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Abstract. This paper proposes a new formulation of the human pose
estimation problem. We present the Fields of Parts model, a binary
Conditional Random Field model designed to detect human body parts
of articulated people in single images.

The Fields of Parts model is inspired by the idea of Pictorial Struc-
tures, it models local appearance and joint spatial configuration of the
human body. However the underlying graph structure is entirely differ-
ent. The idea is simple: we model the presence and absence of a body
part at every possible position, orientation, and scale in an image with
a binary random variable. This results into a vast number of random
variables, however, we show that approximate inference in this model is
efficient. Moreover we can encode the very same appearance and spatial
structure as in Pictorial Structures models.

This approach allows us to combine ideas from segmentation and pose
estimation into a single model. The Fields of Parts model can use ev-
idence from the background, include local color information, and it is
connected more densely than a kinematic chain structure. On the chal-
lenging Leeds Sports Poses dataset we improve over the Pictorial Struc-
tures counterpart by 6.0% in terms of Average Precision of Keypoints.

Keywords: Human Pose Estimation, Efficient Inference.

1 Introduction

In this work we consider the challenging problem of human pose estimation
from a single image. This task serves as a crucial pre-requisite step to many
high level vision applications, for example human action recognition [16], and
natural human computer interfaces [28]. Therefore, it is among the most studied
problems in the field of computer vision.

The main difficulty of pose estimation is the weak local appearance evidence
for every single body part. While heads nowadays can reliably be detected, lo-
calization of general body parts such as arms, legs, or hands remain challenging.
Several factors complicate detection: fore-shortening and self-occlusion of parts;
different clothing and light environments lead to variability in appearance; some
parts might just be a few pixels in size which makes it hard to encode them
robustly.

Consequently, the pre-dominant method for this problem are approaches that
model both appearance and part configuration jointly. This idea of combining
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Fig. 1. From Pictorial Structure models (left) to the Fields of Parts model (right). For
each body part in the PS model we introduce a field of binary random variables, one
for each of its states. When two body parts are connected by a pairwise factor (left)
we densely connect the corresponding fields (right), illustrated by the stacked factors.
The binary variables 0/1 encode absence or presence of a body part at its location and
type (rotation). This is a dense graph and thus contains multiple cycles. This is an
illustration with six parts, resp. fields, only.

part appearance evidence with spatial configuration for part relations dates back
to [13] and was popularized as a CRF model by [11]. The CRF approach of [11]
elegantly expresses pose estimation in a statistical structured prediction problem
and introduces with the distance transform an efficient exact inference technique.
This model serves as a basis for many variants and thus resulted in significant
empirical improvements on increasingly challenging datasets [24,12,17].

Most work focuses on the main dimensions of the pose estimation problem: use
of discriminative appearance information ([25,22,23,33,34,10,9] and many more)
and stronger models for the spatial body configuration [27,29,22]. Examples of
better appearance models are the local image conditioned features used in [25],
the use of mid-level representations via Poselets [14,3,22], or semantic segmenta-
tion information to include background evidence [10,31,20,4]. The spatial model
of [11] is a tree, a limitation that obviously does not reflect dependencies in the
human body, for example color relation between left and right limbs. This has
been addressed by introducing loopy versions [29] or regression onto part posi-
tions directly [6,15]. Another dimension is inference efficiency, richer appearance
features typically requires more computations, some approaches perform well but
are slow. The same is true for changes in the graph, giving up the tree structure
usually results in more involved inference techniques. To speed up inference in
pose estimation models enabling the use of richer appearance or graph structure
methods like cascading [26] or coarse-to-fine search [25] have been proposed.

In this work we propose the Fields of Parts (FoP) model; a re-formulation
of the human pose estimation problem. The FoP model offers a different view
on all three dimensions – appearance, structure, and inference. It is inspired by
the Pictorial Structures (PS) model, but has different semantics which lead to
interesting modeling possibilities. The main idea behind this model is simple:
the presence or absence of a body part at every possible location, orientation,
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and scale of a body part is modelled using a binary random variable. This results
in a huge number of variables, seemingly complicating the matter.

In this paper we show that this model is tractable and present a way to perform
efficient marginal inference and more importantly, that this re-parametrization
offers new and interesting modeling possibilities. In particular it allows to carry
over many ideas from semantic segmentation. We achieve this without the need
to explicitly include a segmentation layer or rely on a pose estimation pipeline as
a pre-processing step in order to generate body part proposals. The FoP model
provides a full interpretation of the image: the presence of a body is explained
at every position simultaneously while including evidence from the background
without the need for explicit segmentation variables. The graph topography is
flexible, we are not bound to a tree structure with restricted potentials in order
to use the distance transform. Nevertheless, it does not enforce the detection of
a single person in the image anymore. Depending on the application domain this
might be advantageous or unwanted.

The marginal inference technique that we propose, namely mean field, is ap-
proximate. However, we reason that this is not a severe limitation. We account
for the approximation already during training time using Back-Mean-Field learn-
ing [7,8]. The inference complexity dependends only linearly on any important
dimension of the model: number of part-connections, number of feature dimen-
sions, and size of the image. Furthermore it is amendable to parallelization.

The FoP model is built upon advances from three separate domains: efficient
inference for segmentation [18], parameter estimation with approximate infer-
ence [7,8], and expressive PS models [34]. We report on modeling, technical, and
experimental contributions:

– A reformulation of the human pose estimation problem. This opens up new
modelling flexibility and provides a new viewpoint on this well-studied prob-
lem (model in Sect. 3.1, discussion in Sect. 3.2).

– An generalization of the inference algorithm from [18]. This makes it possible
to use efficient mean field inference in the FoP formulation (Sect. 4.1).

– A new estimator that is tailored to pose prediction using a binary CRF
formulation. (Sect. 4.2).

– Experimentally, we demonstrate that the FoP model with the same set of pa-
rameters as [34] achieves a performance increase of 6.0% on the LSP dataset,
novel variants improve this even further (Sect. 5).

2 Related Work

We adapt the part based formulation from [34] since it offers a good trade-off
between flexibility and efficiency. The authors propose to model a body as a
collection of body joints, with each body joint being represented as a point in
the 2D plane for its position, and a multinomial type variable that accounts
for appearance variations. For the FoP model we enumerate all those states
and model each one with a binary random variable. A different way to model
body part appearance is by a representation as boxes with a center, orientation
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and scale, e.g.[2]. The model in [23] combines both the body part and body joint
representations into a single joint one. The authors report improved performance,
however their proposed method has a runtime of several minutes per image.
Other approaches introduce more connections in the factor graph to account
for the dependencies of body parts not reflected in the tree structure. One such
example is [29] that combines a densely connected model with efficient branch
and bound inference.

PS models can be understood as body pose detectors that only model the
foreground object while largely ignoring background information. Several au-
thors used segmentation information within their pose estimation model [12,25],
this typically complicates the inference process. Therefore, these methods either
use sequential algorithms [12] or CRF inference methods with elaborate search
based methods [26]. Another way to include background evidence is to explicitly
include a separate segmentation layer [20,4,31,32]. Most of these works follow-
ing this choice have in common that they rely on a separate pose estimation
algorithm (e.g.,[2,33]) to retrieve a number of candidate poses. Based on these
proposals a CRF structure is then instantiated with factors for segmentation
and selector variables for the proposals. Additional CRF layers could be fore-
ground/background segmentation [32], additionally body part segmentation [20],
and combination with stereo estimation [31]. Finally, the authors of [10] exploit
commonalities in the background appearance within a dataset by fitting a sep-
arate color likelihood term to an estimate of background on.

For inference and learning we build upon the advances from [18] that we
generalize so it can be used for our purpose. The authors show that mean field
inference in densely connected models with Gaussian pairwise potentials reduces
to an application of bilateral filtering. The other connection that we draw is
to marginal based learning techniques advocated in [7,8]. Domke argues that
learning should both take the desired loss function as well as the approximate
nature of the inference procedure into account. Our model implements this using
Back-Mean-Field learning, also mentioned in [19].

3 Fields of Parts

The flexible body part model of [34] serves as the starting point for our deriva-
tion. The authors of [34] propose to model each body part p as a random vari-
able Y p = (U, V, T ) with three values: (U, V ) for the position in the image I and
T ∈ {1, . . . ,K} a latent type variable. The idea of introducing T is to capture
appearance differences of a part due to fore-shortening, rotation, etc, while at
the same time increasing the flexibility of the body configuration. We gather all
possible states of Y p in the set Yp, the entire body is then represented as the
concatenation Y = (Y 1, . . . , Y P ). This PS model defines a Gibbs distribution
p(Y |I, θ), where θ denotes the collection of all model parameters.

In this work we propose a different kind of parametrization. In this section we
will introduce the model (Section 3.1) and discuss the gained flexibility that it
offers (Section 3.2). The technical contributions on inference (Section 4.1), and
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learning (Section 4.2) that enable the use of this parametrization are the topic
of Section 4.

3.1 Model

We parametrize the problem in the following way: For every part p and every
possible state in Yp we introduce a binary random variable Xp

i , i = 1, . . . , |Yp|.
Each such variable represents the presence Xp

i = 1 and absence Xp
i = 0 of a

part at its location, type, and scale in the image. We refer to the collection of
variables for a part Xp = {Xp

i }i=1,...,|Yp| as a field of parts. With X we denote
the collection of all variables for all parts. The total number of variables per part
p is |Yp|, the total number for all parts S =

∑
p |Yp|, and thus the state space

of X is of size 2S . We do introduce all variables on different image scales but do
not use a super-/sub-script, so as not to clutter the notation. Next, we discuss
how to connect the variables in a meaningful way.

Energy. Given an image I and model parameters θ, we write the energy of a
Gibbs distribution as the sum of unary and pairwise terms

E(x|I, θ) =
P∑

p=1

|Yp|∑

i=1

Ψunary(x
p
i |I, θ) +

∑

p∼p′

|Yp|∑

i=1

|Yp′ |∑

j=1

Ψpairwise(x
p
i , x

p′
j |I, θ). (1)

Note, that the neighborhood relationship is defined between different fields
p ∼ p′, for example wrist and elbow. Between any two neighbouring fields,

all pairs of random variables (Xp
i , X

p′
j ) are connected by a factor node. We

illustrate the resulting cyclic CRF graph in Figure 1 for the case of kinematic
chain connections p ∼ p′ and six body parts.

Unary Factors. Local appearance of body parts is captured through the unary
factors Ψunary. In the simplest case this might be a log-linear model

Ψunary(x
p
i |I, θ) = 〈θpunary, ψi(I)〉.

Concretely, we use exactly the same factors as in [34] in order to make the models
comparable: HOG [5] responses ψ(I) and a linear filter θpunary of size 5 × 5 at
different scales of the image.

Pairwise Factors. The important piece of the FoP model are the pairwise con-
nections. Their form needs to fulfill two requirements: encode a meaningful spa-
tial configuration between neighboring fields, and allow for efficient approximate
inference. We are inspired by the observation of [18]. In their work they show
that mean field inference in densely connected models with Gaussian pairwise
potentials can be implemented as a bilateral filtering. Since for this operation
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exist highly optimized algorithms [1], the approximate inference is efficient. The
pairwise terms in the FoP model have the following form

Ψpairwise(x
p
i , x

p′
j |I, θ) =

∑

m

Lm(xp
i , x

p′
j ) kp,p′

m

(
fm(i, p; I, θ), fm(j, p′; I, θ); θ

)
(2)

kp,p′
m (f, f ′; θ) = exp

(
−1

2
(f − f ′ − μp,p′

m )T (Σp,p′
m )−1(f − f ′ − μp,p′

m )

)
. (3)

The key observation is that this allows to encode the same spatial relation

between body part variables Xp
i and Xp′

i , as the PS model does for Y p and Y p′
.

To see this, let us take a closer look at Eq. (2). This potential is a linear combi-
nation of Gaussian kernels km weighted by a compatibility matrix L. Remember
that all random variables are binary, thus L is of size 2× 2.The Gaussian kernel
function k measures the influence of two variables i, j on each other; it has a
high value if variables i and j should be in agreement.

To encode the same spatial relationship as PS models we use the 2D positions

of the states i as features f(i, p; I, θ). Consider two variables Xp
i , X

p′
j , and their

2D image positions. The two states with maximal influence on each other are
those whose 2D position are offset by exactly μp,p′

m . This influence decreases
exponentially depending on the distance of two states i, j and the variance Σp,p′

m .
Note that a state i also includes the type/mixture component T . For every

part there are as many random variables at the same 2D location as we have
mixture components K in the model. For every type/type pair we could use
a different offset and variance. Again to enable comparison we implement the
choice made in [34], namely that the offset only depends on one of the two types
(in [34] the child type determines the offset and variance). In summary the same
kind of flexible body part configuration is represented in the FoP model. A minor
difference is that here, we use Gaussian potentials, whereas in the PS model the
spatial term is log-linear (without the exp in Eq. (3)).

3.2 Discussion

The parametrization of the FoP model allows to carry over ideas from semantic
segmentation into the pose estimation problem.

It is important to note, that the Gaussian pairwise terms are more gen-
eral than using only positional information. In fact we can use any features
f(i, p; I, θ) ∈ R

D to modulate the influence of two states on each other. For
example, we can encode color by appending RGB values to the image locations,
resulting in a bilateral kernel. This is in contrast to PS models [11,34,2] where
extra local image evidence can not easily be included. The reason is inference
time, in order to use the distance transform, the features have to lie on a grid,
and for example RGB values do not. Without this restricted form of the features,
the general sum product algorithm scales quadratically in the number of states.
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We exploit this new possibilities in three different ways: including color infor-
mation, using foreground/background segmentation of a person, and connecting
the CRF more densely.1

Additionally to the between-fields connections, we also connect the variables
within a single field p using as a pairwise factor

Ψpairwise(x
p
i , x

p
j |I, θ) = L(xpi , x

p
j )k

p (f(i, p; I, θ), f(j, p; I, θ); θ) . (4)

We set L(x, x′) = δx=0 and x′=0 and use as features f(i, p; I, θ) the 2D position
and RGB color in a 3× 3 neighborhood around the position of i. This potential
affects variables Xp

i , X
p
j that are near each other in the image and similar in

color. For example a variable may be certain that it does not represent a certain
body part, a patch in the sky that is blue and is smooth. The term of (4) is
“encouraging” all other blue patches in the image (it is densely connected) to
also be in state 0. In effect this propagates color background information in the
image over the random variables. This is the same type of a bilateral kernel as
used in segmentation methods [18,31], in this case it aids prediction of body
parts without explicitly reason over segmentation.

Fields of Parts - Segmentation. As a second example, we include a segmenta-
tion prediction as extra image evidence into the pairwise terms. The decision tree
implementation of [21] and its features are used to train a person/background
classifier on the training images. From ground truth bounding box annotations
we construct 0/1 segmentation masks for training. The final decision tree yields
a score in du,v ∈ [0, 1] for every position (u, v) in the image, namely, the fraction
of person-pixels in the corresponding leaf. We then append this score to the spa-
tial features to all states i at the corresponding position. This again results in a
bilateral kernel and allows for propagation of information to be different inside
or outside of the predicted segmentation.

Fields of Parts - Loopy. The CRF of the FoP model is a loopy graph already.
In the upcoming section we will show that the inference complexity depends
only linear on the number of field-field p ∼ p′ connections. This allows us to
connect the fields more densely than rather along the kinematic chain with only
a modest increase in computational complexity. In this variant (Fields of Parts
- Loopy) we introduce 10 more connections between parts that contain spatial
information about each other, like left and right hip, etc.

Future Work. We mention some additional possibilities that we plan to in-
vestigate in future work. Beyond standard RGB, different texture and color
information can be encoded in f . An interesting example is the mid-level repre-
sentation used in [22]. The authors condition the pairwise terms of a PS model
globally on reponses of a poselet detector [3] and report impressive performance

1 The precise details of the variants are included in the appendix.
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gains. With the FoP model this type of evidence can be included locally. A
connection strength between variables can be modulated given that they are in
mutual agreement with a poselet response at a corresponding position.

Another route is to combine the FoP model with the different body parameter-
ization as a collection of sticks/card-boards. For example a “field of sticks” can
be fused into the model in the very same way the body part fields are connected.

3.3 Comparison to Pictorial Structures

There are two main differences between the FoP model and the PS model con-
cerning the semantic of their outputs. PS models explain the foreground, they
represent a conditional distribution p(y|I, θ) over all possible body configura-
tions. In contrast the FoP model explains the entire image p(X |I, θ), i.e. fore-
ground and background. Hence, the FoP model is not just a relaxation of the PS
model in the sense that we allow multiple detections for one part. Consider for

this again Eq. (2). If at least one of the arguments xpi , x
p′
j is assigned the label

0 for background then a non-trivial term is added to the total energy. Contrast
this to the energy for the PS model where no such term exists2. This is much
more in spirit of works that try to combine segmentation information into the
pose estimation problem [4,10,31,20] but with the crucial difference that the FoP
model is designed for pose estimation. It does not require a separate algorithm
to generate part proposals, nor is an explicit segmentation layer needed.

Second, consider the case of multiple, including no persons in an image. What
would the optimal distribution be? With no person in the image the best a PS
model can do is to achieve a uniform distribution over the body poses, it has
no notion of absent body parts. In the case of multiple persons the distribution
becomes multi-modal. Consequently, the probability mass has to be distributed
over different persons and thus the scores will have to decrease. A similar effect
will happen if the image size is increased. This can be undesirable depending on
the application, the score/probability of a body pose should not depend on the
number of people in the image or its size. Therefore a detection step is a crucial
pre-requisite for the PS model.

4 Learning and Inference

In this section we present the technical extension of [18] that enables efficient
inference (Sect. 4.1) in this model. We then present an estimator tailored to the
pose prediction problem with this binary CRF (Sect. 4.2).

4.1 Inference

Exact inference in the FoP model is unfortunately prohibitive due to the loopy
structure of the factor graph. We resort to approximate inference, and in par-
ticular to a mean field approximation. With mean field the intractable distri-
bution is replaced by a factorizing approximation Q, usually by the product of

2 The comparison of the LP-formulations of the two models in the appendix shows
another perspective of this.
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Fig. 2. Evolution of part fields over the filter steps of the mean field updates. For
parameter estimation the FoP model builds the gradient w.r.t. the model parameters
θ by backpropagating it through the filter steps of the mean field updates.

its marginals Q(x|I, θ) = ∏
iQ(xpi |I, θ), that are then fit to yield a low KL di-

vergence with the target distribution. Every binary state variable Xp
i gets its

approximating probability distribution Q(xpi ). Note that by finding the factor-
izing distribution Q we gain all included state marginals of the Xp

i .
The authors of [18] have shown that the mean-field update equations in dis-

crete CRF models with Gaussian pairwise potentials can be implemented by
means of bilateral filtering. In the FoP model the mean field update equations
can be derived to3

Q(xpi |I, θ) ∝ exp(−Ψunary(x
p
i |I, θ)−

∑

p∼p′

∑

l′∈{0,1}

∑

m

Lm(xpi , l
′)

|Yp′ |∑

j=1

kp,p
′

m (f(i, p; I, θ), f(j, p′; I, θ); θ) Q(xp
′

j = l′|I, θ)).
(5)

This generalizes the results of [18] where there is no part connection relation-
ship p ∼ p′. In the update step Eq. (5) we can exploit the underlying structure
of the factor graph to perform bilateral filtering of the two affected neighboring
fields. There are two filtering operations – from p to p′ and back – for every field
connection p ∼ p′. The full update algorithm is described in Algorithm 1.

As noted by the authors of [18] this block update scheme is not guaranteed to
converge. In practice we have not seen any convergence problems for our model.

To come by the expensive operation of calculating the message from one part
field p to another part field p′, we also make use of an acceleration technique of
the permutohedral lattice [1]. This reduces the computational cost to be linear in
the number of states of the two involved fields in contrast to the quadratic cost
in the number of states in a naive implementation. We loosen the probabilistic
interpretation of the mean field update and allow the compability matrix Lp,p′

to differ for the messages passed from p to p′ and vice-versa.
For images that contain a single person only we report, for each field sepa-

rately, the state that is most probable to be of value 1,

îp = argmax
i∈Yp

Q(xpi = 1|I, θ). (6)

3 See appendix.
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Algorithm 1. Mean field update in the Fields of Parts model

Q(xp
i = l)← normalize(−Ψunary(x

p
i = l|I, θ))

for n iterations do
Q̃(xp

i = l)← 0,∀i, p � Initialize all messages
for p ∼ p′ do

� Message passing from part p′ to p

Q̂i,m(l)←∑|Yp′ |
j=1 kp,p′

m (f(i, p; I, θ), f(j, p′; I, θ); θ) Q(xp′
j = l)

� Compability transform and accumulation of messages
Q̃(xp

i = l)← Q̃(xp
i = l) +

∑
l′∈{0,1}

∑
m Lm(l, l′)Q̂i,m(l′)

end for
Q(xp

i = l)← normalize(exp(−Ψunary(x
p
i = l|I, θ)− Q̃(xp

i = l)))
end for

Nevertheless, there is no reason not to use a different prediction rule, e.g. in
the case of multiple persons in one image. The complexity of the inference algo-
rithm scales very favorably, namely linear in every dimension: number of mean
field iterations, number of Gaussian kernels m, linear in the number of pairwise
features D, linear in the number of part-part connections p ∼ p′. Furthermore
the model is amendable to easy parallelizations, e.g. by calculating the messages
sent by the part fields in parallel. In our current CPU implementation the model
requires about 6s for inference on a single level in an image of size 100× 200.

4.2 Parameter Estimation

Part annotations are available as 2D positions (u, v) of the separate body parts
which needs to be translated into the binary CRF formulation. Using K types for
part p, the FoP model contains K random variable that represent the position
(u, v), one for each type. It is desirable to find parameters θ that yield a high
probability for at least one of those variables being in state 1. Here we construct
an max-margin objective that is tailored to pose estimation: the predicted state
îp (Eq. 6) should be at the correct image position. There is no loss for background
states in pose estimation, and thus they are not included in the objective.

Prediction Loss. In practice the performance of body pose models is measured
using loss functions that ideally represent the desired output of the systems. For
the parametrization of body parts as 2D positions the Average Precision of
Keypoints (APK) measure is natural, [34] refers to it as the “golden standard”.
A prediction is considered correct if it falls inside a small region of the annotated
point. To be precise, for a given part at the annotated location i∗, the loss for a
prediction î is defined to be

Δp(i∗, î) = I(‖i∗ − î‖ > αmax(h,w)), (7)

where I stands for the indicator function. The loss depends on the size of the
object to be found (namely height h and width w) and a threshold α to restrict
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the region where we count a part as detected. The authors of [34] choose α to
be equal to 0.1 on full body pose estimation tasks.

Objective Function. We use a structured maximum-margin estimator [30] to
encourage the model to fit parameters that lead to a low loss Δp. Similar to the
loss we decompose the optimization problem along the parts

minimizeθ,ξp≥0

∑

p

	(ξp) + C(θ) (8)

sb.t. spi∗ − spi ≥ Δp(i∗, i)− ξp ∀p, ∀i ∈ Yp (9)

spi := σ−1(Q(xpi = 1)|θ). (10)

Equation (9) demands a margin ofΔp(i∗, i) between the score of the annotated
state i∗ and every other state i. The score spi is the result of an inverse sigmoid
function4 applied to the probability of the positive state of a state variable Xp

i .
We allow the constraint to be violated by the slack variable ξp. The objective (8)
consists of a Hingle-loss 	 and a regularizer C to prevent over-fitting to training
data. In our experiments we set C to be the squared norm of the parameter
vector θ and weight the result with 0.001. We did not change this value over the
course of the experiments.

Optimization. We can rewrite Eqns. (8)+(9) equivalently as an unconstrained
optimization problem

minimizeθ
∑

p

	(max(0,−spi∗ +max
i∈Yp

(si +Δp(i∗, i))) + C(θ). (11)

Every evaluation of the unconstrained objective contains solutions to a loss-
augmented inference problem of the APK proxy loss. This problem decomposes
over parts and the offending state is the maximum in each loss-augmented field.
This objective is piecewise differentiable and we resort to stochastic sub-gradient
methods. We apply ADADELTA [35], with decay parameter 0.95 and ε = 10−8.

In an implementation only a finite number of mean field iterations are ex-
ecuted, some termination criterion has to be applied. In our experiments we
chose a fixed number of 10 iterations to calculate the marginals Q(Xp

i ) from
Algorithm 1. Performance does not depend on any convergence that may oc-
cur when the inference is run longer. When optimizing (11) we take this into
account by computing the gradient of the marginals w.r.t. parameters by back-
propagating the objective Eq. (11) through the mean field updates as illustrated
in Figure 2. This is an application of the Back-Mean-Field idea of [8], a proce-
dure advocated for learning with approximate inference when predicting with
marginal inference.
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[34] Fields of Parts Fields of Parts - Segmentation

Fig. 3. Top row, from left to right: Result from [34], a visualization of the marginal
inference result of the base model, inference result with added segmentation informa-
tion. The part marginals are considerably sharpened by using the additional features
in the pairwise connections. Bottom row from left to right: Result from [34], part
marginals, stick predictions, for two positive results.

5 Experiments

We empirically test the proposed method with the standard benchmark dataset
of “Leeds Sport Poses” (LSP) [17]. This dataset consists of 1000 training and
1000 test images of people performing various sports activities and is challenging
due to strong body pose articulation.

5.1 Comparison to Pictorial Structures

The idea of reparametrization the body pose problem can in principle be applied
to many PS variants. Here we chose the model [34], and thus it serves as the
PS “counterpart” we compare against5. Note that the described FoP model uses
exactly the same unary potentials and exactly the same features for the pairwise
potentials. Also we use the same pre-processing steps: clustering and assignment
of the types on the training dataset. Both models have almost identical number
of parameters, a total of about 130k most of them unary parameters θunary. Any
performance difference of the two methods thus can be attributed solely to the
change in model structure, learning objective and inference.

The direct comparison using APK is reported in Table 1, some example detec-
tions are depicted in Figure 3. First we compare FoP to the PS counterpart and
observe that we obtain an improvement for every body part, while being on par

4 This maximizes the margin with respect to the ratio between the two 1 probabilities
and the two 0 probabilities; see appendix.

5 We thank the authors of [34] for making the code (version 1.3) publicly available.
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Table 1. Comparison of pose estimation results on the LSP dataset. Shown are the
APK results (observer-centric annotations [10]).

Model Setting Head Shoulder Elbow Wrist Hip Knee Ankle avg

Fields of Parts Unary only 44.7 28.7 2.1 3.3 5.6 5.8 25.8 16.6
Fields of Parts 83.1 76.5 55.2 29.0 74.8 70.3 63.7 64.7
Fields of Parts Bilateral 83.3 77.0 56.2 30.9 76.1 71.2 64.5 65.6
Fields of Parts Segmentation 84.9 77.7 56.9 29.7 78.1 71.9 65.2 66.4
Fields of Parts Loopy 83.0 76.2 55.7 29.0 77.7 72.0 64.3 65.4

Yang&Ramanan [34] 80.0 75.2 48.2 28.9 70.4 60.5 53.2 59.5
Yang&Ramanan [34] (single det.) 79.5 74.9 47.6 28.4 69.9 59.0 51.6 58.7

Pishchulin et al., [23] 88.0 80.6 60.4 38.2 81.8 74.9 65.4 69.9

on “wrist”. The improvement in average APK is 5.2%. For all FoP results we use
the top prediction per image only, and have not implemented Non-Maximum-
Supression to retrieve multiple detections. The results of [34] when reporting
only the top scoring part are also included in the table, in this case we the per-
formance gain is 6.0%. The results increase over all body parts, most prominently
on the feet, for example more than 12% on ankles.

When comparing the extensions (Bilateral, Segmentation, Loopy) against the
FoP model we observe a modest but consistent improvement. Again results in-
crease across all parts. Since all models are trained in the very same way this
effect can only be due to the image conditioning terms and extra connections
that we introduced.

5.2 Comparison with State-of-the-Art

We also compare using the Percentage of Correct Parts (PCP) measure to [34]
and recent results from the literature. The numbers are shown in Table 2. The
FoP model performs better than the PS models [2,34].

Interestingly, when comparing the differences between [34] and the FoP models
we observe that a higher APK number is not directly translating into higher PCP
scores. Especially on the arms, the APK criterion with a threshold of α = 0.1
that was used during training, appears not to be indicative of PCP performance.
The FoP model makes more points correct in terms of APK and we conjecture
that switching to a parametrization based on sticks, the model will improve
results on the PCP loss.

Methods that make use of richer appearance information (Poselets [22], Pose-
lets and extra DPM detectors for every body part [23], assumptions about the
background color distribution [10]) achieve higher results in terms of PCP. We
are encouraged by the result of [10] and believe that adapting their color back-
ground model should result in similar performance gains, especially, since they
extend [34] by an additional unary factor. The methods of [22,23] make use of
mid-level representations for bodies. We already discussed a possibility to adapt



344 M. Kiefel and P.V. Gehler

Table 2. Pose estimation results using the PCP criterion on the LSP dataset. We
compare our method against the current top performing methods in the literature.

Model Setting Torso Upper Lower Upper Fore- Head Total
leg leg arm arm

Fields of Parts 82.2 71.8 66.5 52.0 27.7 76.8 59.5
Fields of Parts Bilateral 83.4 72.8 67.0 52.2 28.0 77.0 60.0
Fields of Parts Segmentation 84.4 74.4 67.1 53.3 27.4 78.4 60.7
Fields of Parts Loopy 81.8 73.7 66.9 52.0 26.8 77.3 59.8

Yang&Ramanan [34] 81.0 67.4 63.9 51.0 31.8 77.3 58.6

Andriluka et al., [2] 80.9 67.1 60.7 46.5 26.4 74.9 55.7
Pishchulin et al., [22] 87.5 75.7 68.0 54.2 33.9 78.1 62.9
Pishchulin et al., [23] 88.7 78.8 73.4 61.5 44.9 85.6 69.2
Eichner&Ferrari [10] 86.2 74.3 69.3 56.5 37.4 80.1 64.3

and extend their approach to a locally conditioned term in Sect. 3.2. However
their current implementation runs at several minutes per frame and thus would
negatively affect inference time.

6 Conclusion

We have introduced the FoP model, a binary CRF formulation for human pose
estimation. Despite being different in structure, it allows to encode a similar
spatial dependency structure as done in PS. Further, it permits extensions with
more general image conditioned part connections. We have shown two applica-
tions of this, by including color and segmentation information as extra features.
We have demonstrated how to perform inference and learning in this model
through a technical extension of [18], and a max-margin estimator for parame-
ter learning. Because inference complexity depends linearly on almost all relevant
model dimensions we also implemented a variant with denser connections than
just along the kinematic chain. Experimentally, we validated that the FoP model
outperforms [34] on equal ground.

The important new dimension of the proposed parametrization is that it opens
up connections to image segmentation. We have discussed several interesting
extensions of this model in Section 3.2: image conditioned part configurations,
combination with cardboard models, changes in graph topology, etc. Extensions
to an explicit person and/or body part segmentation can be easily included,
especially, because the inference needs not to be changed.

An interesting aspect of the FoP model is that it explains the image locally at
every position; it is not affected by image size, number of persons in the image,
or their size. This output semantic differs drastically compared to the PS model.
In the future we plan to investigate further along this direction, our goal is to
remove the sequential process of current pose estimation pipelines into a single
process that performs joint detection and pose estimation of multiple people.
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