1, a1 ≥ 0, a2 ≥ 0, a3 ≥ 0. (8)

In the derivation process of eq.(6), the three images are not treated in a balanced
manner, that is, to explicitly build the linear system on the third image, while using
the first and second images to solve the reflectance and emission spectra. In addition,
the nonnegative constraints of reflectance and emission spectra have been ignored. To
further improve accuracy, we can start from the solution from eq.(8), and minimize
eq.(3) via the standard alternating minimization scheme. Specifically, given a1, a2 and
a3, all n bands become independent, thus we can easily update r(λi) and e(λi), i =
1, 2, · · · , n, by solving n trivial quadratic programs

min
r(λi),e(λi)

∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1(λi) a1

l2(λi) a2

l3(λi) a3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
r(λi)
e(λi)

]
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(λi)
p2(λi)
p3(λi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥

2

2

, s.t., r(λi) ≥ 0, e(λi) ≥ 0. (9)

When r(λi) and e(λi), i = 1, 2, · · · , n, are known, a1, a2 and a3 can be updated by solving

min
a1,a2,a3

∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
e

e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 − l1 � r
p2 − l2 � r
p3 − l3 � r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥

2

2

, s.t., a1 + a2 + a3 = 1, a1 ≥ 0, a2 ≥ 0, a3 ≥ 0.

(10)
Since the initialization from solving eq.(8) is already sufficiently accurate, the maxi-

mum iteration number of alternating minimization is chosen to be 10 in all the experi-
ments. In addition, it is well known that a small convex quadratic program with simple
bound constraints can be directly solved via the active set method. Therefore, we can
solve all the programs in eq.(8), eq.(9) and eq.(10) efficiently by using linear algebraic
operations in closed form, rather than resorting to the more complicated iterative inte-
rior point method [6].

To sum up, the procedures of our algorithm for reflectance and fluorescent emission
separation are: (i). Constructing the data matrix M in eq.(7); (ii). Solving eq.(8) to obtain
the absorption scalars a1, a2 and a3; (iii). Solving eq.(9) and eq.(10) alternatively to
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Fig. 2. Dependence between the reflectance and the emission PCA bases. (a) and (b) show that a
reflectance spectra can be well approximated by the emission bases, while (c) and (d) illustrate
that the reflectance bases can approximate the emission spectra as well. The reason lies in the
linear dependence between these two bases, as verified by their singular values (SV) in (e).

refine the estimation of the reflectance r(λi) and the emission e(λi), i = 1, 2, · · · , n, until
the maximum number of iterations (10 in our experiments) is reached. To deal with
a fluorescent-reflective scene, one should repeat the above procedures for all pixels
in the scene. Due to this pixel-wise independence, the whole algorithm can be easily
parallelized for faster speed.

Until now, we have shown that using three hyperspectral images under mild restric-
tions on the illumination spectra is sufficient for fluorescent and reflective spectra sep-
aration. In the following, we explore the possibility of reducing the number of images
further.

2.3 Using One or Two Images

Given a single hyperspectral image, we have only the first equation of eq.(2) at hand

p1(λi) = l1(λi)r(λi) + a1e(λi), i = 1, 2, · · · , n. (11)

Here, to resolve the ambiguity between a1 and e, we can assume that a1 = 1. Therefore,
eq.(11) has 2n variables and n constraints, and as a result infinitely many solutions.

It has long been known that practical reflectance can be well represented by a lin-
ear model with low dimensionality, e.g. 8, as verified in [15, 18]. Lam and Sato [13]
observed that the fluorescent emission can also be accurately approximated by using a
12-D linear model leaned from PCA of training data. In order to reduce the number of
variables, a straightforward idea is to embed the linear models into eq.(11) as follows

p1 = L1r + e = L1Brcr + Bece. (12)

At first glance, eq.(12) is overconstrained, since the number of constraints is n, which is
usually much larger than the total number of bases (8+12=20). The coefficients cr and
ce can be obtained by solving the following convex quadratic program

min
cr ,ce

∥∥∥∥∥∥
[
L1Br Be

] [cr

ce

]
− p1

∥∥∥∥∥∥
2

2

, s.t., Brcr ≥ 0, Bece ≥ 0, (13)

into which we have incorporated the nonnegative constraints of reflectance and
emission.

However, our experiment results, as shall be shown in Fig.5, reveal that the estima-
tion accuracy of reflectance and emission is very poor even in no presence of image
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noise. By closer investigation, we have found that the primary reason lies in the linear
dependence of the bases of reflectance and emission. Specifically, as shown in Fig.2,
although the PCA-based linear model of reflectance can express a reflectance spectra
exactly, it can also approximate emission with reasonable accuracy, and vice versa. This
dependence is more obvious when observing the singular values of these two bases in
Fig.2(e). We have also observed that simply reducing the number of bases, surely at the
cost of weakening expression power, would rarely remedy this dependence problem.

How about using two images? Given the second illumination spectra l2(λ) and its
corresponding radiance p2(λ), the second equation in eq.(2) reads

p2(λi) = l2(λi)r(λi) + a2e(λi), i = 1, 2, · · · , n. (14)

To fix the scale ambiguity of a1 and a2, we add a scale constraint such that a1 + a2 = 1.
Again, eq.(11) and eq.(14) offer 2n + 1 constraints, thus less than the number of

variables 2n + 2. One possible way is to introduce the linear models for reflectance and
emission, which still suffers from the basis dependence problem, as shall be shown in
Fig.5(b-c). Note that, in the solving process, we conduct one-dimensional search over
a1 to make sure that the globally optimal solution is retrieved, although eq.(11) and
eq.(14) are bilinear in terms of a1, a2 and e(λi).

Using high-frequency illuminations [9] can be interpreted as another remedy, since
the absorption scalars a1 and a2 tend to be equal under high-frequency and comple-
mentary illuminations. In effect, it adds another constraint a1 = a2, and makes eq.(11)
and eq.(14) uniquely solvable. Unfortunately, this equality does not hold under ordinary
illuminations.

One might consider to use RGB images, instead of hyperspectral images, so as to
further reduce the cost. Unfortunately, when using RGB images, one illumination offers
only three constraints, such a separation method would rely heavily on the subspace
model to reduce the number of variables, and consequently, should be more likely to
suffer from the aforementioned linear dependence problem.

One might also wonder why using the linear subspace models caused no problem in
[13]. Let us recall that narrowband illuminations were used there. Under this condition,
reflectance and fluorescence are almost detached, because of the wavelength shift effect.
Therefore, the work [13] is more about spectra fitting of individual components than on
spectra separation.

3 Absorption Spectra Estimation

In this section, we show how to estimate the absorption spectra a(λi), i = 1, 2, · · · , n, by
using the three absorption scalars a1, a2, a3, as well as the estimated emission spectra
e(λi). Note that the aforementioned linear model in [13] is inapplicable to our setup,
since its dimensionality is much larger than the number of constraints that we have at
hand.

As shown in Fig.3(a), the absorption and emission spectra pair of a typical fluores-
cent material have bell-like shapes, with a long tail toward the short-wavelength and the
long-wavelength direction, respectively. This is very similar to the density function of
the skew Cauchy distribution, as shown in Fig.3(b-d). This observation motivates us to
develop a compact low-dimensional representation of absorption and emission spectra.
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Fig. 3. The absorption and emission spectra pair of a typical fluorescent material (a) v.s. the den-
sity function of the skew Cauchy distribution, with varying tail direction (b), skewness magnitude
(c) and width (d).
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Fig. 4. Verification of the four-parameter (4-P) and three-parameter (3-P) nonlinear models. (a)
and (b) show the sorted fitting error (RMSE) of all 181 materials for emission and absorption
spectra, respectively. Some examples of reasonable fitting (50th) and worst fitting (181th) are
shown in (c-h).

3.1 Four-Parameter Nonlinear Model

Being a variant of the standard Cauchy distribution, the skew Cauchy distribution has a
skewness parameter to control the magnitude and direction of its skew tail. The analytic
form of its density function reads [2, 3]

f (x|x0, γ, ω) =
γ

π
[
γ2 + (x − x0)2

]
{

1
π

arctan

[
ω(x − x0)
γ

]
+

1
2

}
, x ∈ R, (15)

where x0, γ and ω are the location, width and skewness parameter, respectively. The
skew Cauchy distribution is a special case of the skew t-distribution, when the num-
ber of degrees of freedom (DoF) is 1. When the DoF approaches infinity, the skew
t-distribution reduces to the well-known skew normal distribution [3]. We prefer the
skew Cauchy distribution because of its relatively simple analytical form.

An important property by observing Fig.3 is that the tail is toward to the left when
ω < 0, while to the right when ω > 0. In addition, the skew magnitude is determined by
the absolute value of ω. This property actually allows us to explicitly discriminate the
absorption spectra from the emission spectra.
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In order to express the fluorescent emission and absorption, we introduce a height
parameter h and obtain the ultimate four-parameter model

f (x|x0, γ, ω, h) =
h[

γ2 + (x − x0)2
]
{

1
π

arctan

[
ω(x − x0)
γ

]
+

1
2

}
. (16)

To verify the validity of our proposed model, we have tried to fit it to the fluorescence
spectra dataset [16] with 181 fluorescent materials in the visible range from 420 nm to
700 nm with an increment of 5nm. As shown in Fig.4, the four-parameter (4-P) model
can represent both the emission and the absorption with reasonable accuracy, although
it is slightly less accurate than the PCA-based linear model (with dimensionality 12).

Since there are only three images in our setup, it is impossible to estimate the four
parameters of an absorption spectra. To resolve this problem, we further observe that
the emission and absorption pair of a fluorescent material usually have almost the same
length of tail, as illustrated by the representative pair in Fig.3(a). Thanks to the special
property of a skew Cauchy distribution mentioned above, we can first fit the four pa-
rameter model to the emission spectra so as to find its skewness parameter ω̃, and then
use -ω̃ as the skewness parameter of its corresponding absorption spectra model. We
have also verified that this three-parameter (3-P) model of absorption is of sufficient
accuracy, as shown in Fig.4(b), (g) and (h). Admittedly, this low-dimensional model
tends to smooth out some high-frequency details of the absorption spectra. However, it
should be acceptable, since the absorption spectra is emerged into a scalar coefficient
of emission, as shown in eq.(1).

3.2 Estimation Method

Based on the model in eq.(16) and the skewness parameter -ω̃, the absorption spectra
can be expressed as

a(λ|λ̄0, γ̄, h̄;−ω̃) =
h̄[

γ̄2 + (λ − λ̄0)2
]
{

1
π

arctan

[−ω̃(λ − λ̄0)
γ̄

]
+

1
2

}
, (17)

in which λ̄0, γ̄ and h̄ are the three unknown parameters. To estimate these three param-
eters, we can solve the following nonlinear minimization problem

min
λ̄0,γ̄,h̄

(∫
l1(λ)a(λ)dλ − a1

)2

+

(∫
l2(λ)a(λ)dλ − a2

)2

+

(∫
l3(λ)a(λ)dλ − a3

)2

, (18)

for which we use the standard Gauss-Newton method.
Considering that eq.(18) defines a minimal problem with three variables and three

constraints, one might seek to find all the feasible solutions. However, due to the anti-
trigonometric function in eq.(17), this is too challenging. By fitting the four-parameter
model to the recovered emission spectra, we can find at the same time a reasonable
initialization for λ̄0, γ̄ and h̄. This initialization is of tremendous benefit to the locally
optimal Gauss-Newton method, and makes it work very well for solving eq.(18).
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Fig. 5. Estimation accuracy w.r.t. varying noise levels by using synthetic data. (a) shows the three
ordinary illumination spectra used in simulation. The estimation error (RMSE) for reflectance,
emission and absorption are shown in (b), (c) and (d), respectively. The number (One, Two and
Three) in the legend indicates the number of illuminants used.

4 Experiment Results

4.1 Synthetic Data

Here, we evaluate the accuracy of our proposed methods on synthetic data, and disclose
how it compares with that of the state-of-the-art method [9] using specialized high-
frequency illuminations.

The standard CIE A, D75 and F1 illumination spectra are used, as shown in Fig.5(a).
We randomly select one color from the 18 color patches on the Macbeth color checker as
the reflectance spectra. As for the absorption and emission pair, we randomly select one
pair from the fluorescent spectra dataset [16] with 181 materials in all. All spectra are
normalized such that the maximum value is 1. We add zero-mean Gaussian noise onto
the synthesized hyperspectral signals, with standard deviations from 0 to 5% relative
magnitude. At each deviation level, we measure the root mean square error (RMSE) of
the estimated spectra, with respect to their corresponding ground truth.

By following [9], the period of the high-frequency illuminations is chosen to be
35 nm. We carefully adjust the phase to make sure that the two illuminations are as
complementary as possible, while avoiding the singularities when they have the same
value.

The average RMSE over 200 independent runs for reflectance and emission are re-
spectively shown in Fig.5(b) and Fig.5(c), from which we can see that our separation
method has the same accuracy as [9], although only ordinary illuminants are used. In
addition, as illustrated in Fig.5(d), our absorption spectra estimation method is clearly
better in accuracy than the heuristic method in [9].

To further validate our analysis on the risk of using one or two ordinary illuminants,
we also include them into comparison, as shown in Fig.5(b-c). Even in no presence
of noise, the estimation accuracy of using one or two illuminants is not satisfactory.
Note that, in the solving process, we have used convex optimization or exhaustive one-
dimensional search to preclude any potential influence of local minima. As analyzed
in Sec.2.3, the estimation inaccuracy is indeed caused by the dependency between the
linear subspace models of reflectance and fluorescent emission.

An interesting observation from Fig.5(b-c) is that, when using two illuminants, the
estimation accuracy is higher than using three illumiants in the highly noisy cases, e.g.,
with 5% relative noise. This is due to that our algorithm for three illuminants does



Spectra Estimation of Fluorescent and Reflective Scenes 199

420 490 560 630 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

 

 

Measured
Estimated

(a) Ref. (Red)

420 490 560 630 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

 

 

Measured
Estimated

(b) Emi. (Red)

420 490 560 630 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

 

 

Measured
Estimated

(c) Abs. (Red)

420 490 560 630 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

 

 

Measured
Estimated

(d) Ref. (Yell.)

420 490 560 630 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

 

 

Measured
Estimated

(e) Emi. (Yell.)

420 490 560 630 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

 

 

Measured
Estimated

(f) Abs. (Yell.)

Fig. 6. The estimated reflectance, emission and absorption spectra for the red (a-c) and yellow
(d-f) patch in the scene of Fig.1, w.r.t. their respective measured ground truth.

420 490 560 630 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

(a) Illu. Spectra (b) Blue (c) Relighted (d) Relighted (ref)

420 490 560 630 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

(e) Illu. Spectra (f) Green (g) Relighted (h) Relighted (ref)

420 490 560 630 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

(i) Illu. Spectra (j) Pink (k) Relighted (l) Relighted (ref)

Fig. 7. Relighting the scene in Fig.1(c) under blue, green and pink color illuminations.

not involve the subspace models in the process of minimizing eq.(3), in order to be
relatively fair when comparing with [9]. It is expected that, when the subspace models
are embedded into our algorithm, the separation accuracy could be further improved, at
the cost of longer running time.

4.2 Real Images

We use as lighting sources three ordinary illuminants, including an incandescent, a LED
and a fluorescent bulb, as shown in Fig.1(a). Their spectra are presented in Fig.1(b). An
EBA JAPAN NH-7 hyperspectral camera is used to capture images in the visible range
from 420 nm to 700 nm with an interval of 5 nm. For visualization, all hyperspectral
images are shown in RGB.

Given three hyperspectral images, we first separate the fluorescent and reflective
components by following the procedures in Sec.2.2, and then estimate the absorption
spectra by using the method in Sec.3.2.

As shown in Fig.1(c), we first design a scene with three fluorescent patches, whose
reflectance, absorption and emission spectra have been measured. Fig.1(d) and Fig.1(e)
show the rendered RGB images of our estimated reflectance and fluorescent emission
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(a) Inc. Bulb (b) Reflectance (c) Blue (d) Relighted (e) Relighted (ref)

(f) LED Bulb (g) Fluorescence (h) Green (i) Relighted (j) Relighted (ref)

(k) Flu. Bulb (l) UV (m) Pink (n) Relighted (o) Relighted (ref)

Fig. 8. Tennis ball and sport shorts scene. The 1st column shows the scene under the three il-
luminants. Our separation results are shown in the 2nd column, which also includes the scene
under near UV light for reference. The 3rd column shows the scene under novel color illumina-
tions, while the 4th and 5th columns include the relighting results with fluorescence and without
fluorescence, respectively.

spectra, respectively. By referring to the quantitative comparison in Fig.6, we can see
that the estimated spectra are sufficiently close to their corresponding measured ones.
As for the estimated reflectance spectra in Fig.6(a) and (d), minor discrepancy occurs
in the range from 630 nm to 700 nm. This is caused by low-irradiance of the fluores-
cent bulb in that range, as shown in Fig.1(b). This low-irradiance problem causes some
inaccuracy in the process of posterior white balancing.

Given the full spectra of a fluorescent-reflective scene, we can easily relight the scene
under any illumination spectra on the basis of the imaging equation. The relighting
results of the scene in Fig.1(c) under blue, green and pink illuminations are shown in
Fig.7, from which we can see that accounting for reflectance only would cause poor
relighting results, when nontrivial fluorescence is present in the scene.

We have also evaluated our methods on scenes with manmade objects, like the ten-
nis ball and sport shorts scene in Fig.8 and the candle scene in Fig.9. The apparent
advantages in relighting results not only reveal the effectiveness of our proposed meth-
ods, but also underline the necessity of accounting for fluorescence. In Fig.8(d), the
relighted tennis ball assumes nontrivial discrepancy from its ground truth in Fig.8(c).
We are speculating that the felty surface of a tennis ball goes somehow beyond the dif-
fuse imaging equation in eq.(1). To further identify the reason and the possible solution
is our future work.
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(a) Inc. Bulb (b) Reflectance (c) Blue (d) Relighted (e) Relighted (ref)

(f) LED Bulb (g) Fluorescence (h) Green (i) Relighted (j) Relighted (ref)

(k) Flu. Bulb (l) UV (m) Pink (n) Relighted (o) Relighted (ref)

Fig. 9. Candle scene. The scene under various illuminations, as well as the separation and relight-
ing results, have the same layout as in Fig.8.

5 Conclusions

We have proposed accurate and effective methods to estimate the full spectra of a
fluorescent-reflective scene by using hyperspectral images under ordinary illumina-
tions. We disclosed the linear dependence between the PCA-based linear bases of re-
flectance and fluorescent emission, and showed that using one or two images is insuf-
ficient for accurate reflectance and emission separation. In the presence of three hyper-
spectral images, we have reformulated the imaging equations into a linear system, and
revealed that three wideband and independent illuminants in general are sufficient for
the separation task. An elegant convex optimization method was proposed for solving,
whose solution can be further polished via a few alternating iterations. As for absorption
estimation, we proposed a novel four-parameter nonlinear model to express absorption
and emission spectra. Based on this model, an absorption spectra estimation method
in the presence of three illuminations was proposed as well. Experiment results have
verified the accuracy and effectiveness of our proposed methods.

Considering that the four-parameter model is more discriminative than the linear
model, it might benefit the task of separating the fluorescent and reflective components
in a single hyperspectral image. We plan to explore this possibility in the future.
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