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Abstract. We propose a method for accelerating computation of an
object detector based on a linear classifier when objects are expressed
by binary feature vectors. Our key idea is to decompose a real-valued
weight vector of the linear classifier into a weighted sum of a few ternary
basis vectors so as to preserve the original classification scores. Our data-
dependent decomposition algorithm can approximate the original clas-
sification scores by a small number of the ternary basis vectors with an
allowable error. Instead of using the original real-valued weight vector,
the approximated classification score can be obtained by evaluating the
few inner products between the binary feature vector and the ternary
basis vectors, which can be computed using extremely fast logical oper-
ations. We also show that each evaluation of the inner products can be
cascaded for incorporating early termination. Our experiments revealed
that the linear filtering used in a HOG-based object detector becomes
36.9× faster than the original implementation with 1.5% loss of accuracy
for 0.1 false positives per image in pedestrian detection task.

Keywords: linear classifier, binary features, object detection.

1 Introduction

In spite of its simplicity, a linear classifier is widely acknowledged as a powerful
tool for object detection. In many cases, both training and detection time of the
linear classifier are greatly reduced compared to non-linear classifiers such as
deep neural networks[11] and kernel methods[9,14]. Although the linear classifier
simply defines a decision boundary by a hyper plane in a feature space, recent
feature representations, e.g. Histograms of Oriented Gradients (HOG)[3], Fisher
vector[16,15], explicit feature maps[21] and deformable part models[7], produce
comparable classification performances to the non-linear object detectors.

However, even for the linear classifier, the detection time differs from real-time
due to the fact that the detection task is done by sliding window approach, in
which the linear classifier is exhaustively applied at all possible locations on an
image. Coupled with the high-dimensionality of the recent feature representa-
tions, the computational cost of evaluating classification scores is enormous. This
drawback becomes more serious when a part-based model is used[7] because such
an object model must compute scores of multiple linear part filters. However,
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Fig. 1. A basic idea of our method. Classification score is approximated by weighted
sum of inner products between binary feature vector and ternary basis vectors.

reducing the computational load is crucial issue for industrial applications, such
as in-vehicle safety system.

Our aim with this study is to accelerate the score computation of the linear
object detectors, such as HOG with SVM. Figure 1 illustrates the basic idea of
our method. Our work was inspired by recent research on binary hashing[8,23]
and binary descriptors[18,13,1], which represent a visual feature as a binary
vector. In our framework, a feature vector is restricted to binary values -1 and
+1. In this case, the classification score is formulated as an inner product between
a real-valued weight vector (trained by a machine learning technique such as
SVM) and the binary feature vector. Our key idea is to decompose the real-
valued weight vector into a weighted sum of a few ternary basis vectors that
only contain -1, 0, and +1. In this case, the classification score is approximated
by the weighted sum of a few inner products between the ternary basis vectors
and the binary feature vector. Instead of using time-consuming floating-point
operations, each of the inner products can be computed extremely fast by simple
logical operations such as XOR, AND, and bit counts. For this idea to work well,
it is important to approximate the real-valued weight vector into a small number
of ternary vectors with an allowable error. To address this issue, we introduce
a data-dependent decomposition algorithm that minimizes the sum of squared
errors between the original and approximated classification scores of training
samples. In addition, cascading approach is introduced to reject a large number
of object candidates without evaluating all the decomposed inner products.

1.1 Related Work

There have been extensive studies on accelerating linear object detectors. We
review just a few representatives. Felzenszwalb et al.[6] introduced an idea of re-
jection cascade popularized by Viola and Johns[22] into deformable part models.
Dubout et al.[5] processed the sliding-window filtering in a frequency domain.
The filtering is accelerated by using a fast Fourier transform without any ap-
proximations. If a large number of multiple linear filters are needed, one solution
is to approximate each of the given filters by a weighted sum of a smaller number
of shared filters[20,19,17]. Song et al.[20,19] used this idea for multi-class object
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detection based on deformable part models. In their approach, a large number
of part filters are decomposed into shared filters and are approximated by sparse
linear combinations of them. Rigamonti et al.[17] proposed a method for find-
ing shared filters under the condition in which each are separable. Since the
responses of the separable filters can be computed by applying one-dimensional
filters twice in the x- and y- directions, the total computation time can be drasti-
cally reduced. Lampert et al.[12] revealed that a branch-and-bound approach can
directly find peaks of a filter response without exhaustive sliding-window search
if a good quality bounding function is given. The closest idea to ours was pro-
posed by Hare et al.[10] within the context of matching binary local descriptors.
In their work, classifier weights are decomposed into a few binary basis vectors in
a similar manner to ours. However, as shown later, our approach approximates
the classifier weights with significantly smaller errors than the proposed by Hare
et al.[10]. They also did not discuss the rejection cascade.

1.2 Contributions

We call our framework consisted of the following three components as Scalar
Product Accelerator by integer DEcomposition (SPADE).

1. Ternary representation: The classification score is approximated using a
small number of ternary basis vectors, as illustrated in Figure 1. We show
that the inner product between the ternary basis vector and the binary
feature vector can be computed extremely fast by a combination of three
logical operations: XOR, AND, and bit counts.

2. Data-dependent decomposition algorithm: The ternary basis vectors
and their coefficients are optimized to minimize the sum of squared errors
between the original and approximated classifier scores of training samples.
Although this minimization is a hard combinatorial optimization problem,
we propose an efficient method for finding an approximated solution.

3. Rejection cascade: When M ternary basis vectors are given, we show that
M -stage cascade can be built for early termination. With the introduction
of the rejection cascade, we also propose a method for determining safe
thresholds that do not decrease classification accuracy.

The rest of this paper is structured as follows. In Section 2, we introduce the three
components of SPADE. In Section 3, we explain experimental results and give
a discussion. We give concluding remarks in Section 4. Throughout this paper,
AND, XOR, and bit count operations are denoted by Land(x1,x2), Lxor(x1,x2)
and Lpop(x1), respectively, where x1and x2 are binary vectors that contains only
−1 or +1. The positive values are regarded as true bits, and the negative values
are regarded as false bits.

2 Scalar Product Accelerator by Integer Decomposition

In this section, we introduce three key ideas of SPADE: ternary representation,
data-dependent decomposition algorithm and rejection cascade. First we begin
with formulating the linear classifier as follows.
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f(x) = w�x+ b, (1)

where w ∈ R
D is a weight vector, x ∈ {−1,+1}D is a binary feature vector

extracted from an image, and b ∈ R is a bias term. Since the method for extract-
ing a good binary feature is an application-specific issue, we skip this discussion
until Section 3. In this section, we assume that the binary feature is properly
designed for the object detection task.

Even though x is binary, Eq. (1) still requires O(D) floating-point operations.
To reduce them, we introduce the following approximated classifier.

fapprox(x) =
M∑

i=1

cim
�
i x+ b, (2)

where mi is an i-th integer basis vector, ci ∈ R is its coefficient, and M is the
number of the basis vectors used for this approximation. The difference between
Eqs. (1) and (2) is that w is replaced with a linear combination of the integer

vectors
∑M

i=1 cimi.
Hare et al.[10] investigated the case in which mi ∈ {−1,+1}. In this case, the

inner product m�
i x can be quickly computed using XOR followed by bit counts

as follows1:
m�

i x = D − 2 · Lpop(Lxor(mi,x)). (3)

In this way, the order of floating-point operations to obtain fapprox(x) is reduced
from O(D) to O(M). For this method to work well, M must be small enough.
Hare et al.[10] reported that only two binary basis vectors are sufficient for
classifying binary local descriptors in the context of keypoint tracking. However,
for accelerating a linear object detector, such as a HOG with an SVM, we found
that much larger number of basis vectors is necessary to preserve the original
classification accuracy. In the following three subsections, we introduce three key
ideas of SPADE that greatly improve this drawback.

2.1 Ternary Representation

Even if M is set to a small value, good approximation can be obtained by
permitting various values to be taken in mi. However, fast computation of m�

i x
may become more difficult. There is a trade-off between computation time and
approximation quality depending on constraints on mi.

From the viewpoint of this trade-off, a good balanced approach is to use a
ternary vector mi = (mi1, · · · ,miD)� ∈ {−1, 0,+1}D. Even in this case, logical
operations are available to compute m�

i x similar to Eq. (3). By introducing
Nplus(mi,x) and Nminus(mi,x), m

�
i x can be rewritten as follows.

m�
i x = Nplus(mi,x)−Nminus(mi,x), (4)

1 In the original work [10], this inner product is computed using AND operation instead
of XOR. However, there are no essential difference between them.
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Fig. 2. Nminus is obtained by XOR, AND, and bit count operations by introducing
two binary vectors m∗

i and mmask
i derived from mi. Locations that satisfy mijxj = −1

are indicated by yellow boxes.

Fig. 3. Comparison of computation times of m�
i x. Three cases of mi: binary, ternary

and real-valued, are shown in this figure. A dimension D is set to 4896 in this test.

where Nplus(mi,x) and Nminus(mi,x) are numbers of elements that satisfy
mijxj = +1 and mijxj = −1, respectively. A formal definition of Nminus(mi,x)
is

Nminus(mi,x) =

D∑

j=1

I(mij , xj), I(mij , xj) =

{
1 if mijxj = −1
0 otherwise

, (5)

where I(mij , xj) is an indicator function. IfNminus(mi,x) are given,Nplus(mi,x)
can be easily obtained as follows.

Nplus(mi,x) = D − zi −Nminus(mi,x), (6)

where zi is a number of zero values in mi and is pre-computable because mi

is determined at the training phase and is fixed when detecting objects. By
substituting Eq. (6) into Eq. (4), we obtain

m�
i x = D − zi − 2 ·Nminus(mi,x). (7)

In practice, Nminus(mi,x) can be quickly computed by logical operations
without the element-wise summation shown in Eq. (5). This is illustrated in
Figure 2. Instead of directly using mi, we prepared two binary vectors mmask

i =
(mmask

i1 , · · · ,mmask
iD )� and m∗

i = (m∗
i1, · · · ,m∗

iD)�, which are defined as follows.

mmask
ij =

{
−1 if mij = 0
+1 otherwise

, m∗
ij =

{
γ if mij = 0

mij otherwise
, (8)

where γ is an arbitrary value that takes −1 or +1, mmask
i and m∗

i are binary
vectors, and Nminus(mi,x) is given by the following equation.

Nminus(mi,x) = Lpop(Land(Lxor(m
∗
i ,x),m

mask
i )). (9)
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The first XOR operation finds positions that satisfy mijxj = −1. Although this
operation may also find positions that satisfy mijxj = 0, they are filtered out by
the following AND operation. Finally, by counting the number of true bits, we
obtain Nminus(mi,x). It should be noted that Nminus(mi,x) does not depend on
the choice of γ because the corresponding locations are filtered out by the AND
operation. By substituting Eq. (9) into Eq. (7), m�

i x is obtained very fast.
Computation times of m�

i x are compared in Figure 3. Three types of con-
straints: binary, ternary, and real-valued (no constraints), are imposed on mi.
A popcnt instruction of Intel Core i7 processor was used for computing Lpop(·).
Interestingly, the computation time of the ternary representation was compa-
rable to the binary representation, although the ternary representation poten-
tially has a capability to reduce the approximation error better than the binary
representation.

2.2 Decomposition Algorithms

In this subsection, we explain two different algorithms for decomposing w into
mi and ci. One is a data-dependent algorithm and the other is a data-independent
algorithm. These two algorithms minimize different cost function. The former
uses training datasets, but the latter does not. First, we introduce each cost
function and discuss their advantages and disadvantages. Next, two optimization
algorithms that minimize them are proposed. Finally, a connection between our
study and a related study[10] is discussed.

To preserve a decision boundary, it is natural to minimize the sum of the
squared differences between the original and approximated classifier scores. This
requires training datasets X = (x1, · · · ,xN ) ∈ {−1,+1}D×N , where X contains
positive and negative samples used to train w and b. The cost function is defined
as follows.

E1 =
N∑

k=1

(f(xk)− fapprox(xk))
2 = ||w�X− (

M∑

i=1

cimi)
�X||22. (10)

We call this optimization data-dependent decomposition. While this decompo-
sition well preserves the decision boundary, the above optimization is difficult
to solve. An alternative solution is to minimize an L2 norm of a residual vector
between w and

∑M
i=1 cimi. The cost function is defined as follows.

E2 = ||w −
M∑

i=1

cimi||22. (11)

We call this optimization data-independent decomposition because the training
dataset X does not appear in this cost function. This optimization is relatively
easier than the case of the data-dependent decomposition.

It should be noted that data-independent decomposition can be regarded as
a special case of data-dependent decomposition. The two cost functions can be
rewritten as follows.
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Algorithm 1. Data-independent decomposition that minimizes E2

function data independent decomposition(w,M)
r = w
for i = 1 to M do

initialize mi by random three integer values {−1, 0,+1}
repeat

ci = m�
i r/m

�
i mi

mij = arg min
α∈{−1,0,+1}

(rj − ciα)
2 , for j = 1, · · · , D

until ci and mi have not been updated.
r← r− cimi

end for
return {mi}Mi=1, {ci}Mi=1

E1 = (w − w̃)�A(w − w̃) (12)

E2 = (w − w̃)�(w − w̃), (13)

where w̃ =
∑M

i=1 cimi andA = XX�. IfA is proportional to an identity matrix,
E1 becomes equivalent to E2. Even when A does not satisfy this assumption,
E1 tends to decrease by minimizing E2 in practice. Based on this observation,
we propose a two-step algorithm, in which minimization of E1 is started from a
good initial solution obtained by minimizing E2.

Data-independent decomposition is shown in Algorithm 1. Our strategy is
to sequentially reduce the residual error in Eq. (11). At the i-th iteration, ci
and mi are determined to minimize ||r − cimi||22, where r = (r1, · · · , rD)� is
a residual vector initialized by w before the first iteration. This optimization
is done using an alternative approach. When mi is fixed, ci is updated using a
least square method. When ci is fixed, the j-th element mij in mi is separately
updated by testing only three candidates {−1, 0,+1}. After the convergence,
the residual vector r is updated by subtracting cimi before going to the next
(i+ 1)-th iteration.

Data-dependent decomposition shown in Algorithm 2 uses Algorithm 1 to
produce a good initial solution. At the i-th iteration, ci and mi are determined
to minimize the following cost value.

εi = ||(r− cimi)
�X||22 = (r− cimi)

�A(r− cimi). (14)

If mi is fixed, ci is updated using a least square method as well as Algorithm 1.

ci = m�
i Ar/m�

i Ami. (15)

Even when ci is fixed, optimizing mi is still difficult due to the fact that the
j-th element mij cannot be separately optimized to minimize εi unlike in the
case of data-independent decomposition. To address this issue, our algorithm
permits replacing only nc randomly-chosen elements at the same time. In this
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Algorithm 2. Data-dependent decomposition that minimizes E1

function data dependent decomposition(w,M, Tmin, ρ)
r = w
for i = 1 to M do

initialize ci and mi by calling data independent decomposition(r, 1)
Niter = 0;Nupdate = 0
loop

Niter ← Niter + 1
if (Niter > Tmin) and (Nupdate/Niter < ρ) then

break loop
end if
create Ω by randomly choosing nc indices from {1, · · · , D}
mi,Ω = arg min

α∈{−1,0,+1}nc

εi(α) {see Eq.(17)}

if cost value εi is not improved, then
continue loop

end if
Nupdate ← Nupdate + 1
ci = m�

i Ar/m�
i Ami

end loop
r← r− cimi

end for
return {mi}Mi=1, {ci}Mi=1

case, only 3nc candidates are necessary to be tested to update mi. Although
such greedy-like optimization is seemingly difficult to sufficiently minimize the
cost function, our algorithm gives good results because this optimization starts
from the good initial solution produced by Algorithm 1.

When ci is fixed, mi is updated as follows. Let us define a set Ω containing
indices of nc randomly-chosen elements. Its complement is Ω̄ = {1, · · · , D} \Ω.
The cost value εi can be rewritten as follows.

εi = (rΩ − cimi,Ω)
� AΩΩ (rΩ − cimi,Ω) +

(rΩ̄ − cimi,Ω̄)
� AΩ̄Ω̄ (rΩ̄ − cimi,Ω̄) +

2(rΩ − cimi,Ω)
� AΩΩ̄ (rΩ̄ − cimi,Ω̄), (16)

where mi,Ω,mi,Ω̄, rΩ, and rΩ̄ are sub-vectors of mi and r and AΩΩ, AΩ̄Ω̄,
and AΩΩ̄ are sub-matrices of A. These sub-vectors and sub-matrices contain
certain rows and columns indicated by their subscripts Ω and Ω̄. In the case of
a matrix, the first subscript means row indices and the second subscript means
column indices, e.g. AΩΩ̄ is an nc-by-(D−nc) matrix. In Algorithm 2, not only
ci but also mi,Ω̄ are fixed. In this case, the cost value εi is simplified as follows.

εi(mi,Ω) = c2im
�
i,ΩAΩΩmi,Ω

+2cim
�
i,Ω(ciAΩΩ̄mi,Ω̄ −AΩΩrΩ −AΩΩ̄rΩ̄) + constant. (17)
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Algorithm 3. Fast classification by rejection cascade

function classify (x, b,m1 · · · ,mM , R1, · · · , RM ,M)
y = b; f = positive
for i = 1 to M do

y ← y + cim
�
i x

if y < Ri then
f = negative; exit for loop

end if
end for
return f

This sub-problem can be easily solvedby testing only 3nc candidates {−1, 0,+1}nc

because mi,Ω is an nc-dimensional ternary vector. Depending on the choice of Ω,
the initial value of mi,Ω is already optimal for εi(mi,Ω). Therefore, we repeat the
random choice and the sub-problem optimization until the cost value is improved.
If the cost value is not improved for a long time, we go to the next (i + 1)-th it-
eration. This is controlled by two pre-defined thresholds Tmin and ρ. In practice,
the parameters {nc, Tmin, ρ} are set to {4, 100, 0.1}, respectively.

Obviously, with a slight modification, both Algorithms 1 and 2 are also avail-
able when mi is constrained to binary values. In this case, Algorithm 1 produces
the same results as a previous work[10]. From this perspective, the Algorithms
1 and 2 can be regarded as a generalization of their work.

2.3 Rejection Cascade

Since Algorithms 1 and 2 sequentially compute mi by reducing the residual error
one by one,mi with the smaller index i more contributes to w in a similar way to
a principal component analysis. In other words, the original decision boundary is
almost reconstructed by the first basis vector m1 and its coefficient c1. The rest
of basis vectors m2, · · · ,mM and coefficients c2, · · · , cM acts as correction terms
for further fine reconstruction. This characteristic is very convenient to construct
rejection cascade. In most cases, we can estimate the sign of the approximated
classification score fapprox(x) by using only the first several inner products m�

i x.
Algorithm 3 shows our strategy of the early termination. Our rejection cascade

has M stages. A cumulative score y is initialized by the bias term b at the
beginning. At i-th stage, cim

�
i x is added to y. The score y is thresholded by Ri

to examine whether x belongs to a negative class or not.
The thresholds R1, · · · , RM must not cause a loss of accuracy. We discuss how

the j-th threshold Rj should be determined. At the j-th stage, j weighted inner
products c1m

�
1 x, · · · , cjm�

j x have already been given. The rest of the weighted
inner products are not given at this time. We split them as follows.

fapprox(x) =

j∑

i=1

cim
�
i x+ b+

M∑

i=j+1

cim
�
i x. (18)
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While the first and second terms of Eq. (18) are given at the j-th stage, the third
term is not given yet. The problem is how we estimate whether f(x) is negative
without knowing the third term.

To address this issue, we consider replacing the unknown third term with a
possible maximum value αi defined as follows:

αi = max
x∈{x1,··· ,xN}

(cim
�
i x), (19)

where x1, · · · ,xN are training samples. By replacing cim
�
i x in the third term

of Eq. (18) with αi, we obtain the upper bound of fapprox(x) as follows.

fapprox(x) ≤
j∑

i=1

cim
�
i x+ b+

M∑

i=j+1

αi. (20)

If the upper bound is less than zero, fapprox(x) also takes a negative value. In
this case, the feature vector x can be regarded as a negative sample. Therefore,
the j-th threshold Rj can be determined as follows.

j∑

i=1

cim
�
i x+ b+

M∑

i=j+1

αi < 0 (21)

j∑

i=1

cim
�
i x+ b < −

M∑

i=j+1

αi = Rj . (22)

In addition, obviously RM = 0.

3 Experiments and Discussion

We evaluated SPADE by taking pedestrian detection task as an example. We
used INRIA pedestrian dataset[3] and a software supplied by [4] to evaluate miss
rate against false positives per image (FPPI).

To avoid confusion, four different decompositions are abbreviated as follows.

– Data-Independent, binary basis vectors (DI2, DI2M1, · · · ,DI2M5)
– Data-Independent, ternary basis vectors (DI3, DI3M1, · · · ,DI3M5)
– Data-Dependent, binary basis vectors (DD2, DD2M1, · · · ,DD2M5)
– Data-Dependent, ternary basis vectors (DD3, DD3M1, · · · ,DD3M5)

The first ’DI’ or ’DD’ specifies the decomposition algorithm. The following digit,
’2’ or ’3’, defines the constraint on basis vectors. Optionally, the number of basis
vectors M may be added to the end of the abbreviation. For example, ’DD3M5’
uses data-dependent decomposition algorithm, ternary basis vectors and M = 5.
It should be noted that DI2 is completely equivalent to the previous work[10],
when the rejection cascade is not used.
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Fig. 4. probability distribution of hi

 

 

H

Fig. 5. Performance comparison

3.1 Implementation Details: Pedestrian Detector Using Binary
HOG

While real-valued HOG feature is frequently used in object detection task[3,7,6],
SPADE requires binary features. We show an interesting observation that the
HOG can be converted to binary features by simple multi-level thresholding
with little loss of detection accuracy. In our implementation2, eight contrast-
insensitive gradient orientations are used to form a 32-dimensional HOG feature
h = (h1, · · · , h32)

� per block. L-level thresholding is applied to hi as follows.

hi,l =

{
+1 hi ≥ Ti,l

−1 hi < Ti,l
. (23)

The thresholds Ti,1, · · · , Ti,L for hi are determined as follows. Each element
hi extracted from training samples are sorted in descending order, where Ti,l is
chosen to make the top 100l/(L+1)% values take +1 and the rest take −1 in the
sorted list. For example, when L = 3, three thresholds are chosen from values at
the top 25, 50, and 75% positions in the sorted list. Figure 4 shows an example of
a probability density distribution of hi and the chosen three thresholds Ti,1, Ti,2,
and Ti,3. In this way, a 32L-dimensional binary feature per block is obtained.

Figure 5 compares the miss rates of the real-valued and the binarized HOG.
Two parameters, L = 1 and 3, are tested. In addition, iterative quantization
(ITQ) [8] is also tested to generate a 32-bit binary feature from h. At the begin-
ning of the captions, log-average miss rate[4] is denoted. The pedestrian models
are trained using a linear SVM with appropriate soft margin parameters C,
which are shown at the end of the captions. Interestingly, the binarized HOG
produced comparable results to the real-valued HOG when L was set to 3. Even
when L = 1, the log-average miss rate dropped only 3%. It should be also
noted that our 32-bit HOG exhibited almost the same accuracy as that of ITQ.
Since extracting binary features must also be fast, we used the simple multi-
level thresholding instead of using the conventional binary hashing. In the fol-
lowing subsections, we use three abbreviations: ’BinHOG32’, ’BinHOG96’, and
’OrgHOG’ that correspond to 32-bit(L = 1), 96-bit(L = 3) and 32-dimensional
real-valued HOG, respectively. Unless otherwise specified, the BinHOG32 and
rejection cascade were used in the following experiments.

2 Unless otherwise stated, we followed the same parameters described in [3].
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Fig. 6. Comparison of decompositions

 

 

Fig. 7. Miss rate v.s. M

3.2 Comparing Approximation Qualities of Classification Scores

Figure 6 shows total approximation errors of classification scores E1 defined
in Eq.(10) versus M . The y-axis is represented in a logarithmic scale. In ad-
dition to the above mentioned four methods: DI2, DI3, DD2, and DD3, the
data-dependent decomposition algorithm initialized by random values (instead
of using the optimized initial solution generated by the Algorithm 1) is also
tested. This is denoted by ’DD2-random’ and ’DD3-random’.

Although the approximation errors E1 were decreased by increasing M in all
cases, the approximation qualities were quite different for each case. The cases
of the ternary representation: DI3, DD3, and DD3-random, produced better
results than the cases of the binary representation: DI2, DD2, and DD2-random.
The binary representation required the larger number of basis vectors M than
the ternary representation. Interestingly, DI2 and DI3 decreased E1 in spite
of the fact that they do not directly minimize E1 but E2. This fact suggests
that DI2 and DI3 can produce a good initial solution. In fact, DD2-random
and DD3-random produced poor results compared to DD2 and DD3. The best
approximation quality was obtained by using DD3.

3.3 Classification Accuracy and M

Figure 7 shows miss rates at 10−1 false positives per image versus M . We also
tested a baseline method that does not decompose the weight vector w into
integer basis vectors. This baseline detector runs very slow, but its classification
scores do not include any errors. This is denoted by ’no decomposition’ in this
figure. In this experiment, consistent results with section 3.2 were observed. In
all the four cases, the miss rates were approached to the same level of the baseline
detector by increasing M . However convergence speed were obviously different
among them. Even when M was set to a small value, DD3 achieved almost the
same miss rate as the baseline detector.

Figure 8 shows performance curves obtained by testing different M , differ-
ent binary features and different decomposition algorithms. The results of Bin-
HOG32 and BinHOG96 are separately shown in (a) and (b). In addition to the
four methods: DI2, DI3, DD2, and DD3, the baseline detector (without decom-
posingw) is also tested as well as Figure 7. By increasingM , the results of all the
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(a) BinHOG32 M = 1, · · · , 3 and 4

 

 

 

 

 

 

 

 

(b) BinHOG96 M = 1, · · · , 3 and 4

Fig. 8. In these figures, two kinds of binary features (BinHOG32 and BinHOG96),
five approximation models(DI2, DI3, DD2, DD3, and no decomposition) and different
M = 1, · · · , 4 were tested to draw performance curves.

four methods (DI2, DI3, DD2, and DD3) approached to the performance curve
of the baseline detector (without decomposition). The same trend was observed
for BinHOG32 and BinHOG96. In both cases, DD3 reached at almost the same
level of the baseline detector even when M = 1.

In summary, a conclusion resulting from Figure 6, 7, and 8 is that we should
minimize the data-dependent cost function E1 rather than the data-independent
cost function E2 addressed in the previous work[10]. Introducing the ternary
decomposition helps to sufficiently minimize E1, which brings significant perfor-
mance gain over the (previously proposed) binary decomposition.

3.4 Effect of Rejection Cascade and Computation Time

Figure 9 summarizes the effect of our rejection cascade. The cases in which early
termination is not used are indicated by ’w/o cascade’. Figure 9(a) compares
miss rates. Figure 9(b) shows computation time ratios compared to the case in
which w is not decomposed. Figure 9(c) shows frequency of early termination.
x-axis means an average number of evaluated inner products in the rejection cas-
cade. If the early termination works well, this value approaches to one. Through-
out this experiment, a popcnt instruction of Intel Core i7 processor was used.
It was observed from Figure 9(a) that the rejection cascade did not cause loss
of classification accuracy. The detection results with and without the rejection
cascade were completely consistent. Figure 9(b)(c) revealed that the rejection
cascade obviously improved the runtime computation even when M was set to
a large value. As shown in Figure 9(c), DD3 could reject the largest number of
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Fig. 9. DI2, DI3, DD2, and DD3 with and without rejection cascade were compared

Table 1. Summary of speed and miss rate

method acceleration miss rate@FPPI=0.025 miss rate@FPPI=0.1

OrgHOG (baseline) 1× 0.436 0.370

BinHOG32 DD3M5 36.9× 0.503 0.385

BinHOG96 DD3M5 12.9× 0.494 0.385

BinHOG32 DI2M5 8.6× 0.504 0.402
w/o cascade (Hare et.al.[10])

candidates than DI2, DI3 and DD2. These results suggest that the first ternary
basis vector m1 obtained by DD3 sufficiently preserved the decision boundary.

Finally, we compared our method with the previous work proposed by Hare
et.al.[10] as shown in Table 1. As pointed out in Section 2.2, Hare’s study is
regarded as ’DI2 w/o cascade’. Our method outperformed both computation
time and accuracy compared to the previous work.

4 Conclusion

In this paper, we proposed SPADE that accelerated runtime computation of the
linear classifier by introducing three ideas: ternary representation, data-dependent
decomposition and rejection cascade. Since state-of-the-art object detection[2] is
beginning to focus on the Hare’s study[10] to boost the detection task, it is widely
expected that SPADE is able to improve such detection methods based on binary
features. Finally, we discuss possible extensions for future works.While we focused
on a single class case throughout this paper, we believe that it is potentially feasi-
ble to extend our method to a multi-class recognition. In this case, ternary basis
vectors should be shared within multiple real-valued weight vectors in a similar
spirit of related works[20,19,17], because visual features are often shared among
different classes. From the other perspective, it is also expected that SPADE is
widely available not only for computer vision but also for the other field of re-
searches based on linear classifiers and binary features.
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