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Abstract. In this paper, we consider scenes that are immersed in trans-
parent refractive media with a dynamic surface. We take the first steps
to reconstruct both the 3D fluid surface shape and the 3D structure of
immersed scene simultaneously by utilizing distortion and defocus clues.
We demonstrate that the images captured through a refractive dynamic
fluid surface are the distorted and blurred versions of all-in-focused (AIF)
images captured through a flat fluid surface. The amounts of distortion
and refractive blur are formulated by the shape of fluid surface, scene
depth and camera parameters, based on our refractive geometry model of
a finite aperture imaging system. An iterative optimization algorithm is
proposed to reconstruct the distortion and immersed scene depth, which
are then used to infer the 3D fluid surface. We validate and demonstrate
the effectiveness of our approach on a variety of synthetic and real scenes
under different fluid surfaces.

Keywords: underwater 3D reconstruction, dynamic fluid surface recov-
ery, refractive blur, distortion, depth from defocus.

1 Introduction

In recent years, the problems of recovering scene structure immersed in refrac-
tive fluid and reconstructing the 3D shape of the dynamic fluid surface have
drawn more attention in multiple research fields, including computer vision and
oceanography. Although a lot of progress has been made [30,9,36,8,11,4], the
solutions are not sufficiently general to be used in real-world scenarios. This is
because most existing methods recovering scene geometry under fluid surface
assume the fluid surface to be flat [8,34,3]. On the other hand, 3D fluid sur-
face estimation approaches [22,9,24,30] assume a flat scene under the surface.
These assumptions are rarely satisfied in real applications. The general scenario
of recovering scene depths immersed in fluid with non-flat surfaces remains a
challenging problem. In addition, most previous approaches are based on the
pinhole imaging model. However, in practice, in order to achieve high signal-to-
noise-ratio (SNR), cameras often use large apertures where pinhole model is not
applicable, thus resulting in image blur.
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Fig. 1. Diagram of the proposed iterative optimization framework. The input of
our approach are a captured refractive blur video and a reference image which could
be estimated from another all-in-focused(AIF) video or captured under flat water.
An iterative optimization is applied to recover the depth of immersed scene and the
distortions, which are then used to estimate the dynamic 3D fluid surface shape.

Among the large numbers of depth estimation approaches (e.g. multi-view
stereo, structure from motion, shape from shading), depth from defocus (DFD)
is attractive due to its insensitivity to an occlusion and matching problem [29].
Different from performing DFD in clear air, the irregular refraction on the wavy
interface causes distortion and blurring of the images of immersed scenes. The
blur in images captured through a fluid surface is determined by not only camera
parameters and scene depth but also the refraction on the fluid surface. Hence, we
call it the refractive blur. Compared with stereo, DFD approach has a smaller
baseline. Thus, all the rays emitted from a scene point reaching the sensor can
be assumed to be sufficiently close so that the normals of the fluid surface where
the rays cross the fluid interface can be assumed to be approximately constant.
This reduces the number of unknowns as compared to stereo, where rays from a
scene point cross the fluid interface at different points, and thus likely encounter
different surface normals (details in the Sec. 6).

In this paper, we establish a geometric imaging model for refractive blur and
distortion simultaneously, while most existing works do not account for refractive
blur. Our imaging model represents the images captured through the fluid surface
as the distorted and blurred version of the undistorted all-in-focus(AIF) image
captured through a flat fluid surface.

The reconstruction steps of fluid surface and the underneath scene geometry
are illustrated in Fig. 1. Our algorithm requires an out-of-focus video captured
under large aperture setting and a reference image1. The reference image could
be estimated from the pre-captured AIF video or captured under flat water with
a small aperture. Then, based on the model established in Sec. 3, we construct
an objective function and use an optimization procedure to compute the depth
of the immersed scene and the distortions alternatively. Finally the dynamic 3D

1 In this paper, the reference image refers to the undistorted all-in-focus(AIF) image
captured under flat water with a small aperture.
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fluid surface shape video is also recovered from the depth and distortions maps
based on the established geometry model.

Specifically, the paper has the following contributions:

– We establish the refractive blur and distortion geometry model as a function
of the camera settings, the shape of fluid surface and scene structure.

– We present a novel iterative global optimization method for recovering under-
fluid scene structure and 3D fluid surface from distortion and refractive blur.

– We obtain promising results on both synthetic and real captured data.

2 Related Work

Fluid Surface Reconstruction. Several methods [22,9,24,30] recover the wavy
fluid surface and undistorted image by analyzing the distortion in the video.
These works require placing a flat plane with rich features under the fluid sur-
face. In order to enhance the reconstruction performance, multi-camera meth-
ods [22,9,18] have also been proposed. Moreover, Tian and Narasimhan [30]
model the distortion by the wave equation and present a tracking method with-
out the need of undistorted image. There are also methods utilizing active illu-
mination instead of a flat rich feature plane, such as [19,36]. Our paper estimates
scene structure as well as fluid appearance, does not require active illumination,
and owns wider applications.

Compensation of the Refractive Distortions. A variety of methods
[11,10,33,31,26] have been proposed for removing the non-rigid distortions in
the captured images without recovering the shape of the fluid surface. Most of
these approaches adopt the lucky imaging strategy by seamlessly stitching the
patches with least distortions, which can be searched or calculated via various
techniques, such as clustering [11,10], iterative averaging [26], bispectral analy-
sis [33] and progressive warping [31]. These works can be used for providing the
reference image from a captured AIF sequence as an input for our algorithm.

Reconstruction of Geometry through Fluid. Reconstruction of 3D struc-
ture under or above the water surface is also an active area of research [8,4,3,14].
Chang and Chen [8] and Ferreira et al. [14] apply the structure from motion and
stereo methods to reconstruct the 3D structure of scenes submerged in refractive
fluid, respectively. A stochastic triangulation method is proposed by Alterman
et al. [4] to recover the structure of scene above water from a video pair captured
under water. These works provide some preliminary studies but are limited to
static and flat fluid surface.

Depth from Defocus (DFD) in Clear Medium. DFD approaches capture
two or multiple defocused images under different focal settings for recovering
the scene structure [13,12,21]. These approaches assume that both the scene and
the camera are in the same and clear medium. Applying DFD where the scene
and the camera are immersed in different refractive media has received little
attention. In this paper, we establish a refractive blur model to generalize the
conventional defocus model and exploit it to estimate the scene depths under
dynamic fluid surface using a reference image and a refractive blur video.
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Fig. 2. Imaging through fluid surface with distortion (a) and defocusing (b). (a) The
pixel x + w(x, t) in the reference image I(x, 0) is refracted to x at frame t. (b) The
refracted light rays are further blurred into a refractive blur size b(x, t) due to the finite
camera aperture size.

Other related works to ours include surface reconstruction of transparent
refraction object [34,5,23,17], and camera calibration for imaging through the
water-air interface [32,35].

3 The Refractive Blur and Distortion Geometry Model

3.1 Image Formulation Model

As shown in Fig. 2, this work supposes that a static non-plane scene is placed
under a dynamic fluid surface, and a video camera is focused on a certain plane.
For simplicity, we ignore scattering, light absorption and chromatic dispersion
in the fluid. We assume that the exposure time is short enough to ignore the
motion blur. Let I(x, t) denotes the tth AIF video frame taken through the fluid
surface with x = {x, y} being the 2D spatial coordinates, and I(x, 0) denotes
the reference image.

Without refractive blur, each AIF video frame I(x, t) is a distorted version of
I(x, 0) as shown in Fig. 2 (a) and can be expressed as

I(x, t) = I(x, y, t) = I(x+w(x, t), 0) = I(x+ u(x, t), y + v(x, t), 0), (1)

where w(x, t) = (u(x, t), v(x, t)) denotes the distortion between the reference
image and frame i correspondence to the point x at frame t, which will be
formulated in Sec. 3.2 in detail.

Then considering both the refraction and the defocusing, as shown in Fig. 2
(b), rays emitted from an underwater scene point are deflected at the water
surface and projected onto different positions of the sensor. Similar to the defocus
blur occurring in the air, we call this deflection blur as ”refractive blur”. Detailed
formulation of refractive blur will also be given in Sec. 3.2. Thus the refractive
blur video acquired through a wavy water surface can be formulated as
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Fig. 3. The refractive geometry of underwater imaging in 3D case (a), and our exper-
iment setup (b). (a) One ray emitted from the scene point p is refracted at the fluid
surface point a , passes through the aperture plane at q and is projected to point c on
the sensor, which corresponds to point d on the focus plane. The coordinates axes are
displayed with blue arrows and the origin is set at the camera optical center O. (b).
Our camera’s sensor is parallel with the flat water surface which is achieved by using
bubble level.

B(x, t)=

∫
y∈Nx

hσ2(x,t)(x,y)I(y, t)dy=

∫
y∈Nx

hσ2(x,t)(x,y)I(y +w(y, t), 0)dy, (2)

where B(x, t) denotes the tth frame in the refractive blur video; hσ2(x,t)(x,y)
denotes the refractive blur kernel of point x which can be approximately esti-
mated by Gaussian kernel; σ (x, t) denotes the kernel size of point x at time t;
and y ∈ Nx denotes the pixels within x’s neighborhood.

3.2 The Refractive Blur and Distortion Formulation

As shown in Fig. 3, suppose that the sensor is parallel with the flat water surface.
H denotes the vertical distance from the camera to the flat water surface, n
denotes the refractive index of water, u0 denotes the distance between the lens
and the focus plane, v0 denotes the distance between the lens and the sensor
plane, and the focal plane remains unchanged during the capture. Then based
on the vector forms of Snell’s law [20] in 3D space, we can obtain the relationship

i×N = nr ×N , (3)

where i denotes the unit vector along the light propagating in the air; r denotes
the unit vector along the corresponding light propagating in the water; N de-
notes the unit normal vector of the refractive plane at the intersection point of
i and r; and × is the cross product.

In general 3D case, we use the thin lens model to analyze the light path and
assume the x-axis and y-axis are parallel to the sensor plane, z-axis is aligned with
the camera optical center o, represented by blue arrows in Fig. 3(a). Without the
loss of generality, we also assume the amplitude of water wave is slight enough
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to ignore. Then Eq. 3 can be represented by the geometric locations of the
underwater scene point p = (xp, yp,−sp), the refractive point a = (xa, ya,−H)
on the refractive plane and the intersection point q = (xq, yq, 0) on the aperture
plane

i =
q− a

‖q− a‖ , r =
a− p

‖a− p‖ . (4)

As shown in Fig.3(a), this ray emitted from the immersed scene point p is
projected to the sensor point c, which corresponds to the point d on the focus
plane. Based on the simple lens model, these two points have the relationship:
d = (u0/v0)c. The three points q, a and d are also collinear, thus point a can
be represented by

a = (1− H

u0
)q− H

u0
d = (1− H

u0
)q− H

v0
c. (5)

Substitute Eq. 4 and Eq. 5 into Eq. 3, we can obtain the geometric function
represented one ray emitted from the scene point p and projected to the sensor
point c, which also provides the relationship between these two points:

⎧⎪⎪⎨
⎪⎪⎩

(xq+
u0
v0

xc)nz(a)−u0nx(a)√
(xq+

u0
v0

xc)2+(yq+
u0
v0

yc)2+u0
2
=n

((1− H
u0

)xq− H
v0

xc−xp)nz(a)−(sp−H)nx(a)√
((1− H

u0
)xq− H

v0
xc−xp)2+((1− H

u0
)yq− H

v0
yc−yp)2+(sp−H)2

(yq+
u0
v0

yc)nz(a)−u0ny(a)√
(xq+

u0
v0

xc)
2
+(yq+

u0
v0

yc)
2
+u0

2
=n

((1− H
u0

)yq− H
v0

yc−yp)nz(a)−(sp−H)ny(a)√
((1− H

u0
)xq− H

v0
xc−xp)

2
+((1− H

u0
)yq− H

v0
yc−yp)

2
+(sp−H)2

,

(6)
where nx(a), ny(a) and nz(a) are the 3D coordinates of the unit normal vector
N at the refractive point a, and sp is the depth of the scene point p.

With Eq. 6, we can project the underwater scene point to the sensor plane
or conversely, thus the distortion between different frames can be calculated.
By scanning the point q over the aperture plane while holding the scene point
p, we can also derive the blur kernel size of the scene point p on the sensor.
Unfortunately, Eq. 6 is too complex to analyze. Therefore, we use the first order
Taylor expansion for simplification (details in the Supplementary Material). We
regard xp and yp as the independent variable and regard xc and yc as unknown
variable. The first order Taylor expansion of Eq. 6 at point xp = xp0 = xq −
nx(a)
nz(a)

sp and yp = yp0 = yq − ny(a)
nz(a)

sp is

⎧⎪⎪⎨
⎪⎪⎩
xc ≈ v0

u0
(
nx(a)

nz(a)
u0 − xq)− (xp − xq +

nx(a)

nz(a)
sp)

nv0
sp + (n− 1)H

yc ≈ v0
u0

(
ny(a)

nz(a)
u0 − yq)− (yp − yq +

ny(a)

nz(a)
sp)

nv0
sp + (n− 1)H

.

(7)

Eq. 7 is the simple approximation function representing the light that is emit-
ted from the scene point p and passes through the lens point q with the sensor
projection c. When we scan the aperture point q within the circle aperture to
analyze the size of blur kernel, the refractive point a on the refractive plane
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is also changing, which makes the analysis difficult. However, as illustrated in
Fig. 2 (b), when the varying area (i.e. the surface element shown in Fig. 2(b))
of the refractive point a is small enough (The detailed analysis will be presented
in Sec. 3.3), we can ignore the changes of the normal vectorN . Then we can find
that the area on the sensor corresponding to the scene point (i.e. the refractive
blur kernel) is approximatively a circle, and the refractive blur size of pixel
x at frame t is

σ(x, t) = κ
v0D

2

∣∣∣∣ n

s(x) + (n− 1)H
− 1

u0

∣∣∣∣ , (8)

where D is the aperture diameter of the lens, s(x) is the depth map of reference
image and κ is the calibration parameter converting world coordinate to image
plane. Notice that if there is no fluid, i.e. n = 1, refractive blur size (Eq. 8) is
degraded to the defocused blur size in the air [21]. In addition, Eq. 8 shows that
the refractive blur size is independent of the water surface shape which means
we can infer the immersed scene depth from refractive blur.

In order to derive the amount of distortion, we apply the perspective model
by keeping an infinite small aperture size in our refractive geometry model. Then
based on Eq. 7, we can also derive the 2D spatial coordinates distortion between
reference image and other frames by back-projecting point to the scene through
the wavy surface and forward-projecting it to the sensor through the flat surface

⎧⎪⎪⎨
⎪⎪⎩
u(x, t) = −κ(nx(x, t)

nz(x, t)
− nx(x+w(x, t), 0)

nz(x+w(x, t), 0)
)(v0 − nv0s(x+w(x, t))

s(x+w(x, t)) + (n− 1)H
)

v(x, t) = −κ(ny(x, t)

nz(x, t)
− ny(x+w(x, t), 0)

nz(x+w(x, t), 0)
)(v0 − nv0s(x+w(x, t))

s(x+w(x, t)) + (n− 1)H
),

(9)
where nx(x, t), ny(x, t) and nz(x, t) are the 3D coordinates of the unit normal
vector N corresponding to the point(x, y) at frame t.

3.3 The Condition of Model

As illustrated in Fig. 2(b) and the derivation in Sec. 3.2, due to the camera’s
finite aperture, a scene point p emits a cluster of rays projecting to the sensor.
Each of these rays is deflected at different points on the water-air interface, and
we call the area on the interface where these rays pass through the surface
element corresponding to point p.

When we obtain Eq.8 from Eq.7, we assume that each scene point’s surface
element is small enough to be approximated by a plane. Thus the size of
surface element is the minimum area of water surface that our model can
distinguish, which is similar to the spatial resolution of traditional camera.

Based on Eq. 5 and Eq. 7, we can derive the coordinates of the refractive
point a:

xa =
sp −H

sp + (n− 1)H
(xq + (n− 1)H

nx(xa)

nz(xa)
) +

nHxp
sp + (n− 1)H

. (10)
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Randomly select two points (a1 and a2) on the surface element corresponding
to the same scene point p, then the distance between them is

xa1− xa2 =
sp −H

sp + (n− 1)H
((xq1− xq2) + (n− 1)H(

nx(xa1 )

nz(xa1)
− nx(xa2)

nz(xa2)
)). (11)

Assuming the model holds, we can derive the size of surface elements �p

corresponding to scene point p:

�p = max(xa1 − xa2) =
sp −H

sp + (n− 1)H
D ≤ D (12)

From Eq. 12, we know that the size of surface element is positively correlated
with the aperture size, i.e. the size of baseline. Thus the smaller the baseline,
the better performance and system’s robustness. Obviously the DFD approaches
usually have a smaller baseline than stereo method and are more suitable to this
model in the paper.

4 Iterative Optimization Algorithm for Reconstructing
Scene Depth and Water Surface Shape

In this section, we propose an iterative optimization method to reconstruct both
the undistorted scene depth and the wavy water surface.

4.1 Optimization Model

Assume the depth of water, the refractive index of water, and the distance from
the camera to the water surface are measured in advance, the camera’s sensor is
parallel with the water surface, and the focal plane remains unchanged during
the capture. Then according to Eq. 2, the optimization problem for estimating
the distortion w(x, t) and the depth s(x) can be formulated as

min
s,w

J(s(x),w(x, t)) = min
s,w

Ed(s(x),w(x, t))+αEm(w(x, t))+βEm(s(x)), (13)

where J(s(x),w(x, t)), Ed(s(x),w(x, t)), Em(s(x)) and Em(w(x, t)) are objec-
tive function, data term, depth regularization term and distortion regularization
term, respectively; α > 0 and β > 0 are the regularization parameters that
balance data term and two regularization terms, respectively; s(x) denotes the
depth corresponding to reference image I(x, 0).

Specifically, the data term can be written as

Ed(s(x),w(x, t)) =

T∑

t=1

∫

Ω

ψ(

∥∥∥∥B(x, t)−
∫

y∈Nx

hσ2(x,t)(x,y)I(y+w(y, t), 0)dy

∥∥∥∥
2

2

)dx,

(14)

and depth and distortion regularization terms are
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Em(w(x, t)) =

T∑

t=1

∫

Ω

ψ(‖∇u(x, t)‖22 + ‖∇v(x, t)‖22)dx, (15)

Em(s(x)) =

∫

Ω

‖∇s(x)‖2dx, (16)

where Ω ⊂ R
2 is the range of x; ψ(ξ2) =

√
ξ2 + ε2 is applied to reduce the

outliers, similar to optical flow algorithms in [7,6]; and the distorted displacement
u(x, t), v(x, t) and kernel size σ(x, t) have been formulated in Eq. 8 and Eq. 9.

The optimization for Eq. 13 requires that the reference image I(x,0) is known.
According to Eq. 9, if we want to recover the normal vectors of dynamic fluid
surface from distortions and scene depth, the reference image must be the AIF
undistorted image taken through the flat water. In this paper, we capture the ref-
erence image directly by using the small aperture size under flat water. Besides,
we also estimate the reference image from a captured AIF distorted video by an
existing method [26], of which synthetic results are shown in the supplementary
material and video.

To optimize Eq. 13, we apply an alternative minimization approach to iter-
atively estimate the distortion w(x, t) and blur size s(x) which are detailed in
Sec. 4.2 and Sec. 4.3, respectively. Next, surface shape could be reconstructed
from s(x) and w(x, t) as described in Sec. 4.4.

4.2 Distortion Refinement

For the minimization of distortion w(x, t), we keep the depth s(x) fixed, then
the optimization in Eq. 13 can be simplified as

min
w

J1(w(x, t)) = min
w

Ed(w(x, t)) + αEm(w(x, t)), (17)

where J1(w(x, t)) is the objective function for distortion refinement; Ed(w(x, t))
is the data-term defined in Eq. 14 with fixed s(x); Em(w(x, t)) is the distortion
regularization term defined in Eq. 15.

The distortion refinement objective function in Eq. 17 is similar to but differ-
ent from the objective function of optical flow algorithm in [7,6] in two aspects:
the distorted images I(x, t) in [7] are replaced with the distorted and blur images∫
y∈Nx

hσ2(x,t)(x,y)I(y +w(y, i), 0)dy; the weight γ of gradient image in [7] is
set to zero. So we modify the numerical solution of existing optical flow algo-
rithms in [7,6] for our problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ψ′((Ikz + Ikxdu
k,l + Ikydv

k,l)2) · (Ikx(Ikz + Ikxdu
k,l+1 + Iky dv

k,l+1))

− αdiv(ψ′(
∣∣∣∇(u+ duk,l)

∣∣∣
2

+
∣∣∣∇(v + dvk,l)

∣∣∣
2

)∇(u+ duk,l+1)) = 0,

ψ′((Ikz + Ikxdu
k,l + Ikydv

k,l)2) · (Iky (Ikz + Ikxdu
k,l+1 + Iky dv

k,l+1))

− αdiv(ψ′(
∣∣∣∇(u+ duk,l)

∣∣∣
2

+
∣∣∣∇(v + dvk,l)

∣∣∣
2

)∇(v + dvk,l+1)) = 0,

(18)
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where

Ik
z=
∫
y∈Nx

hσ2(x,t)(x,y)I(y+w(y,i),0)dy−B(x,i),

Ik
x=
∫
y∈Nx

hσ2(x,t)(x,y)∂xI(y+w(y,i),0)+
∂h

σ2(x,t)
(x,y)

∂s(x+w(x,i))
∂xs(x+w(x,i))I(x+w(y,i),0)dy,

Ik
y=
∫
y∈Nx

hσ2(x,t)(x,y)∂yI(y+w(y,i),0)+
∂h

σ2(x,t)
(x,y)

∂s(x+w(x,i))
∂ys(x+w(x,i))I(y+w(y,i),0)dy,

(19)

which can be solved by Gauss-Seidel or SOR iterations.

4.3 Depth Refinement

For the minimization of scene depth s(x), we keep the distorted displacement
w(y, t) fixed, then Eq. 13 becomes

min
s
J2(s(x)) = min

s
Ed(s(x)) + βEm(s(x)), (20)

where J2(s(x)) is the depth refinement objective function; Ed(s(x)) is the data-
term defined in Eq. 14 with fixed w(y, t); Em(s(x)) is the depth regularization
term defined in Eq. 16.

The minimization in Eq. 20 resembles the DFD optimization problem in the
air [12,21], except that defocused blur kernel size functions (Eq. 8) and the
ψ(ξ2) function are different. Thus, we modify the numerical solution in [21] for
our problem.

4.4 Recover Surface Shape

In Sec. 4.1 to 4.3, we have proposed the optimization method to estimate the
distortion between the reference image and refractive blur video and the under-
neath scene depth in the reference image. Based on Eq. 8 and Eq. 9, the normal
vectors map of the wavy water surface in each frame can be reconstructed by
the following linear operator:

⎧⎪⎪⎨
⎪⎪⎩
fx(xa, t) = −nx(x, t)

nz(x, t)
= − s(x+w(x, i)) + (n− 1)H

κv0(n− 1)(s(x+w(x, i)−H)
u(x, t)

fy(xa, t) = −ny(x, t)

nz(x, t)
= − s(x+w(x, i)) + (n− 1)H

κv0(n− 1)(s(x+w(x, i)−H)
v(x, t),

(21)

where fx(xa, t) and fy(xa, t) are the x-axis and y-axis gradients of wavy water
surface at the point xa corresponding to the pixel x in frames t. Surface integra-
tion from a gradient field by solving the Poisson equation has been well studied.
In this paper, we apply a similar approach in [2,1] to recover the wavy water
surface from its gradients field obtained from Eq. 21.
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5 Experimental Results

5.1 Synthetic Data

We evaluate the performance of our approach on synthetic image sequences
generated by ray-tracing method. Firstly the ground truth AIF image is regarded
as the reference image taken through flat water surface. Its pixels are projected
into the scene immersed in water by tracking light through the flat interface.
Then under wavy interface, we track each light ray emitted from the scene pixels
back to search for each pixels’ new locations and refractive blur size on the sensor.
Finally we render the synthetic image sequences based on Eq. 2 in Sec. 3.1.

We use the ”cloth”, ”barn” and ”baby” data from the Middlebury Stereo
Datasets [16,27] and downsample them to resolution 148×174 pixels as the
ground truth AIF image and depth. We assume that the distance from the
camera to the water surface is 1m, the water depth is 0.5m, the depth range of
object under the water is 1.1∼1.5m (we linearly map the ground truth depth
to this range under the water), the refractive index of water is 1.33, the vir-
tual camera is focused on the bottom of the water, the camera’s focal length
f = 35mm, the f/# = 4 and the calibration parameter κ = 3e4. In these ex-
periments, we implement our method with Matlab on a PC with an Intel 2.50G
Hz Xeon Quad-Core E5420 CPU.

We first conduct experiments assuming the water surface to be a sinusoidal
wave z(x, y, t) = −0.5 + 0.001cos(πt

√
x2 + y2/300) meters (we call this wave

wave 1 in this paper, the coordinate system is the same with Sec. 3.2, as shown
in Fig. 3(a)). The computation time is about 120 minutes (17 frames,”cloth”
data), 80 minutes (15 frames,”barn” data) and 110 minutes (15 frames,”baby”
data), respectively. For each scene, we pick one frame from synthetic video and
its reconstruction results (depth and fluid surface shape) as shown in Fig. 4 (the
first row in each subgraph), and the fluid surface reconstruction error maps are
visualized as well (sixth column in Fig. 4). We can see the accuracy of the recov-
ered scene depth and dynamic surfaces results with comparison to the ground
truth data. For quantitative evaluation, we also calculate the root mean square
error (RMSE) of the immersed scene’s depth and water surface’s shape sequence.
The RMSE of the reconstructed scene depths are respectively 0.0555m(”cloth”),
0.0358m(”barn”) and 0.0839m(”baby”), and the average RMSE of the recov-
ered water surfaces are 0.0362mm(”cloth”), 0.0317mm(”barn”) and 0.0618mm
(”baby”).

To verify our approach’s robustness towards different water fluctuations, we
apply a different synthetic sinusoidal wave z(x, y, t) = −0.5 + 0.001cos(πx/60 +
9πt/32)m to three scenes repeatedly (we call this wave wave 2 in this paper),
and display the results in second row of each Fig. 4’s subgraph. The computa-
tion time is about 120 minutes (”cloth”), 90 minutes (”barn”) and 130 minutes
(”baby”) on 17 frames, respectively. The RMSE of the reconstructed scene depth
are 0.0441m(”cloth”), 0.0433m(”barn”) and 0.0767m(”baby”), and the average
RMSE of the reconstructed surfaces are 0.0648mm(”cloth”), 0.0677mm(”barn”)
and 0.1426mm(”baby”). The results show similar accuracy to that in the first
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Fig. 4. Experimental results on three different synthetic data under two kinds of sinu-
soid waves. We synthesize the refractive blur images (second column) from reference
image and its depth (first column) with known sinusoid waves (fourth column), then
the depth and water surface are reconstructed (third and fifth column) with water
surface error map (sixth column).

surface shape sequences. The complete recovered sequences can be found in the
supplementary video. We also conduct similar experiments with the estimated
reference reconstructed from the synthetic distorted AIF video by [26], of which
results are shown in the supplementary material and video.

We also demonstrate the sensitivity of the proposed method by introducing
different levels of additive white gaussian noises to the input video and the ref-
erence image. In implementation, Fig. 5 demonstrates the performance (RMSE
of the reconstruction result) at varying noise levels. The curves show that the
performance does not degenerate largely at increasing noise, especially on the
rich-textured scene—’cloth’, the RMSE on which is relatively lower than on
the other scenes.
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(a) Scene depth RMSE w.r.t. sensor noise (b) Surface shape RMSE w.r.t. sensor noise
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Fig. 5. The sensitivity of the proposed method to sensor noise on three scenes under
two different sinusoid waves. (a) The performance of estimated depth w.r.t. sensor
noise. (b) The performance of estimated fluid surface shape w.r.t. sensor noise.
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Fig. 6. The captured reference images of three real scenes

5.2 Real-captured Results

In order to reconstruct the real fluid surface and depth of the underneath scene,
we set up a system as shown in Fig. 3(b). The camera (Canon EOS 5DII) is
placed orthogonally to the flat water surface. The scene is uniformly lit from the
side face of tank to avoid specular reflections. The distance from the camera to
the bottom of the tank is about 72 cm and the depth of water is about 40 cm.

To test our approach’s performance under a variety of conditions, we conduct
a series of experiments on three immersed scenes with different texture richness
of which reference images are shown in Fig. 6 and two different kinds of water
fluctuation amplitudes. We firstly take an AIF image through the undisturbed
water surface with a small aperture directly to avoid the inaccuracy of the recon-
structed reference image by using [30,26], and regard it as the reference image in
our approach. Then we capture a blurry video through wavy water with a large
aperture, and apply our approach to above two inputs.

Firstly we test our approach under a slightly rippled water surface generated
by dripping a drop of water into the tank. To eliminate influences on the video
capturing, we drop the water at the corner and generate quarter-annular waves.
The results in the first row of each Fig. 7’s subgraph show that we achieve
promising reconstruction in scenes with abundant texture (Fig. 7(a), with f =
35mm and f/# = 4), common texture scene (Fig. 7(b), with f = 50mm and
f/# = 4) and textureless scene (Fig. 7(c), with f = 50mm and f/# = 4).

We also test our method under larger fluctuating water surface by blowing air
onto it using a hair dryer. We repeat the same process to capture the reference
image and refractive blurry video and reconstruct both the water surface shape
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Fig. 7. Results on real-captured data. We reconstruct the depth (second column) and
water surface (third to sixth columns) from a captured refractive blur video and a
reference image (first column).
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Fig. 8. Comparison of the stereo (a) and DFD approaches (b) applied for scenes under
non-planar fluid surface. In stereo, rays leaving the same scene point crosses the fluid
surface at different locations, which may have different normals. Compared to stereo,
in DFD, two normal vectors of the refractive plane can be regarded as the same due
to small baseline (aperture size).
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and underneath scene depth. The second row in each Fig. 7’s subgraph shows
the reconstruction results on the three scenes and demonstrates the effectiveness
of the proposed approach in such cases.

6 Discussion and Conclusions

This paper has presented the first method that exploits defocus to simultaneously
reconstruct dynamic fluid surface and depth of the immersed scene using a single
camera. We build a refractive blur geometry model and develop an iterative
inference algorithm for depth and surface shape recovery. The performance and
robustness of our approach are experimentally validated on both synthetic and
real data.

Comparison with Stereo. Compared with other 3D reconstruction methods
such as stereo for imaging through wavy fluid surface, there are some advantages
of our method:

– As shown in Fig.8(b) and mentioned in Sec. 3.3, the normal vectors in the
surface element can be assumed to be the same in our model owing to the
small baseline (aperture size). Thus compared with Fig.8(a), there is less
number of the unknowns in the geometry, which enhances the performance
of our reconstruction algorithms.

– Similar to DFD method in the air, our approach uses only single camera,
avoids multi-view registration and is robust to occlusion, as analyzed in [29].
Besides, the geometry registration in DFD method can be eliminated since
we only change the aperture size during capturing and there is no scaling be-
tween images. The proposed model incorporates multiple controllable camera
parameters (e.g., aperture diameter, focusing depth) and thus is flexible for
developing high performance algorithms.

Although our approach could achieve promising performance on various scenes
under different types of fluid surfaces, using multiple cameras or changing cam-
era settings to further enhance the reconstruction accuracy are two interest-
ing avenues of future research. Another interesting future direction is to handle
the absorption and scattering of light in media such as fog, smoke and murky
water[25,15,28].
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