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Abstract. We propose a method for human pose estimation which ex-
tends common unary and pairwise terms of graphical models with a
global foreground term. Given knowledge of per pixel foreground, a pose
should not only be plausible according to the graphical model but also
explain the foreground well.

However, while inference on a standard tree-structured graphical model
for pose estimation can be computed easily and very efficiently using dy-
namic programming, this no longer holds when the global foreground term
is added to the problem.

We therefore propose a branch and bound based algorithm to retrieve
the globally optimal solution to our pose estimation problem.Tokeep infer-
ence tractable and avoid the obvious combinatorial explosion, we propose
upper bounds allowing for an intelligent exploration of the solution space.

We evaluated our method on several publicly available datasets, show-
ing the benefits of our method.

1 Introduction

Single image human pose estimation has received a lot of attention over the past
few years. The goal is to localize each body part of a human body in a given image.
This allows for a higher level of understanding of the image itself and, potentially,
it can be used to facilitate other complementary computer vision tasks like image
segmentation, 3D reconstruction, activity recognition, and image retrieval.

In this paper, we aim at estimating the 2D locations of all the joints of a
human body under uncontrolled imaging conditions. A common approach to
this problem is to use tree-structured graphical models to represent the human
pose as a set of joints, or as a set of limbs, linked by edges representing bones
or kinematic constraints between limbs, respectively [4,25].

While inference in these models can be carried out very efficiently using dy-
namic programming [25], they lack the possibility of considering global informa-
tion depending on all the body parts at the same time. An example of such a
scenario is when per pixel foreground probabilities of the given image are avail-
able. To account for this additional information, the pose should not only be
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plausible with respect to the graphical model, but also explain the foreground.
Therefore a more complex inference model needs to be used, which besides the
common unary and pairwise terms also includes a global foreground term favor-
ing solutions explaining the given foreground information.

In order to guarantee the global optimality of our solutions, we propose to
optimize the model using a branch and bound based algorithm [10]. However,
despite the fact that branch and bound intelligently explores only the promis-
ing regions of the solution space, it can be prohibitively slow since this space is
actually the Cartesian product of all the domains of each individual unknown,
and hence it grows exponentially with the number of unknowns. To keep our in-
ference computationally tractable, we propose a set of upper bounds specifically
designed for our pose estimation problem, and a way to decouple the estimation
of rarely overlapping limbs while still maintaining the global optimality.

The performance of the proposed method was evaluated on four publicly avail-
able datasets (KTH, Parse, Leeds and Buffy [24,25,6,5]), showing the potential
improvements achieved by our method.

2 Related Work

One of the most common and efficient ways of estimating a human pose from a sin-
gle image is to formulate the problem as an inference on a tree-structured graphi-
cal model, where nodes express the position, the orientation, and the scale of each
body limb [4] or the position of eachbody joint [25], andwhere edges between nodes
correspond to kinematic constraints between limbs or to bones between joints.
While inference on suchmodels can be performed exactly and very efficiently using
dynamic programming, it fails to capture some higher level dependencies that can
occur between limbs, for instance when these are overlapping in the image space.
This problem has been addressed by including occlusion terms [11,18] or repulsive
edges [2]. A solution can be obtained through Gibbs sampling [11] or by using a
loopy graphical model and loopy belief propagation [18,2]. Loopy models can also
be expressed as an ensemble of tree-structured models by enforcing the equality
of corresponding nodes in the different trees, as proposed by Sapp et al. [17]. In
their work, different levels of agreement are proposed. For the full agreement be-
tween all submodels, convergence is not guaranteed. Another way of dealing with
loopy models is branch and bound, which leads to a globally optimal solution and
has been shown to be efficient [19,22,20]. Going beyond local reasoning, Kohli et
al. [7] simultaneously solve for human pose and segmentation using dynamic graph
cuts. Their algorithm, however, is susceptible to local minima and requires a good
initialization of the pose. To solve for a model including global terms, sampling
techniques are a popular choice. Zhang et al. [26] propose a data-driven Markov
Chain Monte Carlo framework using a tree-based grammar to explore the space of
human poses, trying to globally explain the foreground regions and the edges as
well as possible while trying to fulfill body constraints. Similarly, Rauschert and
Collins [15] use a data-driven, coarse-to-fineMetropolis Hastings sampling scheme
also incorporating the likelihood of all image pixels and the domain knowledge in
the proposal function.
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Instead of relying on the maximum a posteriori (MAP) estimate of a tree
structured model, Park and Ramanan [12] propose to infer the N -best solu-
tions according to a tree structured model. Assuming that the correct pose is
among the N best, further more expensive processing is applied to determine
the correct solution. Starting from this idea, Vahid and Sullivan [24] extract
the N -best poses and rerank them using an SVM-Rank formulation including
a global segmentation term. Along the same paradigm, Ladicky et al. [8] intro-
duce a joint pixel-wise and part-wise formulation. First, poses from the set of
the N -best poses are added iteratively as long as it decreases the cost. Then, for
all the added poses, each pixel is assigned to a person and to a body part. Their
approach can deal with multiple people and missing/occluded body parts.

The approach presented in this paper builds on the model introduced by Yang
and Ramanan [25]. However, please note that our method is not constrained to
this model and any other efficient graphical model can be easily used in its
place. A global segmentation term is added to this model, similarly to the work
of Vahid and Sullivan [24]. However, differently from their approach, we propose
to rely on a branch and bound optimization technique to avoid the premature
selection of the N -best solutions, and hence to guarantee the optimal solution.
The guarantee of global optimality differentiates our approach from sampling
based techniques like [26,15].

3 Our Approach

3.1 Standard Model

We build upon the tree structured graphical model introduced by Yang and
Ramanan [25], consisting of 14 joints as shown in Figure 1(a). Differently from
them however, we consider an additional joint for the lower end of the spine
between the left and the right hip joint, and define the torso as the body part
identified by this new joint and the bottom of the head. Together with the edges
of the human kinematic chain, these 15 joints, depicted in Figure 1(b), define a
tree G = (V,E) with nodes V and edges E. For each joint i ∈ V , let li identify
its (x, y)-position in the image space, and let ti ∈ {1, ..., Ti} denote its type.
The type essentially captures the relative orientation of a joint with respect to
its parent in the tree model. Different orientations lead to different appearances.
The appearance of each type ti is modeled using a HOG descriptor [1], describing
the distribution of image gradients in a local region. Let φ(I, li, ti) denote the
descriptor of joint i with type ti extracted at location li in image I. Pairwise
costs are given by a deformation model favoring frequently encountered relative
positions of connected parts i and j. The corresponding feature vector ψ(li, lj)
is given as [(xi−xj), (xi−xj)2, (yi−yj), (yi−yj)2]T , encoding the differences in
x- and y-coordinates, respectively. ψ(li, lj) is weighted differently for each type,
providing a link between the appearance of a part and its relative location w.r.t.
to its parent. Bias terms btii and b

ti,tj
i,j capture the probabilities of encountering

specific parts and types and pairs of parts and types. After adding the bias
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(a) (b)

Fig. 1. (a) The standard model with 14 joints. (b) Our model with 15 joints.

terms and weighting the feature vectors from the appearance model φ and the
deformation model ψ, we end up with the following scoring function S:

S(I, l, t) =
∑

i∈V

(
btii + φ(I, li, ti)

Twti
i

)
+

+
∑

i,j∈E

(
b
ti,tj
i,j + ψ(li, lj)

Tw
ti,tj
i,j

) (1)

Concatenating all the individual weight vectors and bias terms as w and sub-
suming all feature vectors within Φ(I, l, t), an equivalent linear model S(I, l, t) =
Φ(I, l, t)Tw is obtained. Parameters w are learned using structured support vec-
tor machine [21,23]. For more details, please refer to [25].

3.2 Augmented Model

The scoring function S(I, l, t) captures the local appearance and the deforma-
tions of a generic human body. However, in many scenarios, a good guess of
the foreground shape of the body can be obtained from an image, for instance,
through global color models, background subtraction or image/video matting. It
is then desirable to find the pose which, globally, best accounts for the foreground
shape, and is also plausible and faithful w.r.t. the scoring function S(I, l, t).

Hence, given a per-pixel foreground estimate FG(p), the pose should not only
have a high score S(I, l, t), but also explain foreground regions in FG(p) as much
as possible. To this end, we introduce a generative model Ω mapping joint po-
sitions l to sets of image points Ω(l) representing the human body silhouette
in the image space in that specific pose. Each body part (i, j) ∈ E is modeled
as a rectangle R(li, lj) of predefined width, as illustrated in Figure 2(e). The
silhouette Ω(l) is therefore defined as the union of all these rectangles, i.e. as
Ω(l) =

⋃
i,j∈E R(li, lj). Using this generative model, the previously described

scoring function S(I, l, t) is augmented with a global foreground term F (l) de-
fined as

F (l) =
∑

p∈Ω(l)

FG(p), (2)

where FG(p) ∈ [0, 1] is the per-pixel foreground estimate evaluated on a given
pixel p, and it indicates the confidence value that that pixel belongs to the
foreground.
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Algorithm 1. Branch and bound inference

push pair (Ē(H0),H0) into queue and set Ĥ = H0

repeat
split Ĥ = Ĥ1 ∪ Ĥ2 with Ĥ1 ∩ Ĥ2 = ∅
push pair (Ē(Ĥ1), Ĥ1) into queue
push pair (Ē(Ĥ2), Ĥ2) into queue
pop Ĥ with the highest score

until |Ĥ| = 1

The goal is now to maximize the following scoring function

argmax
l, t

E(I, l, t) = S(I, l, t) + λF (l), (3)

where λ is a constant weighting the global foreground term w.r.t. S(I, l, t).
Pose estimation aims at fitting a model, which typically has a predefined

number of parts, into an image. Therefore, placing a part at a wrong location
means that the foreground region which actually corresponds to that part is
likely to not be explained (if that part does not overlap with another part),
and hence lowering the overall score. In the absence of false foreground regions,
regions wrongly labeled as background should not bias the model towards wrong
solutions. However, false foreground regions might induce errors, since covering
such a false region with a body part can increase the score E. This fact can be
mitigated by using a conservative foreground mask.

3.3 Optimization

While inference on tree structured graphical models, like the one in Equation 1,
can be performed very efficiently using dynamic programming, this no longer
holds when a global term considering all the joints at the same time is added.
This is the case with term F (l) in Equation 3. Therefore, to optimize the new
problem, a different optimization technique is required.

To this aim, we propose to use branch and bound on the set of possible joints
configurations l, inspired by the work of Sun et al. [20], who applied branch and
bound to loopy graphical models, and also inspired by Lampert et al. [9], who
applied branch and bound to subwindow search. Apart from its generality, one
of the advantages of branch and bound is that it guarantees to find the globally
optimal solution.

We now describe how branch and bound is employed for our problem. The
algorithm starts with the trivial set H0 defined as the set of all possible joint
configurations hypotheses, i.e.H0 =

∏15
i=1{1, ..., wimage} × {1, ..., himage}, the

Cartesian product of the possible (x, y)-positions of all joints. Throughout the
branch and bound iterations a priority queue is maintained where the considered
sets of hypotheses are ordered in terms of a quality bound function Ē which
upper bounds the maximum score E that any pose of a given set can possibly
achieve. The best candidate Ĥ of all the sets within the queue is considered
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for further processing. If Ĥ consists of a single hypothesis, then the optimum is
obtained. Otherwise, the set is split into two disjoint sets of hypotheses Ĥ1 and
Ĥ2. Different branching strategies exist. We use a very simple strategy and split
the hypotheses by splitting the largest remaining image coordinate interval of all
joints in half. The new bounds Ē(Ĥ1) and Ē(Ĥ2) for those sets are computed,
and both candidate sets are added to the priority queue. Since the bounds are
tighter (smaller sets of hypotheses), it may be that none of these sets will be
on top of the priority queue. The algorithm terminates when a single hypothesis
is returned, and this hypothesis is guaranteed to be the global optimum. The
advantage of using branch and bound is that it does not explore regions of the
solution space which are not promising. The reader is referred to Algorithm 1
for a schematic illustration.

In order to guarantee the convergence of the branch and bound algorithm to
the globally optimal solution, the quality bound function Ē needs to satisfy the
following two conditions:

1. None of the hypotheses in H can achieve a higher score than Ē(H). More
precisely, for each joint configuration l ∈ H, and each type configuration t,
Ē(H) ≥ E(I, l, t) has to hold.

2. If the set of hypotheses contains a single configuration, the bound has to be
exact. More precisely, for each l ∈ H0, Ē({l}) = maxtE(I, l, t) has to hold.

3.4 Quality Bound Function Ē

A valid quality bound function Ē can be defined in terms of multiple upper
bounds Ēi by always selecting the smallest value Ēi, i.e. Ē = mini Ēi. It is easy to
see that condition 1 is satisfied if every upper bound Ēi satisfies condition 1, while
condition 2 is satisfied if at least one of the bounds Ēi satisfies condition 2. In the
following sections, two different upper bounds Ē1 and Ē2 are introduced, each
having its own advantages and disadvantages depending on the set of hypotheses
being bounded. We combine these two upper bounds as Ē = min(Ē1, Ē2).

Upper Bound Ē1. Let us first consider an alternative global foreground term
F̃ defined as

F̃ =
∑

i,j∈E

Seg(li, lj), (4)

where each pairwise score Seg(li, lj) is defined as
∑

p∈R(li,lj)
FG(p). Adding

this new term F̃ to the scoring function S(I, l, t) leads to the following scoring
function

Epairwise(I, l, t) = S(I, l, t) + λF̃ (l). (5)

Differently from the original foreground term, the new F̃ maintains the tree
structure of S(I, l, t). Therefore inference on Epairwise(I, l, t) can be performed
efficiently using dynamic programming.
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However, F̃ counts foreground pixels multiple times if body parts overlap, and
therefore we conclude that

Epairwise(I, l, t) ≥ E(I, l, t) (6)

for every pose (l, t). In Equation 6, equality holds if and only if none of the
rectangles defining the foreground silhouette overlap.

Hence, an upper bound for E(I, l, t) can be defined as

Ē1(H) = max
l∈H, t

Epairwise(I, l, t). (7)

Due to the underlying tree structure, Ē1(H) can be computed very efficiently
by constraining the dynamic programming to the configurations inH. In order to
quickly evaluate Seg(li, lj) one can resort to integral images computed for rotated
versions of the original foreground map FG(p). In this way, each body part
rectangle becomes an axis-aligned rectangle in the respective rotated foreground
map. Integrals can then be evaluated using lookups in the corresponding integral
images. In our implementation, integral image angles were quantized to steps of
one degree.

Upper Bound Ē2. Since the new foreground term F̃ introduced in the pre-
vious section may count image foreground evidence multiple times, there is no
guarantee that condition 2 holds in general for the upper bound Ē1. We therefore
introduce a second upper bound Ē2 as follows.

Given the current set of hypotheses H, a conservative estimate of the body
silhouette is given by

Ω̄(H) =
⋃

l∈H
Ω(l), (8)

which equals to the union of all the silhouettes corresponding to each individual
pose hypothesis. Hence, an upper bound for the original F (l) is

F̄ (H) =
∑

p∈Ω̄(H)

FG(p). (9)

Finally, we define the upper bound Ē2 as

Ē2(H) = S̄(I,H) + λF̄ (H), (10)

where S̄(I,H) is the maximum value achievable by S(I, l, t) in H, i.e., S̄(I,H) =
maxl∈H,t S(I, l, t). Due to the tree structured nature of S(I, l, t), S̄(I,H) can be
computed efficiently using dynamic programming on the set of hypotheses H.

Note that the new upper bound Ē2 fulfills both condition 1 and 2 of the
branch and bound algorithm.
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(a) (b) (c) (d) (e)

Fig. 2. Branch and bound: the algorithm iteratively narrows down the search space.
White pixels indicate the set Ω̄(H) of Equation 8. In the initial set of hypotheses, every
joint can lie anywhere in the image (a). Once branch and bound terminates, the set of
hypotheses corresponds to a single pose (e).

Combining Ē1 and Ē2. Ē1 and Ē2 are combined to form the upper bound
Ē = min(Ē1, Ē2). Ē fulfills conditions 1 and 2 of the branch and bound algorithm
because both Ē1 and Ē2 fulfill condition 1 and Ē2 fulfills condition 2. While Ē2

alone would be sufficient in theory, Ē1 should be included in practice to decrease
the computational complexity. Branch and bound terminates once the currently
chosen set of hypotheses Ĥ is of size one. Note that at this point, the upper
bound equals the lower bound since they are both equal to the cost of the single
remaining pose. The faster the upper bound decreases, the faster branch and
bound terminates.

During the first branch and bound iterations, the chosen sets of hypotheses
are large and lead to high values of F̄ . In these cases, Ē1 provides a much
tighter bound than Ē2, and this holds until the double counting in Ē1 leads to
Ē1 > Ē2. Therefore, at the beginning Ē1 quickly guides the branch and bound
to a reasonable set of poses, and then Ē2 is active instead. An example of a
branch and bound evolution is provided in Figure 2.

3.5 Efficient Inference

Sequential Branch and Bound. An alternative way to optimize E(I, l, t)
which does not guarantee global optimality is to apply the branch and bound
algorithm sequentially on the tree structure. More precisely, the torso and the
head are first inferred jointly (see Figure 3(c)). Subsequently, head and torso are
kept fixed, and the legs are inferred (see Figure 3(d)). Finally, head, torso and legs
are kept fixed and the configuration of the arms is inferred (see Figure 3(e)). The
whole process is summarized in Figure 3. The results obtained in our experiments
(and reported in Section 4) suggest that the detection of the torso is the most
reliable by far, and correct with a high probability. This justifies estimating the
torso and the head first, followed by legs and arms. Legs and arms only seldom
interfere with each other, suggesting that, given the torso and the head, their
configuration may be inferred correctly using sequential branch and bound.

Decoupling of States. The observations made in the previous section lead us
to consider an additional expedient to speed up the branch and bound algorithm
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(a) (b) (c) (d) (e)

Fig. 3. Sequential branch and bound: (a) Input image. (b) Foreground probabilities
FG(p). In the sequential algorithm, torso and head are estimated first (c), followed by
legs (d), and arms (e).

in a way that the global optimality property is preserved. As explained before,
the complexity of our problem is caused by the global foreground term F (l)
which links all the body parts together, and makes them dependent on each
other because of possible overlaps in the image space.

In a realistic scenario, however, not all the limbs overlap, and some of them do
it very rarely. This is the case for head, arms and legs. Therefore, in most of the
cases, it makes perfect sense to consider the head and the arms independently
from the legs. We can exploit this natural characteristic of our solution space to
speed up our global optimization. Basically, given a torso location, a very tight
upper bound can be obtained by running branch and bound on the configurations
of head and arms, and legs independently.

Therefore we first compute a lower bound for the scoring function E(I, l, t)
using the sequential approach described in the previous section. Then, for each
torso location an upper bound is computed by maximizing Epairwise(I, l, t).
Torso locations leading to upper bounds below the current lower bound can
be safely discarded. For each remaining location of the torso a set of hypotheses
is created and added to the priority queue. The already fixed torso in each set
of hypotheses decouples upper and lower body to a large extent.

4 Results

The proposed method was tested on four publicly available datasets, namely:
the KTH dataset [24], the Parse dataset [25], the Leeds dataset [6] and the
Buffy dataset [5]. The KTH dataset consists of 771 images, where the first 180
images were used for training and the remaining 591 images were used for testing.
The images show football players in different poses commonly observable in TV
broadcasts. The Parse dataset instead consists of 305 images, where the first
100 images were used for training and the remaining 205 images were used
for testing. The images show a wide variety of poses in unconstrained outdoor
settings, similar to the Leeds dataset, which consists of 1000 training images
and 1000 test images. The Buffy dataset is limited to the upper body and shows
scenes from different episodes of the TV show ’Buffy’; 472 images were used for
training and 276 for testing.
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Table 1. Comparison of the percentage of correctly estimated body parts (strict PCP)
on the KTH dataset

Method Head Torso U. Arms L. Arms U. Legs L. Legs Total

[25], 26 parts 91.2 99.7 87.2 60.7 85.0 73.3 80.3
[25], 29 parts 91.7 99.8 85.2 62.8 85.8 73.9 80.7

[24] 91.7 99.7 87.8 63.4 91.5 80.0 83.7
Sequential BB (26 parts) 90.9 99.7 87.1 62.2 91.5 81.1 83.4
Sequential BB (29 parts) 91.5 99.8 84.8 59.7 90.1 79.3 81.9
Global BB (29 parts) 92.2 99.8 84.2 61.7 91.4 80.2 82.7

Table 2. Comparison of the percentage of correctly estimated body parts (strict PCP)
on the Parse dataset

Method Head Torso U. Arms L. Arms U. Legs L. Legs Total

[25], 26 parts 84.9 89.8 61.5 39.8 75.4 68.0 66.4
[25], 29 parts 84.9 87.8 59.0 36.8 77.6 70.5 66.0

[8] 75.1 83.9 56.8 33.9 71.0 63.9 61.0
[14] 86.3 93.2 63.4 48.8 77.1 68.0 69.4

Sequential BB 83.4 86.3 60.5 38.8 79.8 72.7 67.3
Global BB 86.3 92.7 59.8 40.0 81.0 73.4 68.7

Table 3. Comparison of the percentage of correctly estimated body parts (loose PCP)
on the Buffy dataset

Method Head Torso U. Arms L. Arms Total

[25], 21 parts 97.5 97.8 93.1 66.0 85.6
[8] 100.0 100.0 97.5 75.4 90.9

Global BB 100.0 100.0 95.6 71.5 89.0

Table 4. Comparison of the percentage of correctly estimated body parts (strict PCP)
on the Leeds dataset

Method Head Torso U. Arms L. Arms U. Legs L. Legs Total

[25], 29 parts, 12 types 80.1 84.8 54.0 38.0 71.5 66.5 62.5
[3] 80.1 86.5 56.5 37.4 74.9 69.4 64.3
[14] 85.6 88.7 61.5 44.9 78.8 73.4 69.2

Global BB, 29 parts, 12 types 80.0 86.6 53.8 38.8 75.4 70.0 64.3

Each test image is first pre-processed in order to estimate the per-pixel fore-
ground confidence map FG(p). To this aim, the standard tree-structured model
of Yang and Ramanan [25] is used to retrieve an estimate of the pose. Sub-
sequently, a mask around this estimate is created by dilating the convex hull
of the estimated joints positions. In the end, grabcut [16] is initialized by this
mask and used to obtain the foreground map FG(p). Note that in many scenarios
where information about foreground and/or background is given a priori, a better
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segmentation can be obtained. For the Buffy dataset, segmentations provided by
[8] were used.

To increase the expressiveness of the original model S(I, l, t) in Equation 1,
14 auxiliary joints are added to the graph G. This is coherent to what is also
done in [25], and the main purpose is to provide appearance models also to the
central part of each body limb. We do not branch on these additional unknowns.
On the contrary, branch and bound is still run only on the (2x15)-dimensional
solution space described before, and the positions of these auxiliary joints are
estimated during the maximization procedures in Ē1 and Ē2.

To quantitatively evaluate the results obtained using our approach, the per-
centage of parts being correctly detected (PCP) was used [5]. Note that with
the exception of the Buffy dataset, we use the strict PCP measure, not the loose
PCP. In the strict version, if the maximum difference between the locations of
two connected joints and the corresponding ground truth locations is less than
50% of the length of the corresponding body part, the location of that part is
considered to be correctly estimated. In the loose version used for Buffy, not the
maximum, but the average distance is considered. More details on this measure
can be found in [13]. Notice that [24] used a different evaluation criterion for
KTH.

Table 1, Table 2, Table 3 and Table 4 report the results obtained on all
datasets by our branch and bound approach and the approaches proposed in [24],
[8] and [25], where available. Note that these methods, including ours, use the
model introduced by Yang and Ramanan as the underlying model. Additionally,
we compare to state-of-the-arts results achieved by Eichner and Ferrari, and
Pishchulin et al. [3,14]. In the KTH dataset, the tree structured model of [25]
leads to a total score of 80.3% when 26 joints are used. The sequential branch
and bound proposed in Section 3.5 outperforms this score by 3.1%, achieving
83.4%, similar to what is achieved using the re-ranking approach of [24]. Using
the model consisting of 29 parts, our global branch and bound approach here
scores 82.7%, outperforming the sequential version (81.9%). For this dataset,
examples of successfully estimated poses are shown in Figure 4.

In the Parse dataset, the model of Yang and Ramanan achieves a score of
66.0% for the model with 29 joints. Our global branch and bound approach
instead is able to achieve a score of 68.7%. Figure 5 shows some examples of
correctly estimated poses compared with the ones obtained using [25] (29 parts).
Figure 6, instead, shows failure cases on both methods. Although our approach
is not able to detect the correct pose, its results are closer to the actual solution
than the ones obtained using [25]. Figure 7 shows some more failure cases which
might be caused by a wrong foreground map.

The loose PCP measure is commonly used for the Buffy dataset. We achieve
89.0% and perform 3.4% better than our baseline implementation of [25]. Note
the significant increase in the detection of the lower arms, also shown qualita-
tively in Figure 8. The method of Ladicky et al. [8] performs very well on the
Buffy dataset, but seems to have some shortcomings on the Parse dataset.
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Fig. 4. KTH Dataset: The top row shows the results of the inference in the standard
tree model [25]. The bottom row displays the results obtained using the proposed
branch and bound algorithm.

Fig. 5. Parse Dataset: Comparison between the results obtained using the approach
of Yang and Ramanan [25] (top row), and the results obtained using our approach
(bottom row).

Fig. 6. Parse Dataset: Failure cases for both [25] and our global branch and bound
approach
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Fig. 7. Parse Dataset: Failure cases due to segmentation errors

Fig. 8. Buffy Dataset: Comparison between the results obtained using the approach
of Yang and Ramanan [25] (top row), and the results obtained using our approach
(bottom row).

Fig. 9. Leeds Dataset: Comparison between the results obtained using the approach
of Yang and Ramanan [25] (top row), and the results obtained using our approach
(bottom row).
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For all datasets observer centric labeling was used for training and testing.
This means that the right arm and the right leg of a back facing person are
labeled as left arm and left leg and vice versa.

The worst-case runtime complexity for our approach is exponential in the
number of states. This happens when branch and bound degenerates to exhaus-
tive search and the algorithm tries all the possible combinations of part positions.
In practice, however, branch and bound terminates much earlier because only
promising sets of hypotheses are divided further, ignoring and never exploring
many large sets of hypotheses with low upper bounds. Experiments were run on
an Intel Core i7, 2.8GHz, with 12GB of RAM. The runtime of the global branch
and bound ranged between 2 and 10 minutes for most images in the full body
datasets. Note that without the methods proposed in Section 3.5, the algorithm
can take up to several hours or even days.

5 Conclusion

In this paper, we propose a method for single image human pose estimation
which extends the common unary and pairwise terms of graphical models with
a global foreground term. In order to guarantee the global optimality of our
solutions, we propose to optimize the model using a branch and bound based
algorithm. To keep inference tractable and avoid the obvious combinatorial ex-
plosion, we propose a set of upper bounds specifically designed for our pose
estimation problem, and a way to decouple the estimate of rarely overlapping
limbs while still maintaining the global optimality.

We evaluated the performance of the proposed method on four publicly avail-
able datasets, showing the benefits of adding a global foreground term. Branch
and bound guarantees the best solution according to the specified model. Ad-
ditionally, we show quantitative results of a sequential version of the proposed
branch and bound algorithm.

In conclusion, the global foreground term improves the results when a reason-
able segmentation or confidence map for the foreground F (l) is available. Our
automatic estimation of F (l) works reasonably well in the tested datasets. How-
ever, when it fails, it influences the outcome of the pose estimation algorithm.
Figure 7 shows some failure cases due to segmentation errors. Nevertheless, in
many scenarios a good foreground model can be easily estimated and therefore
we expect this algorithm to work well in such situations.

In future work, we plan to address pose estimation given multiple images of the
same person either from multiple views or several neighboring frames of a video
sequence. Encouraging consistency between several such input images suggests
new challenges in terms of efficient inference and is an encouraging direction for
more robustness.
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