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Abstract. Object detection and semantic segmentation are two strongly
correlated tasks, yet typically solved separately or sequentially with sub-
stantially different techniques. Motivated by the complementary effect
observed from the typical failure cases of the two tasks, we propose a
unified framework for joint object detection and semantic segmentation.
By enforcing the consistency between final detection and segmentation
results, our unified framework can effectively leverage the advantages
of leading techniques for these two tasks. Furthermore, both local and
global context information are integrated into the framework to bet-
ter distinguish the ambiguous samples. By jointly optimizing the model
parameters for all the components, the relative importance of different
component is automatically learned for each category to guarantee the
overall performance. Extensive experiments on the PASCAL VOC 2010
and 2012 datasets demonstrate encouraging performance of the proposed
unified framework for both object detection and semantic segmentation
tasks.
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1 Introduction

Object detection and semantic segmentation are two core tasks of visual recog-
nition [13,19,36,3,42,6,35]. Object detection is often formulated as predicting a
bounding box enclosing the object of interest [19] while semantic segmentation
usually aims to assign a category label to each pixel from a pre-defined set [6].
Though strongly correlated, these two tasks have typically been approached as
separate problems and handled using substantially different techniques.

Template based detection using sliding window scanning (e.g. HoG [13] and
DPM [19]) has long been the dominant approach for object detection. Though
good at finding the rough object positions, this approach usually fails to accu-
rately localize the whole object via a tight bounding box. In fact, it has been
found that the largest source of detection error is inaccurate bounding box lo-
calization (0.1 ≤ overlap < 0.5) [12,24]. This may arise from the limited repre-
sentation ability of template-based detectors for non-rigid objects. For example,
the deformable part-based model (DPM) [19] detector works much better for
localizing rigid cat heads than for more amorphous cat bodies [32]. As shown in
Figure 1 (a) and (b), the DPM detector often locates the head region only, which
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Fig. 1. The inconsistency of failure cases for object detection and semantic segmenta-
tion. The images in the top row show the scenario where detection is imperfect due to
pose variance while the semantic segmentation works fine. The images in the bottom
row show the scenario where semantic segmentation is not accurate while detectors can
easily locate the objects. Thus, the two tasks are able to benefit each other, and more
satisfactory results can be achieved for both tasks using our unified framework.

leads to the localization error. On the other hand, owing to their homogeneous
appearances, the whole objects (cat and sheep) can be easily segmented out
by the leading semantic segmentation techniques [6]. If poor localizations can
be corrected with the help of semantic segmentation techniques [6], the over-
all detection performance would be improved considerably from additional true
positives and fewer false positives.

Hypotheses based semantic segmentation has achieved great success during
the past few years, which works by directly generating a pool of segment hy-
potheses for further ranking [2,6]. However, due to the lack of global shape
models, these approaches may fail to recognize the hypotheses of objects with
heterogeneous appearances in the cluttered background, especially when all the
generated hypotheses have some artifacts. As shown in Figure 1 (c) and (d),
the leading hypotheses based semantic segmentation approach [6] either fails to
segment out the object of interest or selects a much larger segment hypothe-
sis. In contrast, if the target object has strong shape cues, the template-based
detector [19] can easily locate the object and thus provide valuable informa-
tion for semantic segmentation. Recently, a line of works, called detection-based
segmentation, explored directly utilizing the detection results as top-down guid-
ance and then performing segmentation within the given bounding boxes [4,37].
However, such approaches usually have to make a hard decision about detection
results at the early stage. Hence the error for detection, especially the localiza-
tion error, will propagate to the segmentation results and could not be rectified.
Intuitively it is beneficial to postpone making a hard decision till the last step
of the pipeline [38].

Based on the above observations, we argue that object detection and semantic
segmentation should be addressed jointly. Object detections should be consistent
with some underlying segments to integrate local cues for better localization as
shown in Figure 1 (a) and (b). Similarly, hypotheses based semantic segmenta-
tion should benefit from template-based object detectors to select better segment
hypotheses as shown in Figure 1 (c) and (d). To this end, we propose a principled
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framework to unify current leading object detection and semantic segmentation
techniques. By enforcing the consistency, our unified approach can benefit from
the advantages of both techniques. In addition, some ambiguous object hypothe-
ses may be difficult to classify from the information within the window/segment
alone, but contextual information, such as local context around each object hy-
pothesis and global image-level context, can help [28,34,11]. Hence, we further
integrate contextual modeling into our framework. The major contributions of
this work can be summarized as follows:

– We propose a principled framework for joint object detection and semantic
segmentation. By enforcing the consistency between detection and segmen-
tation results, our unified framework can effectively leverage the advantages
of both techniques. Furthermore, both local and global context informa-
tion are integrated into our unified framework to distinguish the ambiguous
examples.

– With our unified framework, all information is accumulated at the final stage
of the pipeline for decision making. Hence, it is avoided to make any hard
decision at the early stage. The relative importance of different components
is automatically learned for each category to guarantee the overall perfor-
mance.

– Extensive experiments are conducted for both object detection and semantic
segmentation tasks on the PASCAL VOC [17] datasets. The state-of-the-art
performance of the proposed framework verifies its effectiveness, showing
that performing object detection and semantic segmentation jointly is ben-
eficial for both tasks.

2 Related Work

Recently, by noticing the limitation and complementarity of techniques for both
tasks, some researchers have begun to investigate their correlations [25,2,40,5,39].
The early work [25] simply employs the masks from detectors to initialize graph-
cuts based segmentations. In [27,37], more sophisticated models are proposed to
refine the region within ground-truth bounding boxes. Rather than focusing on
entire objects, Brox et al. employed Poselet detectors to predict masks for object
parts [5]. Arbeláez et al. aggregated top-down information from detectors as acti-
vation features for bottom-up segments [2]. Conversely, segmentation techniques
have also been explored to assist object detection. Dai et al. utilized segments
extracted for each object detection hypothesis for better localization [12]. Some
recent works [26,40] proposed to perform joint object detection and semantic
segmentation. Unfortunately, nearly all the above approaches utilize a sequen-
tial manner to fuse detection and segmentation techniques. Hence, the overall
performance heavily relies on the correctness of the initial results as the errors
in the early stage are difficult to rectify. Our framework is different in the sense
that we avoid making any hard decision at the early stage. All the information
is aggregated at the final stage of the pipeline for decision making.
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Fig. 2. Overview of the proposed unified object detection and semantic segmentation
framework. Give a testing image, our UDS framework performs template based de-
tection using sliding window scanning and hypotheses based semantic segmentation
jointly. The agreement of the predictions from these two approaches is ensured by the
consistency model. Both local context around the object hypothesis and global im-
age context are also seamlessly integrated into our framework. The final output is the
bounding box position and the index of the selected segment hypothesis.

Probably the most similar approach to ours is [20], which proposed to improve
object detection based on semantic segmentation results. Similar to this work
we utilize consistency between the detection windows and bottom-up segments.
However, unlike [20] our features are computed on parts as well. Also, in [20]
it is not described how to deal with a large number of segments, and their
experiments are based on a few segments.

3 Unified Object Detection and Semantic Segmentation

In this section, we introduce the details of the proposed unified object detection
and semantic segmentation (UDS) framework. We start with an overview of the
system and then detail each key component.

Figure 2 illustrates the pipeline of the proposed UDS framework. For the seg-
mentation component, we employ the hypotheses based approach. Thus, with a
pool of generated segment hypotheses, the segmentation problem is converted
into choosing the appropriate hypothesis. Given a testing image, we perform
template based detection using sliding window scanning and hypotheses based
semantic segmentation jointly. Successful detection and segmentation require the
agreement of both detection and segmentation predictions, which is achieved by
utilizing a consistency model. In addition, as context plays an important role in
distinguishing ambiguous object hypotheses, we further design a context model
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to aggregate both local (around the target object) and global (image-level) con-
text information. For different object categories, each of these four components
may have a different level of importance, which is automatically decided during
the learning process. The final output of our system is the bounding box position
(p0) and the selected segment index (id) for the target object.

Formally, the joint detection and segmentation is achieved via the maximiza-
tion of the following score function:

S(I, z, id) = λDtSDt(z|wDt, I) + λSgSSg(id|wSg, I)

+λCtSCt(z, id|wCt, I) + SCs(z, id|wCs),
(1)

where wDt, wSg, wCt and wCs are the parameters for detection, segmenta-
tion, context and consistency component, respectively. λDt, λSg, λCt are scalar
weights for the corresponding components. z captures the information for the
template based detector and id denotes the index of the selected segment. The
details of each component are introduced in the following subsections. Based on
the proposed unified approach, we avoid making any hard decision at the early
stage. The final decision is delayed to the last step of the pipeline with all the
integrated information, which implicitly relies on the learning mechanism to as-
sess the relative importance of different components for each object category to
guarantee the overall performance.

Finally, we want to emphasize that the proposed UDS framework provides a
principled way to unify detection and segmentation techniques. We can directly
employ the existing techniques or design new approaches for each component.
Hence, it is easy to tailor UDS for specific applications, such as simultaneous
person detection and segmentation. In this work, we will focus on utilizing the
UDS framework for general object detection and semantic segmentation to verify
its effectiveness.

3.1 Template Based Detection Component

For the detection component, we aim to utilize the template based approach
[19,14,20], as it is good at capturing the shape cue and thus complementary to the
appearance based segmentation techniques [6,38]. In addition, through the mix-
ture model strategy [19], these approaches can easily encode sub-category level
top-down information (subcategory specific soft shape mask in this work). In this
paper, we utilize the state-of-the-art deformable part-based model (DPM) [19].
Following [19,20], we define z = {c, p}, where p = {pi}i=0,··· ,m. Here, c denotes
the mixture component index. p0 encodes the location and scale of the root
bounding box in an image pyramid and {pi}i=1,··· ,m encodes the m part bound-
ing boxes at the double resolution of the root. By concatenating the parameters
for all mixtures as in [19,20], the score of a configuration can be written as

SDt(p, c|wDt, I) =

m∑

i=0

wDt
i · φDt(I, pi, c) +

m∑

i=1

wDt
i,def · φDt(p0, pi, c), (2)
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where φDt(I, pi, c) and φDt(p0, pi, c) are the HoG pyramid features and spring
deformation features, respectively, as in [19,20]. As Eqn. (2) is linear in model
parameters, it can be written compactly as:

SDt(p, c|wDt, I) = wDt · φDt(I, p, c). (3)

3.2 Hypotheses Based Segmentation Component

Hypotheses based semantic segmentation has achieved great success during the
past few years [7,6,38]. This line of approaches mainly consist of two stages. The
first stage generates a pool of segment hypotheses. The second stage ranks the
generated hypotheses based on category-dependent information. The top ranked
segments are returned as the final solution. Many efforts have been devoted to
hypotheses generation through either a pure bottom-up approach [7,36,2] or a
CRF based approach [38]. For the second stage, most approaches [7,36,38] simply
employ the appearance based classification/regression for ranking. However, due
to the limited discriminative ability of the appearance based ranking function,
there exists a large gap between upper-bound accuracy of generated hypothe-
ses (larger than 80%) and predicted accuracy of selected hypotheses (less than
50%) [7,38]. As shown in Figure 1, due to the lack of global shape models, se-
mantic segmentation relying on pure appearance based ranking may fail to find
the appropriate hypotheses.

Based on the above observation, it may be expected that considerable im-
provement over the current segmentation performance can be achieved by means
of simply selecting better hypothesis without generating more hypotheses. Hence,
in this work we use standard methods for hypotheses generation and similar
to [20], focus on selecting better segment hypotheses. To allow direct compar-
ison, we utilize the publicly available code of the second order pooling (O2P)
approach [6] for hypotheses generation. For the feature representation φSg(I, id)
of the selected hypothesis id, a naive strategy is directly employing the sec-
ond order pooling features as in [6]. However, training a latent model with high
dimension features may be intractable. Hence, rather than keeping φSg(I, id)
as a high dimensional vector of raw second order pooling features, we represent
φSg(I, id) as the scores of pre-trained support vector regressors (SVR) [6]. Then,
the score function of the segmentation component can be written as:

SSg(id|wSg, I) = wSg · φSg(I, id). (4)

3.3 Consistency Component

The consistency component mainly aims to enforce the consistency between de-
tection and segmentation prediction and thus leverage the advantages of both
approaches. Soft shape mask has demonstrated to be effective for many detec-
tion guided techniques [39,2,8]. Hence, in this work, we measure the consistency
between results of detection and segmentation approaches by calculating the
correlations between their masks as shown below:
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(a) Exemplar soft shape masks for bus and cat categories (b) Regions for calculating context features 

Fig. 3. (a) Examples of subcategory-specific soft shape masks for buses (top row)
and cats (bottom row). (b) Illustration of regions defined for computing the context
features. Based on the selected segment hypothesis and bounding box, we adaptively
divide the image into 7 regions as described in Section 3.4.

SCs(z, id|wCs) =

m∑

i=0

wCs
i ·m(pi, id, c) = wCs · φCs(p, id, c), (5)

where m(pi, id, c) is the binary map {1,−1} clipped from the segmentation hy-
pothesis id by the localized bounding box pi. Here, c in m(pi, id, c) is only used
for padding 0 to make the equation with mixture models more compact, which
is a common trick for the DPM approach [19].

Intuitively, the learned soft mask wCs from top-down detection techniques
can be seen as a shape guidance for bottom-up segmentation techniques. En-
forcing the correlation between masks from both approaches will guarantee the
consistency of top-down and bottom-up information. In addition, the mixture
model strategy is critical to cope with variance in the poses as well as the view
points. To ensure obtaining a reliable shape mask for each mixture component,
we employ a shape guided mixture initialization as introduced in Section 4.2.
Some examples of such soft shape masks are visualized in Figure 3 (a).

3.4 Context Component

Both the local context around the target object [28,31] and the global image
context [34,2,11,31] have shown to be effective for visual recognition. The local
context directly models the interaction of the target object and the surrounding
environment. For example, a horse is often occluded by a person riding on it.
In contrast, the global context mainly captures the image level information and
co-existence/exclusion relation between objects.

In order to leverage such informative context cues, we further enhance the
framework with an adaptive context model. Specifically, given a bounding box
p0 and a segment id, similar to [31], we divide the image into 7 regions (segment
region, surrounding region within p0, 4 context boxes and the whole image) as
shown in Figure 3 (b). The area of the context box is half of that of the bound-
ing box p0. Hence, the spatial extent of the local context will vary adaptively
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based on p0. If a context box crosses the boundary of the image, we consider
only the area within the image. Fisher Vector (FV) [21,9] is employed as region
feature representation, as it has demonstrated the state-of-the-art performance
for both object classification and detection [10,11]. Furthermore, the average
pooling strategy for FV enables effective calculation by utilizing the integral
graph. Thus, the raw context representation is the concatenation of FVs on the
7 regions mentioned above.

Similar to the segmentation component, the dimension of the raw context
features is too high. Hence, we first train a separate classifier for each object
category and then use the predicted scores as the final context features. Then,
the context component can be written as:

SCt(z, id|wCt, I) = SCt(p0, id|wCt, I) = wCt · φCt(I, id, p0), (6)

where φCtx(I, id, p0) is the concatenation of predicted scores for all classifiers. In
fact, our context model can be seen as a variant of the appearance based detec-
tion approach to some extent. We still call it “context model” as it can provide
valuable and complementary context information to the other three components.

4 Inference and Learning

This section introduces inference and learning of the proposed UDS framework.
We begin with the general inference and learning procedure and then describe
the implementation details in practice.

4.1 Inference

We employ the sliding windows strategy for inference. Similar to [19,20], the
inference is performed by enumerating the segments. For a fixed root bounding
box position p0 and mixture index c, inference in our model can be done by
solving the following optimization problem:

S(p0, c) = max
p1,··· ,pm,id

S(p, id, c) = max
id

[λDtwDt
0 · φDt(I, p0, c)

+ λSgwSg · φSg(I, id) + λCtwCt · φCt(I, id, p0) + wCs
0 ·m(p0, id, c)

+ max
p1,··· ,pm

m∑

i=1

(λDtwDt
i ·φDt(I, pi, c)+λDtwDt

i,def ·φDt(p0, pi, c) + wCs
i ·m(pi, id, c))].

(7)

By defining

R0(p0, id, c) =λDtwDt
0 · φDt(I, p0, c) + λSgwSg · φSg(I, id)

+ λCtwCt · φCt(I, id, p0) + wCs
0 ·m(p0, id, c)

Ri(pi, id, c) =λDtwDt
i · φDt(I, pi, c) + wCs

i ·m(pi, id, c),

the Eqn. (7) can be written compactly as:
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S(p0, c)=max
id

[R0(p0, id, c)+max
p1,··· ,pm

m∑

i=1

(Ri(pi, id, c)+λDtwDt
i,def ·φDt(p0, pi, c))].

(8)

With fixed segment index id, this scoring function is similar to that of DPM
[19,20] and can thus be passed to an off-the-shelf DPM solver. Hence, the in-
ference algorithm works as follows: First, we compute R0(p0, id, c) for each root
filter position p0 and segment index id. Then, we prune the object hypotheses
based on the score of R0 without sacrificing the overall recall rate (validated on
the validation set). For each retained segment hypothesis, we further run the full
model (7) locally with the dynamic programming approach as in [19]. Finally,
we compute the maximum over the mixture components to obtain the final score
of the object hypothesis.

4.2 Learning

By defining the output variable y = {p0, id} and latent variable
h = {p1, · · · , pm, c}, the scoring function (1) can be rewritten as

S(I, y, h) = w · Φ(I, y, h), (9)

where w is the concatenation of all model parameters (wDt, wSg, wCt and wCs).
Φ(I, y, h) is the concatenation of all four components features weighted by their
weights (λDt, λSg and λCt) with respect to the label y and latent variable h.

We note that Eqn. (9) is linear in the model parameter w, thus this model
can be effectively learned based on the latent structure SVM framework [41,22]:

min
w

1

2
||w||2+C[

n∑

j=1

max
ŷ,ĥ

(w·Φ(xj , ŷ, ĥ)+Δ(yi, ŷ, ĥ))−
n∑

j=1

max
h

(w·Φ(xi, yi, h))], (10)

where the loss function Δ(yi, ŷ, ĥ) is defined as the weighted sum of the In-
tersection over Union of the root filters and segment hypotheses (in current
implementation, we simply use the average value of two IoUs).

The standard approach to solve the optimization problem (10) is the Concave-
Convex Procedure (CCCP) [43,41]. However, as the CCCP algorithm only guar-
antees to converge to a local minimum, we learn the model progressively to
ensure a reasonable initialization. More specifically, we first train each compo-
nent separately and jointly learn the overall model with Eqn (10).

For the object detection component, we follow the original training approach
of DPM [19] except for the mixture initialization and part discovery. Aspect ratio
based clustering is used in [19] for mixture initialization. However, such an ap-
proach may ignore the potential pose/view variance. Hence, we employ the idea
of “subcategory mining” [15,1,14] by utilizing the additional segmentation anno-
tation to ensure a more reliable shape mask for each component. Specifically, we
resize all the cropped segmentation masks to the same height and l2 normalizes
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all the resized masks. Then, the similarity between two normalized masks a and
b is defined as the maximal value of the convolution response map of a and b. Fi-
nally, the graph shift algorithm [29] is employed to discover the dense subgraphs,
which correspond to the subcategories, as in [15]. The resulting subcategories
are then used for mixture initialization. The original DPM approach [19] dis-
covers the salient parts greedily by covering the high-energy region of the root
HOG-template. Recently, [8] suggests that modifying this “saliency” measure
by multiplying the HOG magnitude by the average segmentation mask for each
component will lead to more semantic meaningful parts. Hence, we follow their
approach by utilizing the modified ‘saliency” measure for part discovery. For the
consistency component, the pixel-wise mean of all segmentation masks for each
component is utilized for initialization.

In the final joint learning stage, all model parameters (wDt, wSg, wCt and
wCs) in Eqn. (10) are jointly optimized. Thus, the relative importance of each
component will be automatically tuned for each category.

4.3 Implementation Details

As discussed in Section 3.3 and 3.4, we employ the predicted scores of the basic-
level classifiers as features for both the segmentation (φSg(I, id) in Eqn. (4)) and
context (φCt(I, id, p0) in Eqn. (6)) components to improve the efficiency of the
UDS framework. For the segmentation component, we follow the second-order
pooling approach [33] by utilizing the public available implementation provided
by the author. 150 top-ranked object hypotheses are generated with the CPMC
method for each image [7]. The concatenation of scores from support vector
regressors of all categories is employed as the segmentation component feature
for each hypothesis. For the context component, the dense SIFT [30] and color
moment are extracted as low-level features. Both features are projected to 64
dimensions using PCA and the size of Gaussian Mixture Model in FV [9] is set
to 64. The concatenation of resulting FVs in all regions is then trained with the
LibLinear library [18] in a similar manner with [13]. Finally, the confidence scores
of classifiers for all categories are utilized as the context component features.

For the shape-guided DPM, the number of subcategories is automatically de-
cided by the graph shift algorithm based on the expansion size, which is decided
by cross-validation [29]. The resulting subcategory number for different object
categories is generally from 4 to 8.

The weights λDt, λSg and λCt in Eqn. (1) are set as 0.1, 0.2 and 0.2, respec-
tively, based on cross-validation. In fact, the final accuracy is not very sensitive
to the variation of these parameters, as our UDS framework can automatically
learn w to adjust the relative weights of different components.

5 Experiments

We extensively evaluate the proposed UDS framework on the challenging PAS-
CAL Visual Object Challenge (VOC) datasets [17], which provide a common
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Table 1. Proof-of-Concept experiments for object detection on VOC 2010 validation
set
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DPM 43.6 51.1 4.4 3.4 21.7 57.4 40.4 17.0 16.4 15.3 10.2 11.1 37.2 39.1 40.4 5.2 27.4 18.9 39.7 37.1 26.9

S-DPM 48.2 52.7 4.9 5.7 25.3 60.6 40.8 21.6 16.6 16.3 17.0 12.5 40.5 38.8 41.3 6.9 32.5 23.2 44.3 40.8 29.5

S-DPM+Sg 57.6 55.4 22.6 15.8 27.9 64.3 45.8 54.8 10.7 26.9 21.9 35.2 48.2 49.8 38.8 13.3 36.3 32.5 49.0 45.3 37.6

S-DPM+Sg+Ct 59.2 56.7 22.8 16.4 28.9 63.7 46.6 56.2 15.6 29.1 25.1 36.9 49.5 50.7 39.3 14.4 38.2 36.1 49.2 46.2 39.0

Table 2. Proof-of-Concept experiments for semantic segmentation on VOC 2010
validation set

Method b
/
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O2P 83.2 70.0 22.0 43.8 39.6 40.3 60.3 64.9 55.7 13.2 37.1 20.2 42.5 37.3 47.1 50.5 31.9 51.5 27.2 58.6 50.6 45.1

S-DPM+ Sg 82.5 74.2 20.5 45.0 42.7 38.4 65.1 66.9 55.8 16.1 37.3 23.3 41.3 34.7 49.6 49.5 34.1 54.6 33.4 63.7 53.5 46.8

S-DPM+Sg+Ct 83.2 74.9 22.9 45.7 43.4 40.6 66.2 68.1 56.4 16.8 39.8 24.0 44.2 36.3 49.9 50.9 34.4 56.7 34.1 64.8 54.4 48.0

evaluation platform for both object detection and semantic segmentation. These
datasets are extremely challenging since the images are crawled from the real-
world photo sharing website and the objects contained vary significantly in size,
pose, view point and appearance. The datasets contain 20 object classes and
are divided into “train”, “val” and “test” subsets. We follow the standard PAS-
CAL protocol by employing Average Precision (AP) and Intersection over Union
(IoU) as evaluation metric for object detection and semantic segmentation, re-
spectively.

In the following section, we first conduct multiple Proof-of-Concept experi-
ments on the validation set to assess the relative importance of each individ-
ual component. Then, we evaluate the optimal configuration of the proposed
framework on the test set to compare with the state-of-the-art performance ever
reported for both object detection and semantic segmentation tasks.

5.1 Proof-of-Concept Experiments

In this subsection, we evaluate the relative importance of individual components
in our framework on VOC 2012 “train/val” datasets (i.e. “train” set for training
and “val” set for test) with the extra segmentation annotation from [23] for proof
of concept and ease of parameter tuning.

Table 1 and 2 show the detailed object detection and semantic segmentation
results, respectively. It can be concluded from the tables that:

– Shape-guided subcategory mining does improve the detection performance.
By better capturing the pose/viewpoint variance and adaptively deciding
the number of subcategories, shape-guided DPM (S-DPM) can provide more
reliable shape masks for our UDS framework.

– Object detection and semantic segmentation techniques are complementary.
Performing two tasks jointly will boost the performance of each other. As
shown in Table 1, the joint approach (S-DPM+Sg) significantly outperforms
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Input Image Pure Segmentation Pure Detection Unified Approach Input Image Pure Segmentation Pure Detection Unified Approach 

Fig. 4. More exemplar results on VOC 2012 from the proposed UDS framework and
baseline methods (DPM [19] for detection and O2P [6] for segmentation)

the detection baseline (S-DPM) by 8.1%. In fact, the DPM based detector
mainly captures the shape cues. Hence, it may locate rigid parts only and
thus leads to localization error. On the contrary, the underlying segmentation
component mainly relies on the appearance cues and thus can help to rectify
the bounding box position, especially for the objects with homogeneous ap-
pearances. Table 2 demonstrates that the joint approach (S-DPM+Sg) also
outperforms the segmentation baseline (O2P). For objects in the cluttered
background, shape based detectors can provide valuable information to as-
sist in selecting better segment hypotheses. More examples to illustrate the
complementarity of the two tasks are shown in Figure 4.

– The context component can further improve the performance for both tasks.
By employing both the local and global context cues, the full model (S-
DPM+Sg+Ct) can better distinguish ambiguous objects and thus yields the
best performance.

5.2 Comparison with State-of-the-arts

In this subsection, we evaluate our UDS framework on the Pasval VOC test set to
have a direct comparison with the state-of-the-arts. Though our framework can
perform joint detection and segmentation, these two tasks are usually evaluated
using different image sets. Hence, we slightly tweak the training process to al-
low the direct comparison with previous methods. Specifically, for the detection
task, we train the model on the VOC 2010 “main-trainval” set, as many leading
methods [20,11] only reported their results on this dataset. For the segmentation
task, we perform the experiments on the union of the VOC 2012 “main” and
“seg” sets. The extra segmentation annotation from [23] are used for both tasks.
We omit the results of VOC 2010 segmentation and VOC 2012 detection due to
space limitation.
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Table 3. Comparison of detection performance on VOC 2010 test set
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DPM [19] 48.2 52.2 14.8 13.8 28.7 53.2 44.9 26.0 18.4 24.4 13.7 23.1 45.8 50.5 43.7 9.8 31.1 21.5 44.4 35.7 32.2
van de Sande et al. [36] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
NLPR [17] 53.3 55.3 19.2 21.0 30.0 54.4 46.7 41.2 20.0 31.5 20.7 30.3 48.6 55.3 46.5 10.2 34.4 26.5 50.3 40.3 36.8
MITUCLA [44] 54.2 48.5 15.7 19.2 29.2 55.5 43.5 41.7 16.9 28.5 26.7 30.9 48.3 55.0 41.7 9.7 35.8 30.8 47.2 40.8 36.0
ContextSVM [34] 53.1 52.7 18.1 13.5 30.7 53.9 43.5 40.3 17.7 31.9 28.0 29.5 52.9 56.6 44.2 12.6 36.2 28.7 50.5 40.7 36.8
FV [11] 65.9 50.1 23.7 24.1 20.4 52.6 47.1 50.9 13.2 32.8 31.8 41.4 43.9 55.3 29.8 14.1 41.7 35.6 46.7 46.9 38.4

Using Extra Semantic Segmentation Annotation From [23]

segDPM [20] 58.7 51.4 25.3 24.1 33.8 52.5 49.2 48.8 11.7 30.4 21.6 37.7 46.0 53.1 46.0 13.1 35.7 29.4 52.5 41.8 38.1
segDPM+context [20] 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4
Ours:UDS 60.1 54.3 23.9 22.9 31.8 57.0 51.1 54.8 17.6 35.7 26.7 42.8 51.2 58.0 41.7 15.3 37.8 39.8 54.9 45.6 41.2

Object Detection: The detailed comparison of the proposed framework with
current leading approaches for object detection is presented in Table 3. The
first two methods are the representative works for sliding windows strategy and
selective search strategy, respectively. Despite their theoretical interest, these
methods only focus on the information within the windows and thus ignore the
informative context cues, which leads to inferior results compared with other
competitors. All other methods are obtained through the combinations of mul-
tiple techniques in order to obtain better performance.

From Table 3, it can be observed that our proposed UDS outperforms all the
competitors in terms of mAP. The proposed UDS framework achieves the best
performance in 8 out of the 20 categories with an mAP of 41.2%, which is 3.1%
higher than that of the state-of-the-arts (segDPM). (We think it is not fair to
compare with segDPM+context, as this method uses the scores from the win-
ner of VOC 2012 classification task, which utilizes many advanced tricks, such
as multiple model fusion, and combine several learning detection techniques to
achieve amazing classification performance [20].) With our unified approach, the
advantages of both object detection and semantic segmentation techniques can
be leveraged to improve the overall performance. In addition, it can be noted
that our method can significantly improve the performance on the categories
with homogeneous appearances, such as cats and dogs. For such categories, the
underlying segmentation component can easily segment the objects out for rec-
tifying the localization errors.

Semantic Segmentation: Table 4 shows the detailed comparison of the
proposed framework with previous approaches on the VOC 2012 segmentation
challenge. Based on the basic idea behind the methods, all the competing meth-
ods can be divided into two categories. The first category (O2P-CPMC-CSI,
CMBR-O2P-CPMC-LIN, O2P-CPMC-FGT-SEGM and Yadollahpour) employs
the hypotheses based segmentation. The difference among them mainly lies in
the hypotheses generation procedure and ranking function design. Most of them
provide the results with/without extra annotation from [23]. The other category
(NUS-DET-SPR-GC-SP and Xia) estimates the semantic segmentation results
based on the bounding boxes from object detection. Hence, these approaches
heavily rely on the detector performance and need extra annotation for object
detection.
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Table 4. Comparison of segmentation performance on VOC 2012 test set
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O2P-CPMC-CSI [16] 85.0 59.3 27.9 43.9 39.8 41.4 52.2 61.5 56.4 13.6 44.5 26.1 42.8 51.7 57.9 51.3 29.8 45.7 28.8 49.9 43.3 45.4
CMBR-O2P-CPMC-LIN [16] 83.9 60.0 27.3 46.4 40.0 41.7 57.6 59.0 50.4 10.0 41.6 22.3 43.0 51.7 56.8 50.1 33.7 43.7 29.5 47.5 44.7 44.8
O2P-CPMC-FGT-SEGM [16] 85.1 65.4 29.3 51.3 33.4 44.2 59.8 60.3 52.5 13.6 53.6 32.6 40.3 57.6 57.3 49.0 33.5 53.5 29.2 47.6 37.6 47.0
Yadollahpour et al. [38] 85.7 62.7 25.6 46.9 43.0 54.8 58.4 58.6 55.6 14.6 47.5 31.2 44.7 51.0 60.9 53.5 36.6 50.9 30.1 50.2 46.8 48.1

Relying on Extra Object Detector

NUS-DET-SPR-GC-SP [16] 82.8 52.9 31.0 39.8 44.5 58.9 60.8 52.5 49.0 22.6 38.1 27.5 47.4 52.4 46.8 51.9 35.7 55.3 40.8 54.2 47.8 47.3
Xia et al. [37] 82.5 52.1 29.5 50.6 35.6 59.8 64.4 55.5 54.7 22.0 38.7 24.3 48.3 55.6 52.9 52.2 38.2 49.1 35.5 53.7 53.5 48.0

Using Extra Semantic Segmentation Annotation From [23]

O2P-CPMC-CSI [16] 85.0 63.6 26.8 45.6 41.7 47.1 54.3 58.6 55.1 14.5 49.0 30.9 46.1 52.6 58.2 53.4 32.0 44.5 34.6 45.3 43.1 46.8
CMBR-O2P-CPMC-LIN [16] 84.7 63.9 23.8 44.6 40.3 45.5 59.6 58.7 57.1 11.7 45.9 34.9 43.0 54.9 58.0 51.5 34.6 44.1 29.9 50.5 44.5 46.7
O2P-CPMC-FGT-SEGM [16] 85.2 63.4 27.3 56.1 37.7 47.2 57.9 59.3 55.0 11.5 50.8 30.5 45.0 58.4 57.4 48.6 34.6 53.3 32.4 47.6 39.2 47.5
Ours:UDS 85.2 67.0 24.5 47.2 45.0 47.9 65.3 60.6 58.5 15.5 50.8 37.4 45.8 59.9 62.0 52.7 40.8 48.2 36.8 53.1 45.6 50.0

The results in Table 4 demonstrate that the proposed UDS framework
performs the best in 8 out of the 21 categories, achieving the best average perfor-
mance of 50%. As discussed above, our unified approach can leverage the advan-
tages of both object detection and semantic segmentation techniques. One main
source of the improvement for semantic segmentation comes from the success-
ful detection of objects in cluttered backgrounds. The bottom-up segmentation
techniques may not be able to extract the accurate boundary of objects in clut-
tered backgrounds, which makes the following ranking problem very difficult.
However, the template based detection mainly focuses on the object shape and
thus is robust to the cluttered backgrounds to some extent. Hence, the proposed
framework can significantly improve the semantic segmentation performance of
rigid objects, such as aeroplane, bus and motorbike, as verified in Table 4.

6 Conclusions and Future Work

In this paper, we proposed a unified framework for joint object detection and
semantic segmentation. Noticing the complementarity of current detection and
segmentation approaches, we explicitly enforce the consistency between their
outputs to leverage the advantages of both techniques. Both local and global
context information are further integrated into the framework to better distin-
guish the ambiguous samples. All the information is aggregated at the end of
the pipeline for decision making and thus hard decision is avoided to make at
the early stage as in traditional pipelines. The relative importance of different
components is automatically learned for each category to guarantee the overall
performance. Extensive experimental results clearly demonstrated the proposed
framework has achieved the state-of-the-art performance. In the future, we plan
to integrate deep learning techniques into the current framework.
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