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Abstract. Relevant and irrelevant web images collected by tag-based
image retrieval have been employed as loosely labeled training data for
learning SVM classifiers for image categorization by only using the visual
features. In this work, we propose a new image categorization method
by incorporating the textual features extracted from the surrounding
textual descriptions (tags, captions, categories, etc.) as privileged in-
formation and simultaneously coping with noise in the loose labels of
training web images. When the training and test samples come from
different datasets, our proposed method can be further extended to re-
duce the data distribution mismatch by adding a regularizer based on
the Maximum Mean Discrepancy (MMD) criterion. Our comprehensive
experiments on three benchmark datasets demonstrate the effectiveness
of our proposed methods for image categorization and image retrieval by
exploiting privileged information from web data.

Keywords: learning using privileged information, multi-instance learn-
ing, domain adaptation.

1 Introduction

Image categorization is a challenging problem in computer vision. A number of
labeled training images are often required for learning a robust classifier for im-
age categorization. However, collecting labeled training images based on human
annotation is often time-consuming and expensive. Meanwhile, increasingly rich
and massive social media data are being posted to the photo sharing websites like
Flickr everyday, in which the web images are generally accompanied by valuable
contextual information (e.g., tags, captions, and surrounding text). Recently,
relevant and irrelevant web images (e.g., Flickr images) collected by tag-based
image retrieval have been used as loosely labeled training data for learning SVM
classifiers for various computer vision tasks (e.g., image categorization and image
retrieval)[43,33,31].

In this work, we extract the visual and textual features from the training web
images and the associated textual descriptions (tags, captions, etc.), respectively.
While we do not have the textual features in test images, the additional textual
features extracted from the training images can still be used as privileged in-
formation, as shown in the work [42] from Vapnik and Vashist. Their work is
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motivated by human learning, where a teacher provides the students with hidden
information through explanations, comments, comparisons etc [42]. Similarly, we
observe the surrounding textual descriptions more or less describe the content
of training images. So the textual features can additionally provide hidden in-
formation for learning robust classifiers by bridging the semantic gap between
the low-level visual features and the high-level semantic concepts.

For image categorization using massive web data, another challenging re-
search issue is to cope with noisy labels of relevant training images. To solve this
problem, the recent works [43,33,31] partitioned the training images into small
subsets. By treating each subset as a “bag” and the images in each bag as “in-
stances”, the multi-instance learning (MIL) methods like Sparse MIL (sMIL) [5],
mi-SVM [1] and MIL-CPB [33] were used for image categorization and image
retrieval.

Based on the above observations, in Section 3, we first propose a new method
called sMIL using privileged information (sMIL-PI) for image categorization by
learning from loosely labeled web data, which not only takes advantage of the
additional textual features but also effectively copes with noisy labels of rele-
vant training images. When the training and testing samples are from different
datasets, we also observe the data distributions between the training and testing
samples may be very different. Our proposed sMIL-PI method can be further ex-
tended to reduce the data distribution mismatch. We name the extended method
as sMIL-PI-DA, in which we additionally add a regularizer based on the Maxi-
mum Mean Discrepancy (MMD) criterion.

In Section 4, we conduct comprehensive experiments for two tasks, image
categorization and image retrieval. Our results demonstrate our newly pro-
posed method sMIL-PI outperforms its corresponding existing MIL method (i.e.,
sMIL), and sMIL-PI is also better than the learning methods using privileged
information as well as other related baselines. Moreover, our newly proposed do-
main adaptation method sMIL-PI-DA achieves the best results when the training
and testing samples are from different datasets.

2 Related Work

Researchers have proposed effective methods to employ massive web data for
various computer vision applications [37,40,17,27]. Torralba et al. [40] used a
nearest neighbor (NN) based approach for object and scene recognition by lever-
aging a large dataset with 80 million tiny images. Fergus et al. [17] proposed a
topic model based approach for object categorization by exploiting the images
retrieved from Google image search, while Hwang and Grauman [27] employed
kernel canonical correlation analysis (KCCA) for image retrieval using different
features. Recently, Chen et al. [6] proposed the NEIL system for automatically
labeling instances and extracting the visual relationships.

Our work is more related to [43,11,31,32,33], which explicitly coped with noise
in the loose labels of relevant training web images. Those works first partitioned
the training images into small subsets. By treating each subset as a “bag” and
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the images in each bag as “instances”, they formulated this task as a multi-
instance learning problem. The bag-based MIL method Sparse MIL as well as
its variant were used in [43], while an instance-based approach called MIL-CPB
was developed in [33]. The works in [43,33] did not consider the additional fea-
tures in training data, and thus they can only employ the visual features for
learning MIL classifiers for image categorization1. In contrast, we propose a new
image categorization method by incorporating the additional textual features of
training images as privileged information.

Our approach is motivated by the work on learning using privileged infor-
mation (LUPI) [42], in which training data contains additional features (i.e.,
privileged information) which are not available at the testing stage. Privileged
information was also used for distance metric learning [20], multiple task learn-
ing [35] and learning to rank [38]. However, all those works only considered the
supervised learning scenario using training data with accurate supervision. In
contrast, we formulate a new MIL-PI method in order to cope with noise in the
loose labels of relevant training web images.

Our work is also related to attributes based approaches [19,15], in which the
attribute classifiers are learnt to extract the mid-level features. However, the
mid-level features can be extracted from both training and testing images. Simi-
larly, the classeme based approaches [41,30] proposed to use the training images
from additionally annotated concepts to obtain the mid-level features. Those
methods can be readily applied to our application by using the mid-level fea-
tures as the main features to replace our current visual features (i.e., the DeCAF
features [10] in our experiments). However, the additional textual features, which
are not available in the testing images, can still be used as privileged informa-
tion in our sMIL-PI method. Moreover, those works did not explicitly reduce
the distribution mismatch between the training and testing images as in our
sMIL-PI-DA method.

Finally, our work is also related to the domain adaptation methods
[2,3,18,26,22,21,29,13,4,14,12,34]. Huang et al. [26] proposed a two-step approach
by re-weighting the source domain samples. For domain adaptation, Kulis et
al. [29] proposed a metric learning method by learning an asymmetric nonlinear
transformation, while Gopalan et al. [22] and Gong et al. [21] interpolated in-
termediate domains. SVM based approaches [13,4,14,12] were also developed to
reduce the distribution mismatch. Some recent approaches aim to learn a domain
invariant subspace [2] or align two subspaces from both domains [18]. Bergamo
and Torresani [3] proposed a domain adaptation method which can cope with
the loosely labeled training data. However, their method requires the labeled
training samples from the target domain which are not required in our domain
adaptation method sMIL-PI-DA. Moreover, our sMIL-PI-DA method achieves
the best results when the training and testing samples are from different datasets.

1 The work in [33] used both visual and textual features in the training process.
However, it also requires the textual features in the testing process.
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3 Multi-Instance Learning Using Privileged Information

Our goal is to learn robust classifiers for image categorization by using automat-
ically collected web images. Given any category name, relevant and irrelevant
web images can be collected as training data by using tag-based image retrieval.
However, those collected relevant and irrelevant web images may be associated
with noisy and inaccurate labels. Moreover, we also observe that web images
are usually associated with rich textual descriptions (e.g., tags, captions, and
surrounding texts), which provide semantic descriptions to the content of the
image to some extent.

To this end, we propose a new learning paradigm called multi-instance learn-
ing using privileged information (MIL-PI) for image categorization, in which we
not only take advantage of the additional textual descriptions (i.e., privileged
information) in training data but also effectively cope with noise in the loose
labels of relevant training images. Based on the Sparse MIL (sMIL) method [5],
we develop a new method called sMIL-PI in Section 3.2.

When the training and testing samples are from different datasets, the dis-
tributions of training and testing samples may be very different. To reduce the
data distribution mismatch, we further extend our sMIL-PI method as sMIL-
PI-DA for domain adaptation by adding a regularizer based on the Maximum
Mean Discrepancy (MMD) criterion into the dual formulation of our sMIL-PI
in Section 3.3.

In the remainder of this paper, we use a lowercase/uppercase letter in boldface
to denote a vector/matrix (e.g., a denotes a vector and A denotes a matrix).
The superscript ′ denotes the transpose of a vector or a matrix. We denote
0n,1n ∈ R

n as the n-dim column vectors of all zeros and all ones, respectively.
For simplicity, we also use 0 and 1 instead of 0n and 1n when the dimension is
obvious. Moreover, we use A ◦ B to denote the element-wise product between
two matrices A and B. The inequality a ≤ b means that ai ≤ bi for i = 1, . . . , n.

3.1 Problem Statement

To cope with label noise in the training data, we partition the relevant and
irrelevant web images into bags as in the recent works [43,33]. The training
bags constructed from relevant images are labeled as positive and those from
irrelevant images are labeled as negative.

Formally, let us represent the training data as {(Bl, Yl) |Ll=1}, where Bl is
a training bag, Yl ∈ {+1,−1} is the corresponding bag label, and L is the
total number of training bags. Each training bag Bl consists of a number of
training instances, i.e., Bl = {(xi, x̃i, yi)|i∈Il

}, where Il is the set of indices
for the instances inside Bl, xi is the visual feature of the i-th sample, x̃i is the
corresponding textual feature (i.e., privileged information), and yi ∈ {+1,−1}
is the ground truth label of the instance which is unknown. Without loss of
generality, we assume the positive bags are the first L+ training bags.

In our method, we use the generalized constraints for the MIL problem [33]. As
shown in [33], the relevant images usually contain a portion of positive images,
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while it is more likely that the irrelevant images are all negative images. Namely,
we have {∑

i∈Il

yi+1
2 ≥ σ|Bl|, ∀Yl = 1,

yi = −1, ∀i ∈ Il and Yl = −1,
(1)

where |Bl| is the cardinality of the bag Bl, and σ > 0 is a predefined ratio based
on prior information. In other words, each positive bag is assumed to contain at
least a portion of true positive instances, and all instances in a negative bag are
assumed to be negative samples.

Recall the textual descriptions associated with the training images are also
noisy, so privileged information may not be always reliable as in [42,38]. Consid-
ering the labels of instances in the negative bags are known to be negative [43,33],
and the results after employing noisy privileged information for the instances in
the negative bags are generally worse (see our experiments in Section 4.3), we
only utilize privileged information for positive bags in our method. However, it
is worth mentioning that our method can be readily used to employ privileged
information for the instances in all training bags.

3.2 MIL Using Privileged Information

MILmethods can be generally classified into bag-level methods [7,5] and instance-
level methods [1,33]. Since bag-level methods are generally fast and effective, we
focus on bag-level methods in this paper. Specifically, we take the bag-level MIL
method sMIL [5] as a showcase to explain how to exploit privileged information
from loosely labeled training data. We refer to our new method as sMIL-PI.
By transforming each training bag to one training sample, the MIL problem
becomes a supervised learning problem [5], because the labels of training bags
are known. Such a strategy can also be applied in our sMIL-PI method.

SVM+: Before describing our sMIL-PI method, we briefly introduce the
existing work SVM+. Let us denote the training data as {(xi, x̃i, yi)|ni=1}, where
xi is main feature for the i-th training sample, x̃i is the corresponding feature
representation of privileged information which is not available for testing data,
yi ∈ {+1,−1} is the class label, and n is the total number of training samples.
The goal of SVM+ [42] is to learn the classifier f(x) = w′φ(x) + b, where φ(·)
is a nonlinear feature mapping function. Let us define another nonlinear feature
mapping function φ̃(·) for privileged information, and the objective of SVM+ is
as follows,

min
w̃,b̃,w,b

1

2

(‖w‖2 + γ‖w̃‖2)+ C
n∑

i=1

ξ(x̃i), (2)

s.t. yi(w
′φ(xi) + b) ≥ 1− ξ(x̃i), ξ(x̃i) ≥ 0, ∀i,

where γ and C are the tradeoff parameters, ξ(x̃i) = w̃′φ̃(x̃i) + b̃ is the slack
function, which replaces the slack variable ξi ≥ 0 in the hinge loss in SVM. Such
a slack function plays a role of the teacher in the training process [42]. Recall the
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slack variable ξi in SVM tells about how difficult to classify the training sample
xi. The slack function ξ(xi) is expected to model the optimal slack variable ξi by
using privileged information analogous to the comments and explanations from
the teacher in human learning [42]. Similar to SVM, SVM+ can be solved in the
dual form by optimizing a quadratic programming problem.

sMIL-PI: Let us denote ψ(Bl) as the feature mapping function which converts
a training bag into a single feature vector. The feature mapping function in sMIL
is defined as the mean of instances inside the bag, i.e., ψ(Bl) =

1
|Bl|

∑
i∈Il

φ(xi),

where |Bl| is the cardinality of the bag Bl. Recall the labels for negative instances
are assumed to be negative, so we only apply the feature mapping function on
the positive training bags. For ease of presentation, we denote a set of virtual
training samples {zj |mj=1}, in which z1, . . . , zL+ are the samples mapped from

the positive bags {ψ(Bj)|L+

j=1}, the remaining samples zL++1, . . . , zm are the
instances {φ(xi)|i ∈ Il, Yl = −1} in the negative bags.

When there are additional privileged information for training data, we ad-
ditionally define a feature mapping function ψ̃(Bl) on each training bag as
the mean of the instances inside the bag by using privileged information, i.e.,
z̃j = ψ̃(Bj) =

1
|Bj|

∑
i∈Ij

φ̃(x̃i) for j = 1, . . . , L+. Based on the SVM+ formula-

tion, the objective of our sMIL-PI can be formulated as,

min
w,b,w̃,b̃,η

1

2

(‖w‖2 + γ‖w̃‖2)+ C1

L+∑
j=1

ξ(z̃j) + C2

m∑
j=L++1

ηj , (3)

s.t. w′zj + b ≥ pj − ξ(z̃j), ∀j = 1, . . . , L+, (4)

w′zj + b ≤ −1 + ηj , ∀j = L+ + 1, . . . ,m, (5)

ξ(z̃j) ≥ 0, ∀j = 1, . . . , L+, (6)

ηj ≥ 0, ∀j = L+ + 1, . . . ,m (7)

where w and b are the variables of the classifier f(z) = w′z + b, γ, C1 and C2

are the tradeoff parameters, η = [ηL++1, . . . , ηm]′, the slack function is defined

as ξ(z̃j) = w̃′z̃j + b̃, and pj is the virtual label for the virtual sample zj . In
sMIL [5], the virtual label is calculated by leveraging the instance labels of
each positive bag. As sMIL assumes that there is at least one true positive
sample in each positive bag, the virtual label of positive virtual sample zj is

pj =
1−(|Bj|−1)

|Bj| =
2−|Bj |
|Bj| . Similarly, for our sMIL-PI using the generalized MIL

constraints in (1), we can derive it as pj =
σ|Bj |−(1−σ)|Bj |

|Bj | = 2σ − 1.

By introducing dual variable α = [α1, . . . , αm]′ for the constraints in (4) and
(5), and also introducing dual variable β = [β1, . . . , βL+ ]′ for the constraints in
(6), respectively, we arrive at the dual from of (3) as follows,

min
α,β

−p′α+
1

2
α′(K ◦ yy′)α+

1

2γ
(α̂+ β − C11)

′K̃(α̂+ β − C11), (8)

s.t. α′y = 0, 1′(α̂+ β − C11) = 0, ᾱ ≤ C21, α ≥ 0, β ≥ 0,
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where α̂ ∈ R
L+

and ᾱ ∈ R
m−L+

are from α = [α̂′, ᾱ′]′, y = [1′
L+ ,−1′

m−L+]′

is the label vector, p = [p1, . . . , pL+ ,1′
m−L+ ]′ ∈ R

m, K ∈ R
m×m is the kernel

matrix constructed by using the visual features, K̃ ∈ R
L+×L+

is the kernel
matrix constructed by using privileged information (i.e., the textual features).
The above problem is jointly convex in α and β, which can be efficiently solved
by optimizing a quadratic programming problem.

3.3 Domain Adaptive MIL-PI

The collected web images may have very different statistical properties with the
test images (e.g., the images in the Caltech-256 dataset), which is also known
as the dataset bias problem [39]. To reduce domain distribution mismatch, we
proposed an effective method by re-weighting the source domain samples when
learning the sMIL-PI classifier. In the following, we develop our domain adap-
tation method, which is referred as sMIL-PI-DA.

Inspired by Kernel Mean Matching (KMM) [26], we also propose to learn
the weights for the source domain samples by minimizing Maximum Mean Dis-
crepancy (MMD) between two domains. However, KMM is a two-stage method,
in which they first learn the weights for the source domain samples and then
utilize the weights to train a weighted SVM. Though the recent work [8] pro-
posed to combine the primal formulation of weighted-SVM and a regularizer
based on the MMD criterion, their objective function is non-convex. Thus the
global optimal solution cannot be guaranteed. To this end, we propose a con-
vex formulation by adding the regularizer based on the MMD criterion to the
dual formulation of our sMIL-PI in (8). Formally, let us denote the target do-
main samples as {xt

i|nt

i=1}, and also denote zti = φ(xt
i) as the corresponding

nonlinear feature. To distinguish the two domains, we append a superscript
s to the source domain samples, i.e., {zsi |mi=1} is the set of source domain
virtual samples used in our sMIL-PI-DA. We denote the objective in (8) as
H(α,β) = −p′α + 1

2α
′(K ◦ yy′)α + 1

2γ (α̂ + β − C11)
′K̃(α̂ + β − C11) and

also denote the weights for source domain samples as θ = [θ1, . . . , θm]′. Then,
we formulate our sMIL-PI-DA as follows,

min
α,β,θ

H(α,β) +
μ

2
‖ 1

m

m∑
i=1

θiz
s
i −

1

nt

nt∑
i=1

zti‖2 (9)

s.t. α′y = 0, 1′(α̂+ β − C11) = 0, ᾱ ≤ C21, β ≥ 0 (10)

0 ≤ α ≤ C3θ, 1′θ = m, (11)

where C3 is a parameter and θi is the weight for zsi . The last term in (9) is
a regularizer based on the MMD criterion which aims to reduce the domain
distribution mismatch between two domains by reweighting the source domain
samples as in KMM, and the constraints in (10) are from sMIL-PI. Note in (11),
we use the box constraint 0 ≤ α ≤ C3θ to regularize the dual variable α, which
is similarly used in weighted SVM [26]. The second constraint 1′θ = m is used to
enforce the expectation of sample weights to be 1. The problem in (9) is jointly
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convex with respect to α, β and θ, and thus we can obtain the global optimum
by optimizing a quadratic programming problem.

Interestingly, the primal form of (9) is closely related to the formulation of
SVM+, as described below,

Proposition 1. The primal form of (9) is equivalent to the following problem,

min
w,b,w̃,b̃,ŵ,b̂,η

J(w, b, w̃, b̃,η) +
λ

2
‖ŵ− ρv‖2 + C3

m∑
i=1

ζ(zsi ), (12)

s.t. w′zsi + b ≥ pi − ξ(z̃si )− ζ(zsi ), ∀i = 1, . . . , L+, (13)

w′zsi + b ≤ −1 + ηi + ζ(zsi ), ∀i = L+ + 1, . . . ,m, (14)

ξ(z̃si ) ≥ 0, ∀i = 1, . . . , L+, (15)

ηi ≥ 0, ∀i = L+ + 1, . . . ,m, (16)

ζ(zsi ) ≥ 0, ∀i = 1, . . . ,m, (17)

where J(w, b, w̃, b̃,η) = 1
2

(‖w‖2 + γ‖w̃‖2)+C1

∑L+

j=1 ξ(z̃
s
j)+C2

∑m
j=L++1 ηj is

the objective function in (3), ζ(zsi ) = ŵ′zsi + b̂, v = 1
m

∑m
i=1 z

s
i − 1

nt

∑nt

i=1 z
t
i,

λ = (mC3)
2

μ and ρ = mC3

λ .

Proof. We prove the dual form of (12) can be equivalently rewritten as (9). Let us

introduce the dual variables α̂ = [α1, . . . , αL+ ]′ ∈ R
L+

for the constraints in (13),

ᾱ = [αL++1, . . . , αm]′ ∈ R
m−L+

for the constraints (14), β = [β1, . . . , βL+ ]′ ∈
R

L+

for the constraints in (15), τ = [τ1, . . . , τm−L+ ]′ ∈ R
m−L+

for the con-
straints in (16), and ν = [ν1, . . . , νm]′ for the constraints in (17). We also define
α = [α̂′, ᾱ′]′, Z = [zs1, . . . , z

s
m], Z̃ = [z̃s1, . . . , z̃

s
L+ ], and y = [1′

L+ ,−1′
m−L+]′.

By setting the derivatives of the Lagrangian of (12) w.r.t. w, b, w̃, b̃, ŵ, b̂,η to
zeros and substituting the derived equations back into the Lagrangian of (12),
we obtain the following dual form,

min
α,β,ν

−p′α+
1

2
α′(K ◦ yy′)α+

1

2γ
(α̂+ β − C11)

′K̃(α̂+ β − C11) (18)

+
1

2λ
(α+ ν − C31m)′K(α+ ν − C31m) + ρv′Z(α+ ν − C31m)

s.t. α′y = 0, 1′
L+(α̂+ β − C11L+) = 0, ᾱ ≤ C21m−L+ ,

1′
m(α+ ν − C31m) = 0, α,β,ν ≥ 0.

Let us define θ = 1
C3

(α + ν), and the feasible set for (α,β,ν) becomes
A = {α′y = 0,1′

L+(α̂ + β − C11L+) = 0, ᾱ ≤ C21m−L+ ,1′
mθ = m,α ≤

C3θ,α,β ≥ 0}, then we arrive at,

min
(α,β,θ)∈A

−p′α+
1

2
α′(K ◦ yy′)α+

1

2γ
(α̂+ β − C11)

′K̃(α̂+ β − C11) (19)

+
(C3)

2

2λ
(θ − 1m)′K(θ − 1m) + ρC3v

′Z(θ − 1m).
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Recall that we have defined λ = (C3m)2

μ and ρ = C3m
λ = μ

C3m
. By substituting

the equation v′Z = 1
m1′

mK − 1
nt
1′
nt
Kts into the objective and replacing the

constant terms with μ
2n2

t
1′
nt
Kt1nt , where Kts ∈ R

nt×m is the kernel matrix

between the target domain samples and the source domain samples, and Kt ∈
R

nt×nt is the kernel matrix on the target domain samples, then the optimization
problem in (19) finally becomes,

min
(α,β,θ)∈A

H(α,β) +
μ

2
‖ 1

m

m∑
i=1

θiz
s
i −

1

nt

nt∑
i=1

zti‖2, (20)

where H(α,β) is defined as in (9). We complete the proof here.

Compared with the objective function in (3), we introduce one more slack

function ζ(zsi ) = ŵ′zsi + b̂, and also regularize the weight vector of this slack
function by using the regularizer ‖ŵ− ρv‖2. Recall that the witness function in
MMD is defined as g(z) = 1

‖v‖v
′z [23], which can be deemed as the mean sim-

ilarity between z and the source domain samples (i.e., 1
m

∑m
i=1 z

s
i
′z) minus the

mean similarity between z and the target domain samples (i.e., 1
nt

∑nt

i=1 z
t
i
′
z). In

other words, we conjecture that the witness function outputs a lower value when
the sample z is closer to the target domain samples and vice versa. By using the
regularizer ‖ŵ− ρv‖2, we expect the new slack function ζ(zsi ) = ŵ′zsi + b̂ shares
the similar trend2 with the witness function g(zsi ) =

1
‖v‖v

′zsi . As a result, the

training error of the training sample zsi (i.e., ξ(z̃si ) + ζ(zsi ) for the samples in
positive bags or ηi + ζ(zsi ) for negative samples) will tend to be lower if it is
closer to the target domain, which is helpful for learning a more robust classifier
to better predict the target domain samples.

4 Experiments

In this section, we evaluate our method sMIL-PI for image retrieval and image
categorization, respectively. Then we demonstrate the effectiveness of our domain
adaptation method sMIL-PI-DA for image categorization.

We extract both textual features and visual features from the training web
images. The textual features are used as privileged information.

– Textual feature: A 200-dim term-frequency (TF) feature is extracted for
each image by using the top-200 words with the highest frequency as the vo-
cabulary. Stop-word removal is performed to remove the meaningless words.

– Visual feature: We extract DeCAF features [10], which has shown promis-
ing performance in various tasks. Following [10], we use the outputs from
the 6th layer as visual features, which leads to 4, 096-dim DeCAF6 features.

In all our experiments for image retrieval and image categorization, the test data
does not contain textual information. So we can only extract the same type of
visual features (i.e., DeCAF6 features) for the images in the test set.

2 The bias term b̂ and the scalar terms ρ and 1
‖v‖ will not change the trend of functions.
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4.1 Image Retrieval

Baselines: For image retrieval, we firstly compare our proposed method with
two sets of baselines: the recent LUPI methods including pSVM+ [42] and Rank
Transfer (RT) [38], as well as the conventional MIL method sMIL [5]. We also
include SVM as a baseline, which is trained by only using the visual features.
Moreover, we also compare our method with Classeme [41] and multi-view learn-
ing methods KCCA and SVM-2K, because they can also be used for our appli-
cation.

– Kernel Canonical Correlation Analysis (KCCA) [25]: We apply KCCA on
the training set by using the textual features and visual features, and then
train the SVM classifier by using the common representations of visual fea-
tures. In the testing process, the visual features of test samples are trans-
formed into their common representations for the prediction.

– SVM-2K [16]: We train the SVM-2K classifiers by using the visual features
and text features from the training samples, and apply the visual feature
based classifier on the test samples for the prediction.

– Classeme [41]: For each word in the 200-dim textual features, we retrieve
relevant and irrelevant images to construct positive bags and negative bags,
respectively. Then we follow [30] to use mi-SVM to train the classeme clas-
sifier for each word. For each training image and test image, 200 decision
values are obtained by using 200 learnt classeme classifiers and the decision
values are augmented with the visual features. Finally, we train the SVM
classifiers for classifying the test images based on the augmented features.

We also compare our method with MIML [44]. While we treat the top 200 words
in the textual descriptions as noisy class labels, MIML cannot be directly applied
to our task because the 200 words are not as the same as the concepts names.
Thus, we use the decision values from the MIML classifiers as the features,
similarly as in Classeme.

Experimental Settings. We use two web image datasets NUS-WIDE [9] and
WebQuery [28] to evaluate our sMIL-PI method for image retrieval [43,33].

The NUS-WIDE dataset contains 269, 648 images, which is officially split
into a training set (60%) and a test set (40%). All images in NUS-WIDE are
associated with noisy tags, which are also manually annotated as 81 concepts.
The WebQuery dataset contains 71, 478 web images retrieved from 353 textual
queries. Each image in WebQuery is associated with textual descriptions in En-
glish or other languages (e.g., French). In this work, we only use the images
associated with English descriptions, and divide those images into a training
set (60%) and a test set (40%). The textual queries with less than 100 training
images are discarded. Finally, we obtain 19, 665 training images and 13, 114 test
images from 163 remaining textual queries on the WebQuery dataset.

For both datasets, we train the classifiers using the training set and evalu-
ate the performances of different methods on the test set. For the NUS-WIDE
dataset, we follow [33] to construct 25 positive bags and 25 negative bags by
respectively using relevant and irrelevant images, in which each training bag
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Table 1. MAPs (%) of different methods for image retrieval. The results in boldface
are from our method.

Method
Dataset

NUS-WIDE WebQuery

SVM 54.41 48.51
pSVM+ 57.92 50.35

RT 42.63 31.92
Classeme 54.14 48.48
MIML 54.23 48.56

KCCA 54.62 47.86
SVM-2K 54.43 49.04

sMIL 56.72 51.42
sMIL-PI 60.88 52.63

contains 15 instances. We strictly follow [33] to uniformly partition the ranked
relevant images into bags. For the WebQuery dataset, we use the retrieved images
from each textual query to construct the positive bags, and randomly sample
the same number of images from other queries to construct the negative bags.
Considering only about 100∼ 150 training images are retrieved from each tex-
tual query, we set the bag size as 5 to construct more training bags. Note the
ground truth labels of training images are not used in the training process for
both datasets. The positive ratio is set as σ = 0.6, as suggested in [33]. In our
experiments, we use Gaussian kernel for visual features and linear kernel for
textual features for our method and the baseline methods except RankTransfer
(RT). The objective function of RT is solved in the primal form, so we can only
use linear kernel instead of Gaussian kernel for visual features.

Considering the users are generally more interested in the top-ranked images,
we use Average Precision (AP) based on the 100 top-ranked images for perfor-
mance evaluation as suggested in [33]. The mean of APs (MAP) over all classes
is used to compare different methods. We empirically fix C1 = C2 = 1 and
γ = 10 for our method. For baseline methods, we choose the optimal parameters
according to their MAPs on the test dataset.

Experimental Results. The MAPs of all methods are shown in Table 1. By
exploiting the additional textual features, pSVM+ outperforms SVM. The multi-
view learning methods KCCA and SVM-2K are also comparable or better than
SVM. RankTransfer (RT) is much worse than SVM, possibly because it can only
use the linear kernel. We also observe that Classeme and MIML only achieve com-
parable results with SVM. The sMIL method outperforms SVM, which demon-
strates it is beneficial to cope with label noise by using sMIL.

Our method is better than SVM, the existing LUPI methods pSVM+ and RT,
Classeme, MIML, and multi-view learning methods KCCA and SVM2K, which
demonstrates the effectiveness of our sMIL-PI method for image retrieval by cop-
ing with loosely labeled web data and simultaneously taking advantage of the
additional textual features as privileged information. Our sMIL-PI method also
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Table 2. The left subtable lists the MAPs (%) of different methods without using
domain adaptation. The right subtable reports the MAPs (%) of SVM, sMIL-PI and
different domain adaptation methods. For SA, TCA, DIP, KMM, GFK and SGF, the
first number is obtained by using the SVM classifiers and the second number in the
parenthesis is obtained by using our sMIL-PI. The results in boldface are from our
methods.

Method
Training Set

NUS-WIDE Flickr

SVM 65.33 31.41
pSVM+ 66.61 35.84

RT 55.53 19.09
Classeme 66.58 34.57
MIML 66.66 34.60

KCCA 65.94 35.69
SVM-2K 66.61 35.09

sMIL 67.73 35.26
sMIL-PI 68.55 39.49

Method
Training Set

NUS-WIDE Flickr

SVM 65.33 31.41
sMIL-PI 68.55 39.49

sMIL-PI-DA 70.56 41.35

DASVM 67.96 33.52
STM 65.73 28.52

SA 56.13(68.73) 30.15(39.61)
TCA 61.28(66.64) 27.91(37.57)
DIP 61.08(65.32) 26.49(35.16)
KMM 60.32(68.78) 32.08(37.85)
GFK 62.98(64.60) 23.90(29.24)
SGF 66.29(68.57) 30.08(37.46)

outperforms its corresponding conventional MIL method sMIL. It again demon-
strates it is beneficial to exploit the textual features as privileged information
for training a more robust visual feature based classifier.

4.2 Image Categorization without Domain Adaptation

For image categorization without considering domain distribution mismatch, we
use the same baselines as in image retrieval.

Experimental Settings. We evaluate our sMIL-PI method for image catego-
rization on the benchmark dataset Caltech-256 [24]. We use the training set of
NUS-WIDE as the training data. Considering different datasets contain differ-
ent class names, we use their common class names for performance evaluation.
Specifically, there are 17 common class names between NUS-WIDE and Caltech-
256. We use the images from these 17 common classes as the test images. In total,
we have 2, 620 test images for performance evaluation.

Since most of the class names in the WebQuery dataset consist of multiple
words, it is ambiguous to define common classes betweenWebQuery and Caltech-
256. So we do not use WebQuery as the training set here. Instead, we construct
a new training dataset called “Flickr”, in which we crawl 142, 081 Flickr images
using the class names in Caltech-256 as the queries. The whole Caltech-256
dataset which contains 29, 780 images is used as the test set for performance
evaluation. This setting is more challenging because we have a large number of
classes and test images.

We use Average Precision (AP) based on all test images for performance
evaluation. The mean of APs (MAP) over all classes is used to compare different
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methods. For our method, we use the same parameters as in image retrieval. For
the baseline methods, we choose the optimal parameters based on their MAPs
on the test dataset.

Experimental Results. The MAPs of all methods are reported in the left
subtable of Table 2. As in the image retrieval application, pSVM+ is better than
SVM and RT is worse than SVM. Moreover, sMIL outperforms SVM. Classeme,
MIML, and Multi-view learning methods KCCA and SVM-2K are also better
than SVM.

We observe that our method sMIL-PI is better than SVM, pSVM+, RT,
Classeme, MIML and multi-view learning methods, which clearly demonstrates
the effectiveness of our method sMIL-PI for image categorization. Moreover,
our method sMIL-PI is better than its corresponding conventional MIL method
sMIL, which again demonstrates it is beneficial to exploit the additional textual
features as privileged information.

4.3 How to Utilize Privileged Information

As discussed in Section 3, in our sMIL-PI method, we use privileged information
for relevant images (i.e., positive bags) only, because privileged information (i.e.,
textual features) may not be always reliable. To verify it, we evaluate SVM+ by
utilizing privileged information for all training samples.

We report the results for image retrieval and image categorization by using
NUS-WIDE as the training set. The MAPs of SVM+ and pSVM+ are 54.95%
and 57.92% (resp., 64.29% and 66.61%) for image retrieval (resp., image cate-
gorization), which demonstrates the advantage of only utilizing privileged infor-
mation for positive training bags.

4.4 Image Categorization with Domain Adaptation

Baselines. We compare our domain adaptation method sMIL-PI-DA with the
existing domain adaptation methods GFK [21], SGF [22], SA [18], TCA [36],
KMM [26], DIP [2], DASVM [4] and STM [8]. We notice that the feature-based
domain adaptation methods such as GFK, SGF, SA, TCA, DIP can be combined
with the SVM classifier or our sMIL-PI method, so we report two results by using
the SVM classifier and our sMIL-PI classifier for these methods.

Experiment Settings. We use the same setting as in Section 4.2. sMIL-PI-DA
has two more parameters (i.e., C3 and λ) when compared with sMIL-PI. We
empirically fix C3 as 10 and λ as 104. For the baseline methods, we choose the
optimal parameters based on their MAPs on the test dataset.

Experimental Results. The MAPs of all methods by using NUS-WIDE and
Flickr as the training datasets are reported in the right subtable of Table 2.

The existing feature-based domain adaptation methods GFK, SGF, SA, TCA,
DIP by using the SVM (resp., sMIL-PI) classifier are generally comparable or
even worse when compared with SVM (resp., sMIL-PI). One possible explana-
tion is the feature distributions of web images and the images from Caltech-256
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are quite different. For these feature-based baselines, their results after using
sMIL-PI classifier are better when compared with those using SVM classifier,
which again shows the effectiveness of our sMIL-PI for image categorization by
coping with label noise and simultaneously taking advantage of the additional
textual features as privileged information. Moreover, DASVM is better than
SVM, possibly because it can better utilize noisy training samples by progres-
sively removing some source domain samples during the training process.

Our method is more related to KMM and STM. We also report two results
for KMM because KMM can be combined with SVM or our sMIL-PI, in which
the instance weights are learnt in the first step and we use the learnt instance
weights to reweight the loss function of SVM or sMIL-PI in the second step. We
observe that our method is better than STM and KMM with SVM or sMIL-PI,
because our method can solve for the global solution while KMM is a two-step
approach and STM can only achieve a local optimum.

We also observe that our method sMIL-PI-DA outperforms sMIL-PI and all
the existing domain adaptation baselines, which demonstrates the advantage of
our domain adaptation method sMIL-PI-DA.

5 Conclusion

In this paper, we have proposed a new method sMIL-PI for image categorization
by learning from web data. Our method not only takes advantage of the addi-
tional textual features in training web data but also effectively copes with noise
in the loose labels of relevant training images. We also extend sMIL-PI to handle
the distribution mismatch between the training and test data, which leads to our
new domain adaptation method sMIL-PI-DA. Extensive experiments for image
retrieval and image categorization clearly demonstrate the effectiveness of our
newly proposed methods by exploiting privileged information from web data.
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