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Abstract. Most of the existing approaches for RGB-D indoor scene la-
beling employ hand-crafted features for each modality independently and
combine them in a heuristic manner. There has been some attempt on di-
rectly learning features from raw RGB-D data, but the performance is not
satisfactory. In this paper, we adapt the unsupervised feature learning
technique for RGB-D labeling as a multi-modality learning problem. Our
learning framework performs feature learning and feature encoding simul-
taneously which significantly boosts the performance. By stacking basic
learning structure, higher-level features are derived and combined with
lower-level features for better representing RGB-D data. Experimental re-
sults on the benchmarkNYUdepth dataset show that ourmethod achieves
competitive performance, compared with state-of-the-art.

Keywords: RGB-D scene labeling, unsupervised feature learning, joint
feature learning and encoding, multi-modality.

1 Introduction

Scene labeling is an integral part of scene understanding and involves densely
assigning a category label to each pixel in an image. Most previous scene labeling
work dealt with outdoor scenarios [1,2,3,4,5,6]. Comparatively, indoor scenes
are more challenging due to a number of factors: relative poor light condition,
messy object distribution, and large variance of features for objects in different
scene types. However, low-cost RGB-D cameras such as the Kinect can be used
on indoor scenes to provide both color and depth measurements, leading to
improvements in accuracy and robustness of labeling.

Hand-crafted features were used in several previous works on RGB-D scene
labeling. These include the use of SIFT [7], KDES (kernel descriptors) [8] and
other sophisticated features [9]. However, the accuracy of such feature extrac-
tors is highly dependent on variations in hand-crafting and combinations, and
thus hard to systematically extend to different modalities. In addition, features
are often designed for RGB and depth independently, with the shared informa-
tion between RGB and depth left unexploited. Inspired by the recent success of
unsupervised feature learning technique in many applications including object
recognition [10] and action recognition [11], we propose to adapt the existing un-
supervised feature learning technique to directly learn features from multi-modal
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Fig. 1. Our framework for RGB-D indoor scene labeling. Our method learns features
from raw RGB-D input with two-layer stacking structure. Features of the two layers
are concatenated to train linear SVMs over superpixels for labeling task.

raw data in RGB-D indoor scene labeling so as to avoid the problem of hand-
crafting features. To the best of our knowledge, very few works have applied
feature learning for RGB-D indoor scene labeling. Recently, supervised feature
learning method [12], convolutional neural networks (CNN), is used for RGB-D
feature learning. In another work [13], pixels of patches are encoded with selected
example patches. Both of these two methods obtain limited performance.

The approach proposed in this paper attempts to learn visual patterns from
RGB and depth in a joint manner via an unsupervised learning framework. This
is illustrated in Figure 1. At the heart of our unsupervised learning algorithm,
we perform feature learning and feature encoding jointly in a two-layer stacked
structure. A dense sampling of patches is initially obtained from RGB-D images,
forming the input into the learning structure. The output of the learning is a
collection of superpixels, in which each superpixel represents a combination of
features obtained from all patches whose centers fall into the catchment region of
the superpixel. Subsequently, linear SVMs are trained to map superpixel features
to scene labels.

2 Related Work

2.1 Scene Labeling

Early work on scene labeling focused on outdoor color imagery, and typically
used CRF or MRF. The nodes of the graphical models were pixels [14,15], super-
pixels [1,4] or a hierarchy of regions [2]. Local interactions between nodes were
captured by pairwise potentials, while unary potentials were used to represnt
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image observations, via features such as SIFT [16] and HOG [17]. An alterna-
tive inference framework was presented in [3], in which a very efficient recursive
neural network (RNN) was used to greedily merge neighboring superpixels ac-
cording to a learned scoring function. In a departure from the earlier approaches
involving hand-crafted feature extraction, Grangier et al. [5] used convolutional
networks for scene labeling. Farabet et al. [6] later adopted multiscale convo-
lutional networks to automatically learn low and high-level textures as well as
shape features from raw pixels, and further proposed the “purity” of class dis-
tributions as an optimization goal, in order to maximize the likelihood that each
segment contained only one object. They achieved state-of-the-art performance
on the commonly used Stanford Background [18] and SIFT Flow datasets [19].

Indoor scene labeling is a harder problem, but is recent more accessible with
the advent of affordable RGB-D cameras such as Kinect. Silberman and Fergus
[7] released a large-scale RGB-D dataset containing 7 scene types and 13 se-
mantic labels. They employed RGB-D SIFT and 3D location priors as features
and used MRFs to ensure contextual consistency. Koppula et al. [20] achieved
high accuracy on semantic labeling of point clouds through a mixed integer
optimization method. They however require the extraction of richer geometry
features from 3D+RGB point clouds rather than the more limited height field
from a single RGB-D image, and also depend on a computationally intensive
optimization process with long running time. In an extension to Silberman and
Fergus’s work, Ren et al. [8] evaluated six kernel descriptors and chose four.
Additionally, more comprehensive geometry features of superpixels were added
to further boost performance. With these features, they achieved state-of-the-
art performance on the NYU depth dataset V1. Recently, Cadena and Kosecka
[9] proposed various new features including entropy for associating superpixel
boundaries to vanishing points, and neighborhood planarity. A CRF is applied
to the superpixels to obtain final scene labels. These methods mentioned require
manual fine-tuning in feature design and also in the way that different features
are combined. To reduce the dependency on hand-crafted features, Couprie et
al. [12] applied the convolutional neural network method of Farabet et al. [6] to
indoor RGB-D scene labeling. The depth data was treated as an additional chan-
nel besides RGB, and a multiscale convolutional network was used to ensure the
features captured a larger spatial context. Although this method was demon-
strated to be effective for outdoor scenes, the performance on RGB-D indoor
scenes is much less satisfactory. Pei et al. [13] learned features by projecting raw
pixels of patches onto selected example patches. Such an encoding method may
not be powerful enough since the input raw pixel values are usually redundant
and noisy.

2.2 Feature Learning

Feature learning has been applied to action recognition [11], handwritten digits
recognition [21] and image classification [10,22,23]. It is also a central aspect of
the RGB-D labeling framework in this paper, in which we jointly consider the
two modalities of color and depth.
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A number of previous work also applied feature learning to data with multiple
modalities. Potamianos et al. [24] applied it to audio-visual speech recognition.
Ngiam et al. [25] proposed a framework to train deep networks over multiple
modalities (video and audio) using RBM (Restricted Boltzmann Machines) as
basic learning units. Their method focused on learning better features for one
modality when multiple modalities were present. Socher et al. [26] treated color
and depth information as two modalities in object classification problem. Each
modality was processed separately, wherein low-level features were extracted
using a single-layer CNN and combined using RNN. Finally features from two
modalities were concatenated together. However as their framework was designed
only for determining a single label for each image, and did not involve classifying
different regions in an image, it was not suitable for the scene labeling task in
this paper.

3 Approach

3.1 Single-Layer Feature Learning Structure

Our approach is based on the unsupervised feature learning algorithm [10], which
is to minimize the following objective function

minimize
W

∥
∥WTWZ − Z

∥
∥
2

2
+ λ1g(WZ) (1)

where Z is a set of d-dimensional raw input data vectors, i.e. Z = [z1, · · · zm] ∈
R

d×m,W ∈ R
d′×d is the transformmatrix which projects Z into a d′-dimensional

feature space, g is the smooth L1 penalty function [10], and λ1 is a tradeoff factor.
Eq. (1) essentially is to seek the transformation matrix W that can minimize
the reconstruction error (first term) and the penalty of the approximated or-
thonormal constraint (second term). The transform matrix W ∈ R

d′×d is often
chosen to be overcomplete, i.e. d′ > d, for better performance, as demonstrated
in the study [27]. Note that Z has gone through the whitening preprocess, i.e.
the input data vectors are linearly transformed to have zero mean and identity
covariance [10]. Such unsupervised feature learning method has been proven to
be successful in the application of object recognition [10].

Here, we adopt Eq. (1) to learn multi-modality features for RGB-D scene
labeling. Instead of learning W for color and depth information separately, we
consider different modalities jointly and their relationship is implicitly reasoned.
In particular, let X = [x1, · · ·xm] ∈ R

d1×m denote the input RGB vectors, and
Y = [y1, · · · ym] ∈ R

d2×m denote the input depth vectors. Then, Z in Eq. (1) is
simply formed by cascading color and depth information as Z = [X ;Y ] ∈ R

d×m

(d = d1 + d2).
Moreover, the previous methods [11,28] show that better performance can

be achieved by further applying feature encoding over the learned features to
build “bag of words” type features. However, they perform feature learning and
feature encoding separately. It is clear that there is inconsistency between these
two components, i.e. feature learning is not optimized for feature encoding and
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vice versa. Thus, in this paper, we propose to perform feature learning and
feature encoding in a joint framework with the following objective function:

minimize
W,V,U

∥
∥WTWZ − Z

∥
∥
2

2
+ λ1g(WZ) + λ2 ‖WZ − UV ‖22 + λ3|V |1

subject to ‖uk‖2 ≤ 1, k = 1, 2, . . . ,K.
(2)

where U = [u1, · · ·uK ] ∈ R
d′×K represents the dictionary which has K bases,

and V denotes the feature encoding coefficients. Compared with Eq. (1), the
newly added two terms in Eq. (2) aim to find sparse feature representation for
the learned featureWZ. At the same time, there is a L2-norm constraint for uk to
avoid trivial solutions which just scale down V and scale up U . By jointly learning
W , V and U in Eq. (2), we integrate feature learning and feature encoding into
a coherent framework. With the optimized W , transformed data WZ could be
encoded by more descriptive dictionary U and the final features V become more
efficient.

Optimization Process. In the proposed unsupervised feature learning Eq. (2),
we need to optimize W , U and V together. We solve this problem by updating
three variables iteratively.W , U and V are initialized randomly. Given a training
data matrix Z, we first fix U and V , the cost function can then be minimized
by using the unconstrained optimizer (e.g. L-BFGS [29], CG [29]) to update W .
When fixing W and U , similar to the sparse coding work [22], Eq. (2) becomes
a linear regression problem with regularization on the coefficients, which can be
solved efficiently by optimization over each coefficient vm with the feature-sign
search algorithm [30]. At last, when W and V are fixed, it becomes a least square
problem with quadratic constraints, which can be easily solved. The optimization
process is shown in Algorithm 1.

3.2 Hierarchical Structure

What we present in section 3.1 is just one-layer feature learning structure. Con-
sidering that there exists multi-level information in visual data such as intensity,
edge, object, etc [31], it is often preferred to learn hierarchical features so as
to describe low-level and high-level properties simultaneously. In our case, we
can stack the single-layer feature learning structure to capture the higher-level
features. Particularly, we first learn the low-level features using the single-layer
structure. Then, the output of the low-level structure is treated as raw data input
for the higher level. Considering the output of the first-layer learning structure
is of high dimension, PCA is used to reduce its dimension so that the same
structure can be reused for the high-layer feature learning. In the stacked struc-
ture, the input Z of higher level would contain lower-level features from the two
modalities produced by the lower-level feature learning.
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Input: Raw data from multiple modalities: Z

Output: Transformation matrix W , Dictionary U , Sparse encoding V

Step 1: Initialization.

W , U and V are randomly initialized ;

Step 2: Iteratively optimize over W , U and V .

while iter ≤ max iter do

Fix U and V :
Solved by unconstrained optimizer L-BFGS and update W

Fix W and U :
A linear regression problem over V with L1 norm regularization on the
coefficients.

Optimized by feature-sign search algorithm and update V

Fix W and V :
A least square problem with quadratic constraints over U

Optimized by Lagrange dual and update U
end

Algorithm 1: Optimization process

3.3 Application in RGB-D Scene Labeling

In the RGB-D scene labeling application, when the input data has large size,
the learning process becomes less efficient. To address this, we make use of small
patch features to represent big patches. Our main framework for RGB-D labeling
is as follows. We first run our unsupervised learning on randomly sampled small
patches (s× s) to learn the optimal transform matrix W and the dictionary U .
Then, for each densely sampled big patch (S × S, S > s), with the obtained
W and U we derive the feature vector V for its overlapped s× s small patches.
Features of S × S patches are then obtained by concatenating all its overlapped
s× s patches’ features together. Finally, superpixel technique is incorporated to
ensure that pixels in the same superpixel take the same label.

Fig. 2 shows the detailed first-layer feature extraction process. In particular,
we extract input raw data from two different modalities (color and depth). We
convert the color image to grayscale. At the beginning, m s × s RGB-D small
image patches are randomly sampled. For each s × s small patch, X is s2-d
raw color data by flatting the patch into a vector. The same goes for raw depth
data Y . Concatenating them together, we have Z, 2s2-d data. For each S × S
big patch, there are (S − s + 1)2 s × s small patches. After the unsupervised
feature learning process, a small patch is then represented by a sparse vector
V (K-dimensional) computed from W and U . Concatenating the features of
(S − s + 1)2 small patches together, we obtain the features of a big patch. To
avoid over-fitting caused by the high dimensionality of the big patch features,
we use max-pooling to reduce the dimensionality.
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Fig. 2. Detailed illustration of feature extraction of the first layer: s × s color and
depth patches are flatted to vectors X and Y . Z is the feature vector obtained by
concatenating X and Y . With learned filter matrix W and dictionary U , the sparse
encoding coefficients V can be derived, which represents the feature of a s × s patch.
By concatenating the features of (S − s + 1)2 s × s small patches, we get the feature
of a S × S big patch.

To capture higher-level features, we stack two above single-layer structure
together. Fig. 3 shows the two-layer feature learning structure, where the output
features of the first layer are used as the input for the second layer. Specifically,
the first-layer output feature vectors are further processed through dimension
reduction by PCA so that the vectors could be resized to S × S data patches.
Same as the first layer, s × s small patches in these S × S big patches are
sampled as training data of the second layer. After the learning process of the
second layer, these S × S patches are represented by the concatenated features
of their s × s patches. At last, the features from the two different layers are
concatenated together as the final representation of the raw patches.

In our patch size setting, we set S as 10 and s as 7 for both layers. The input
data is normalized between the two modalities. We choose the dictionary size K
as 1024. With learned W and U , the output of the first layer is 1024-d V . After
PCA transformation, it is rescaled as 100-d data. The 100-d data is then resized
to 10×10 patches, where the overlapping 7×7 patches are the training input for
the second layer. By concatenating 16 1024-d features, we get a 16384-d feature
vector for a 10× 10 patch. Then, max-pooling is used to reduce the dimension
to 1024-d for one layer. Concatenating the features of the two layers, we finally
obtain a 2048-d feature for each 10× 10 patch.

After feature learning process, scene labeling is done using the learned patch
features. Considering that predicting the pixel-wise labeling independently could
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Fig. 3. Left: the unsupervised learning structure of the first layer. Right: the second
layer structure. F1 is the first-layer feature. F2 is the second-layer feature.

be noisy and pixels with same color in local regions should take the same la-
bel, we oversegment RGB-D images using the gPb hierarchical segmentation
method [32], where we follow the adaption to RGB-D images proposed by Ren
et al. [8] to linearly combine the Ultrametric Contour Maps (UCM) results. The
10×10 patches are obtained by densely sampling over a grid with a unit distance
of eight pixels. Finally, each superpixel is represented by averaging the features
of all the patches whose centers are located in the region.

4 Experiment

Dataset. The benchmark dataset, the NYU depth dataset [7,33] including ver-
sion 1 and version 2, are used for evaluation. The V1 dataset contains 2347
RGB-D images captured in 64 different indoor scenes labeled with 12 categories
plus an unknown class. The V2 dataset consists of 1449 images captured in 464
different scenes.

Training Details. The parameters λ1, λ2 and λ3 in Eq. (2) are empirically set
to 0.1, 0.5 and 0.15. For each layer, we randomly sample 20000 7× 7 patches as
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training data. We run 50 iterations to learn W , U in our unsupervised learning
framework. Each iteration takes about 17 minutes on average on a PC with Intel
i5 3.10GHz CPU and 8G memory. For a superpixel, we calculate the mean values
of all its 10× 10 patches’ features. With the labelled superpixels in the training
list, we train a 1-vs-all linear SVM for each category. For NYU depth dataset
V1 [7], we use 60% data for training and 40% data for testing which is the same
as that of [8]. For NYU depth dataset V2 [33], we use the training/testing splits
provided by the dataset: 795 images for training and 654 images for testing.

We produce a confusion matrix whose diagonal represents the pixel-level label-
ing accuracy of each category. The average value of the diagonal of the confusion
matrix is used as the performance metric. Note that different oversegmentation
levels lead to different scene labeling results. We report the best performance of
different oversegmentation levels. We would also like to point out that in this
research we focus on feature learning and thus we did not further apply contex-
tual models such as MRFs to smooth the class labels. For fair comparison, we
only report the results of other methods without further smoothing.

Table 1. Class-average accuracy comparison of different methods on the NYU depth
dataset V1

Results on V1

Single feature

Ours 61.71%
gradient KDES [8] 51.84%
color KDES [8] 53.27%
spin/surface normal KDES [8] 40.28%
depth gradient KDES [8] 53.56%

Combined feature
Silberman and Fergus [7] 53.00%
Pei et al. [13] 50.50%
Ren et al. [8] 71.40%
Combining our features with Ren’s 72.94%

Result Comparisons on Dataset V1. Table 1 shows the average labeling
results of different methods on the NYU detph dataset V1. We compare the
result of our two-layer feature learning method with: 1) the result of Silberman
and Fergus [7]; 2) the result of Pei et al. [13]; 3) the result of single kernel
descriptor(KDES) [8]; 4) the result of Ren et al. [8] (combining four KDESs and
geometry features); 5) the result of combining the features of our method and
Ren’s.

It can be seen from Table 1 that our method significantly outperforms the
method of Silberman and Fergus, as they mainly use SIFT features on color and
depth images. Our method also outperforms the method of Pei et al. [13], as
they use selected patches which are usually redundant and noisy in encoding.
However, our result does not outperform that of Ren et al. [8]. We argue that
Ren et al. [8] evaluated six kernel based features, integrated four of them: gra-
dient, color, depth gradient, spin/surface normal, and developed a sophisticated
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Table 2. Class-average accuracy results of our method with different settings on the
NYU depth dataset V1

Result on V1

Our method (first layer) 54.76%

Sparse coding after feature learning 45.67%

k-means feature encoding after feature learning 22.32%

Separate learning from two modalities with our cost function 50.74%

Our method (second layer) 52.90%

Table 3. Individual class label accuracy on the NYU depth dataset V1 with only
one-layer features. Second column: learning from color modality alone. Third column:
learning from two modalities separately. Forth column: joint learning from two modal-
ities. The bold numbers are to indicate the cases that extra depth features hurt the
performance. In contrast, the performance is boosted when jointly learning from two
modalities for all the categories.

Learning only from
color modality

Separate learning
from two modalities

Joint learning from
two modalities

bed 58.08% 57.11% ↓ 62.55%

blind 56.63% 55.19% ↓ 60.40%

book 54.88% 47.97% ↓ 60.99%

cabinet 34.66% 38.40% 44.77%

ceiling 61.77% 79.52% 75.36%

floor 67.70% 83.20% 81.37%

picture 35.56% 47.35% 51.71%

sofa 43.99% 57.37% 54.48%

table 19.27% 23.68% 30.40%

tv 47.56% 59.83% 73.15%

wall 70.75% 69.73% ↓ 71.62%

window 33.69% 36.50% 38.73%

other 3.70% 3.87% 6.28%

method to carefully select the best combination of the four features. In contrast,
we just learn a single type of features directly from raw pixel values. If we com-
pare our result with that of each single descriptor of [8], our method achieves
superior performance. Compared to [8], our method does not need any detailed
hand-crafting of features. Moreover, by combining our and Ren’s features to-
gether, the classification accuracy can be further improved, suggesting that our
features capture visual patterns which cannot be captured by those of [8].

Detailed Evaluations on Different Settings. Here we give detailed eval-
uations on our method with only one-layer features under different settings.
In particular, we compare the following five setups: 1) our method with the
features learned from the first layer; 2) separate learning: conducting feature
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Table 4. Class labeling accuracy on the NYU depth dataset V2.

Ground Structure Furniture Props class aver-
age

Ours 90.1% 81.4% 46.3% 43.3% 65.3%

Couprie et al. [12] 87.3% 45.3% 35.5% 86.1% 63.5%

Cadena and Kosecka [9] 87.3% 60.6% 33.7% 74.8 % 64.1%

(a) (b)

Fig. 4. The confusion matrices of: (a) our results with one-layer structure; (b) our
results with two-layer structure.

learning with Eq. (1) to get filter matrix W and then performing sparse coding
to encode filtered data WZ; 3) conducting feature learning with Eq. (1) and
then use k-means clustering result as hard quantization to encode filtered data
WZ; 4) learning features from two modalities separately with our cost function;
5) our method with the features learned from the second layer alone. Table 2
shows the results of the five different setups.

Comparing the results of methods 1, 2 and 3 in Table 2, we can see that joint
feature learning and encoding performs much better than the methods using
separate processing. Particularly, for method 2, we run 50 iterations to update
W and then conduct sparse coding for 50 iterations to encode WZ. Compared
with the way of iteratively updating W and U for 50 iterations in method 1,
method 2 cannot guide W to help find descriptive U . For method 3, important
feature information is lost when quantized by k-means.

Comparing the results of methods 1 and 4 in Table 2, we can see that joint
learning from two modalities outperforms separate learning. This is because sep-
arate learning ignores the correlation information between the two modalities,
for which the extra features learned from depth alone might hurt the perfor-
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Bed

blind

book

cabinet ceiling

floor

picture sofa

tabletv wallwindow

other

Fig. 5. 15 example results. Rows 1st, 4th and 7th: color images. Rows 2nd, 5th and
8th: the results of combining our features and Ren’s features. Rows 3rd, 6th and 9th:
ground truth. Note that since we focus on feature learning, we did not use CRFs or
MRFs to smooth the labels. So the results might look a bit noisy.
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Table 5. Labeling accuracy on the NYU depth dataset V2. Second column: the results
of Couprie et al. [12]. Third column: the results of our method with two-layer structure.

Couprie et al. [12] Ours

bed 38.1% 47.6%

objects 8.7% 12.4%

chair 34.1% 23.5%

furnit. 42.4 % 16.7%

ceiling 62.6% 68.1%

floor 87.3% 84.1%

deco. 40.4% 26.4%

sofa 24.6% 39.1%

table 10.2% 35.4%

wall 86.1% 65.9%

window 15.9% 52.2%

books 13.7% 45.0%

TV 6.0% 32.4%

class average 36.2% 42.2%

mance, as shown in Table 3. On the contrary, our algorithm implicitly infers
the correlation between the two modalities and could find better combination of
them, which leads to better performance for all the classes (see Table 3).

Comparing the results of methods 1 and 5 in Table 2, we can see that the
high-level features captured by the second layer alone are not sufficient. Only
when combining with low-level features together, we can achieve a performance
improvement of 7% (see Table 1), compared with using the first-layer features
alone. The detailed comparison of confusion matrixes between one-layer learning
and two-layer learning is shown in Fig. 4.

Result Comparisons on Dataset V2. We also compare our results on NYU
depth dataset V2 with the following two existing works that have reported re-
sults on the dataset V2: 1) Couprie et al. [12]; 2) Cadena and Kosecka [9]. [9]
includes a lot of hand-crafted appearance and geometry features. Couprie et
al. [12] automatically learns features from raw data input which is similar to our
method. Table 4 shows the labeling accuracy results on the NYU depth dataset
V2, where the four structural classes, structure, floor, furniture and prop, are
often used for comparison. It can be seen that our method achieves the best av-
erage accuracy, although our method performs poorly on the prop class, which
contains many small table items.

Considering that both [12] and our method are feature-learning based ap-
proaches, we give a further comparison between them using the 13 fine categories
defined in [12]. Table 5 shows the comparison results. It can be seen that the
performance of [12] is not satisfactory, although their hierarchical convolutional
neural network system succeeds in scene labeling on outdoor color image dataset.
Our average accuracy outperforms theirs by 6%.
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Fig. 5 shows some examples of pixel labeling results. The visualization results
demonstrate that the learned local features can well represent objects in the
scene. Note that since our work focuses on feature learning, we did not use
CRFs or MRFs to smooth class labels.

5 Conclusion

In this paper, we presented an unsupervised feature learning method that learns
features from RGB-D data for scene labeling task. We pose it as a multi-modality
learning problem containing color and depth. Our method considers unsupervised
feature learning and feature encoding problem together and implicitly infers the re-
lationship between two modalities. By stacking the learning framework, our
method could learn hierarchical features. Linear SVMs are trained on superpixels
to produce the final labeling. We carried experiments on NYU depth dataset V1
and V2 and get comparable results with state-of-the-art methods including those
use hand-crafted features and those learns features from raw data.
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