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Abstract. Action detection is of great importance in understanding
human motion from video. Compared with action recognition, it not
only recognizes action type, but also localizes its spatiotemporal extent.
This paper presents a relational model for action detection, which first
decomposes human action into temporal “key poses” and then further
into spatial “action parts”. Specifically, we start by clustering cuboids
around each human joint into dynamic-poselets using a new descrip-
tor. The cuboids from the same cluster share consistent geometric and
dynamic structure, and each cluster acts as a mixture of body parts.
We then propose a sequential skeleton model to capture the relations
among dynamic-poselets. This model unifies the tasks of learning the
composites of mixture dynamic-poselets, the spatiotemporal structures
of action parts, and the local model for each action part in a single frame-
work. Our model not only allows to localize the action in a video stream,
but also enables a detailed pose estimation of an actor. We formulate
the model learning problem in a structured SVM framework and speed
up model inference by dynamic programming. We conduct experiments
on three challenging action detection datasets: the MSR-II dataset, the
UCF Sports dataset, and the JHMDB dataset. The results show that our
method achieves superior performance to the state-of-the-art methods on
these datasets.

Keywords: Action detection, dynamic-poselet, sequential skeleton
model.

1 Introduction

Action understanding in video [1] has attracted a great deal of attention in
the computer vision community due to its wide applications in surveillance,
human computer interaction, and content-based retrieval. Most of the research
efforts have been devoted to the problem of action recognition using the Bag of
Visual Words (BoVW) framework or variants thereof [29,24,11]. These particular
designed methods for action recognition usually require a short video clip to be
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Fig. 1. Illustration of action decomposition. A video sequence first can be temporally
decomposed into several short snippets, each of which corresponds to a key pose. For each
key pose, the action can then be further decomposed spatially into several action parts
(red boxes), each of which describes the appearance and motion of body part in a specific
configuration. A body part is described by multiple action parts. Best view in color.

cropped from a continuous video stream. Apart from the class label, however,
they cannot provide further information about the action, such as the location
and pose of the actor. To overcome these limitations, we focus on the problem
of action detection. Given a long video stream, we aim not only to recognize
on-going action class, but also to localize its spatiotemporal extent (that is, the
bounding box of the actor and the temporal duration of action), and estimate
the pose of the actor.

Previous studies have shown that pose [23,13,10,17,7] and motion [27,30,15,5]
are key elements in understanding human actions from videos. Pose captures
the static configurations and geometric constraints of human body parts, while
motion refers to the local articulated movements of body parts and global rigid
kinematics. As Figure 1 shows, an action sequence can be decomposed tempo-
rally into several snippets. In these snippets, the actors exhibit discriminative
configurations of body parts for action understanding. We call these discrimi-
native configurations of body parts as the key poses of an action. There is a
temporal structure and global rigid motion (for example, translation) among
these key poses. Each key pose can be further broken down spatially to action
parts, each of which describes the appearance and motion of body part in a spe-
cific configuration. As in Figure 1, each red box corresponds to an action part
and a body part is described by multiple action parts. However, modeling the
action class still presents the following challenges:

– How to discover a collection of tightly-clustered action parts from videos.
As the same body part exhibits large variations in the action (see Figure 1),
it is not feasible to describe the body part using a single template. Mixture
model will be a more suitable choice to handle large intra-variations of body
parts. The cuboids belonging to the same mixture (action part) should not
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only share similar visual appearance and pose configuration, but also exhibit
consistent motion patterns. It is necessary to design effective descriptors to
help tightly cluster body parts and satisfy these requirements.

– How to model the spatiotemporal relations of action parts. To handle large
intra-class variation, each body part is represented by a mixture of action
part. Each mixture component (action part) represents the feature template
of the body part in a specific pose and motion configuration. A key pose can
be viewed as a spatial arrangement of action parts, and an action contains
a sequence of moving key poses. Thus, the action model must take into
account the spatiotemporal relations among body part, co-occurrences of
different mixture types, and local part templates jointly.

In order to address these issues, this paper proposes a unified approach to
discover effective action parts and model their relations. Specifically, we first
annotate articulated human poses in training video sequences to leverage the
human-supervised information. Based on these annotations, we design an ef-
fective descriptor to encode both the geometric and motion properties of each
cuboid. Using this descriptor, we are able to cluster cuboids that share similar
pose configuration and motion patterns into consistent action parts, which we
call dynamic-poselets. These dynamic-poselets then act as mixture components
of body parts, and we propose a relational model, called sequential skeleton model
(SSM), that is able to jointly learn the composites of mixture dynamic-poselets,
spatiotemporal structures of action parts, and the local model for each part. Us-
ing a mixture of dynamic-poselet enables SSM to be robust for large intra-class
variation, such as viewpoint changes and motion speed variations. We formulate
the model learning problem in a structured SVM framework [21] and use the
dual coordinate-descent solver [31] for parameter optimization. Due to the fact
that the sequential skeleton model is tree-structured, we can efficiently detect the
action instance by dynamic programming algorithm. We conduct experiments on
three public datasets: the MSR-II dataset [4], the UCF Sports dataset [14], and
the JHMDB dataset [7]. We show that our framework achieves state-of-the-art
performance for action detection in these challenging datasets.

2 Related Works

Action recognition has been extensively studied in recent years [1]. This section
only covers the works related to our method.

Action Detection. Action detection has been comprehensively studied
[8,14,34,4,5,32,9,33,20,19]. Methods in [4,34,9] used Bag of Visual Words
(BoVW) representation to describe action and conduct a sliding window scheme
for detection. Yuan et al. [34] focused on improving search efficiency, while
Cao et al. [4] mainly evaluated cross-dataset performance. Methods in [8,14,5]
untilized global template matching with different features. Yao et al. [32] and Yu
et al. [33] resorted to the Hough voting method of local cuboids for action detec-
tion, while Lan et al. [9] resorted to latent learning to locate action automatically.
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Tran et al. [20] casted action detection task as a spatiotemporal structure re-
gression problem and leveraged efficient Max-Path search method for detection.
Tian et al. [19] extended the 2D part deformable model to 3D cases. Our method
is different from these other methods in that we consider motion and pose in a
unified framework for video-based action detection.

Parts in Action. The concept of “action part” appeared in several previous
works, either implicitly or explicitly [12,13,27,22,26]. Raptis et al. [12] clustered
trajectories of similar motion speed in a local region, with each cluster center
corresponding to an action part. They modeled action in a graphical model
framework to constrain the spatiotemporal relations among parts. Ullah et al
[22] presented a supervised approach to learn the motion descriptor of actlets
from synthetic videos. Wang et al. [27] proposed to cluster cuboids with high-
motion salience into 3D parts, called motionlets, based on low-level features such
as HOG and HOE. Raptis et al. [13] resorted to the poselet part proposed for
static image, and used a sequence model to model the temporal structure. Wang
et al. [26] designed a discriminative clustering method to discover the “temporal
parts” of action, called motion atoms. Inspired by the success of poselets [2] and
phraselets [6] in image-based tasks, we have designed spatiotemporal action part,
called dynamic-poselets. Dynamic-poselets capture both the pose configuration
and motion pattern of local cuboids, which are suitable for action detection in
video.

Relational Model in Action. Several previous works [9,3,19,28,18] have con-
sidered the relations among parts for action recognition and detection. Lan et al.
[9] detected 2D parts frame-by-frame with tracking constraints using CRF. Bren-
del et al. [3] proposed a spatiotemporal graph to model the relations over tubes
and to represent the structure of action. Tian et al. [19] proposed a spatiotem-
poral deformable part models for action and obtained state-of-the-art perfor-
mance. Wang et al. [28] designed a Latent Hierarchical Model (LHM) to capture
the temporal structure among segments in a coarse-to-fine manner. Sun et al.
[18] considered the temporal relations of segments by exploiting activity concept
transitions in video events. Our relational model differs from these models in two
main aspects. Firstly, our model is constructed by explicitly modeling the human
pose, which has been proved to be an important cue for action understanding [7].
Secondly, our model is composed of mixtures of parts, similar to that of [31] for
static pose estimation, and this mixture representation is effective at handling
large intra-class variations in action.

3 Dynamic-Poselets

This section describes the method for learning action parts or dynamic-poselets,
specific to a given action class. Dynamic-poselets are cuboids that are tightly
clustered in both pose and motion configuration space. Due to the large intra-
class variation and low resolution quality of action video, it is difficult to directly
group cuboids based on low-level appearance and motion features such as HOG
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Fig. 2. Illustration of dynamic-poselet construction. (a) Some examples of human pose
annotations in the training videos. (b) The descriptor extraction for dynamic-poselet
clustering. For each joint, we calculate its spatial offset ΔP1 with respect to its parent,
and its temporal offsets ΔP2 and ΔP3 with respect to itself in previous and subsequent
frames. (c) Some examples of clusters (dynamic-poselets) in training videos.

and HOF [24]. Similar to the methods of constructing image representation such
as poselet [2] and phraselet [6], we leverage the human annotations of human
joints, and propose a new descriptor based on the geometric configuration and
the moving direction of a cuboid.

For a specific action class, we assume that we have been given training videos
with human joint annotations. Typical human joints (body parts) include head,
shoulder, elbow and so on. Some annotation examples are shown in Figure 2. Let
K be the number of body parts in our annotations, and i ∈ {1, · · · ,K} denote
the ith human body part. Let pvi,j = (xvi,j , y

v
i,j) denote the position of body part

i in the jth frame of video v. Let Mi be the number of mixture for body part i
and tvi,j ∈ {1, · · · ,Mi} denote the mixture type of body part i in the jth frame
of video v. In the remaining part of this section, we will show how to obtain the
mixture types of body parts for training videos.

Intuitively, the spatial geometric configuration of a human body part with
respect to others in the same frames will determine its pose and appearance,
and the temporal displacement with respect to the same joints from adjacent
frames will represent the articulated motion. Based on this assumption, we have
designed the following new descriptor for a cuboid around each human joint:

f(pvi,j) = [Δpv,1i,j , Δp
v,2
i,j , Δp

v,3
i,j ], (1)

whereΔpv,1i,j = pvi,j−pvpar(i),j is the offset of joint i with respect to its parent par(i)

in current frame j of video v,Δpv,2i,j = pvi,j−pvi,j−1 andΔp
v,3
i,j = pvi,j−pvi,j+1 denote

the temporal displacements of joint i with respect to the same joints in previous
and subsequent frames of video v, respectively (see Figure 2). Essentially, Δpv,1i,j

encodes the pose and appearance information, and Δpv,2i,j and Δpv,3i,j capture the
motion information.

To make the descriptor invariant to scale, we estimate the scale for each body
part in a video v. The scale of body part is estimated by svi,j = headlengthvj ×
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scalei,j , where headlength
v
j is the head length of the jth frame in video v, scalei,j

is the canonical scale of joint part (i, j) measured in human head length, whose
value is usually 1 or 2. Thus, we obtain the scale invariant descriptor as follows:

f(pvi,j) = [Δpv,1i,j , Δp
v,2
i,j , Δp

v,3
i,j ],

Δpv,ki,j = [Δxv,ki,j /s
v
i,j, Δy

v,k
i,j /s

v
i,j ](k = 1, 2, 3).

(2)

Using the descriptor above, for each body part, we separately run k-means
clustering algorithm over the cuboids around this joint extracted from training
videos. Each cluster corresponds to an action part, called dynamic poselet, and
the body part is represented as a mixture of action part (dynamic poselet). The
cluster label is the mixture type t of body parts in training videos. Some examples
of clusters (dynamic-poselets) are shown in Figure 2. These results indicate that
the proposed descriptor is effective at obtaining tightly-clustered cuboids with
similar pose, appearance, and movement. Meanwhile, we find it is important to
leverage the motion term (i.e.,Δpv,2i,j , Δp

v,3
i,j ) in the descriptor to cluster dynamic-

poselets. See the examples of the top row in Figure 2, where the two kinds of
dynamic-poselets are from hand-waving action. If we ignore the motion term in
our descriptor, the two kinds of dynamic-poselets will be merged in the same
cluster because they share similar appearance and pose configuration. However,
the two kinds of dynamic-poselets are different in motion, with one corresponds
to moving down and the other to moving up.

4 Sequential Skeleton Model

Figure 3 provides an overview of our approach. During the training phase, we
first cluster the cuboids into consistent dynamic-poselets using the descriptor
(Equation (2)) in the previous section. Then, based on the clustering the results,
we develop a Sequential Skeleton Model (SSM) to describe each action class. The
SSM is described in the remainder of this section, and the learning and inference
algorithms are proposed in the next section.

We now propose the SSM of a specific action class to describe the spatiotempo-
ral configuration of a collection of action parts (dynamic-poselets). Our model
not only imposes the spatiotemporal structure and geometric arrangement of
dynamic-poselets, but also learns the co-occurrence of mixture types for action
parts. The two goals interact with each other, and the geometric arrangement of
action parts affects the mixture types, and vice versa. To encode such relation-
ships jointly, we extend the framework of mixture-of-parts [31] to spatiotemporal
domain and design a relational model (that is, SSM).

Let G = (V,E) be a spatiotemporal graph with node V = {(i, j)}K,N
i,j=1 denot-

ing the body part in human action where K is the number of body parts, N is
the number of key poses, and edge E = {(i, j) ∼ (m,n)} denote the relations
among adjacent body parts (see Figure 3). How to determine the location of key
pose of training videos will be specified in next section. Let v be a video clip, p
be the pixel positions of body parts in key poses, and t be the mixture types of
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Fig. 3. Overview of our approach. For training, we annotate human joints for several
key poses in the positive samples. We first cluster the cuboids around each human
joint into dynamic-poselets. Then, each dynamic-poselet acts as a mixture of body
parts and is fed into the SSM training. Our SSM is composed of three components:
part models, spatiotemporal relations, and mixture type relations. For testing, we first
use a temporal sliding window and then conduct inference of SSM. Finally, we resort
to post-processing techniques such as no-maximum suppression to obtain the detection
results. It is worth noting that there is no annotation for testing samples.

body parts in key poses. The discriminative score with the current configuration
of dynamic poselets is then defined as follows:

S(v, p, t) = b(t) +

N∑

j=1

K∑

i=1

α
ti,j
i φ(v, pi,j) +

∑

(i,j)∼(m,n)

β
ti,j tm,n

(i,j),(m,n)ψ(pi,j , pm,n), (3)

where ({b}, {α}, {β}) are model parameters, φ and ψ are visual features.

Mixture Type Relations. b(t) is used to define a “prior” with preference to
some mixture combinations, which factors into a summation of the following
terms :

b(t) =
N∑

j=1

K∑

i=1

b
ti,j
i,j +

∑

(i,j)∼(m,n)

b
ti,jtm,n

(i,j),(m,n), (4)

where term b
ti,jtm,n

(i,j),(m,n) encodes the compatibility of mixture types. Intuitively,

some configurations of mixture types are more compatible with current action
class than others. In the case of hand-waving action, moving-up arms tends
to co-occur with moving-up hands, while moving-down arms tends to co-occur
with moving-down hands. With this term in the relational model, we are able
to discover these kinds of co-occurrence patterns.
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Part Models. α
ti,j
i φ(v, pi,j) is the model for a single action part. We denote

φ(v, pi,j) as the feature vector extracted from video v in location pi,j . α
ti,j
i de-

notes the feature template for the mixture ti,j of ith body part. Note that the

body part template α
ti,j
i is shared between different key poses of the same action.

The visual features will be specified in Section 6.

Spatiotemporal Relations.We denote ψ(pi,j , pm,n)=[dx, dy, dz, dx2, dy2, dz2]
as a quadratic deformation vector computed from the displacement of child
node (i, j) relative to its anchor point determined by parent node (m,n). Then

β
ti,jtm,n

(i,j),(m,n) represents the parameters of quadratic spring model between mixture

type ti,j and tm,n. Note that the spring model is related to mixture types, which
means the spatiotemporal constraints are dependent on both local appearance
and motion. For example, the spatial relationship between hands and arms is dif-
ferent in moving-up and moving-down processes. Currently, we explicitly enforce
that the temporal locations of parts should be the same within a key pose.

5 Model Learning and Inference

The learning task aims to determine the structure of Graph G = (V,E) and es-
timate the model parameters θ = ({b}, {α}, {β}) in Equation (3) for each action
class. For graph structure, we currently resort to a simple initialization method.
For each key pose, we determine its structure as a skeleton tree model indepen-
dently. For each action, in the temporal domain, we add an edge between the
heads of adjacent key poses. This method is simple but effective for determining
the graph structure.

Given the action-specific graph G and a training set {vi, yi, pvi , tvi}Mi=1, the
score function of Equation (3) is linear with model parameters θ, and we can
rewrite the score function in the form θ · Φ(vi, pvi , tvi). Thus, we formulate the
parameter learning problem in the following structured SVM framework [21]:

arg min
θ,{ξi≥0}

1

2
‖θ‖22 + C

M∑

i=1

ξi

s.t. θ · Φ(vi, pvi , tvi) ≥ 1− ξi, if yi = 1

θ · Φ(vi, p, t) ≤ −1 + ξi, ∀(p, t), if yi = −1.

(5)

The negative examples are collected from the action videos with different labels.
This is a standard convex optimization problem, and many well-tuned solvers
are public available. Here we use the dual coordinate-decent solver [31]. Together
with the process of dynamic-poselets clustering, the whole learning process is
shown in Algorithm 1.

Firstly, for each positive example, we extract the descriptors for the anno-
tated human parts and conduct k-means to cluster these cuboids into dynamic-
poselets. From the clustering results, we obtain the mixture labels for the parts
of positive examples. We then train each dynamic-poselet independently using
classical SVM. This training process provides an initialization for the template



Video Action Detection with Relational Dynamic-Poselets 573

Algorithm 1. Dynamic-poselets clustering and model learning.

Data: Positive samples: P = {vi, pvi , yi}T1
i=1, negative samples: N = {vj , yj}T2

j=1.
Result: Graph: G and parameters: θ.
// Dynamic-poselets clustering

- Extract the descriptors of each body part (i, j).
- Using the descriptors, run k-means on the local cuboids, and obtain the
mixture type ti,j for each body part.
// Model parameter learning

- Initialize the graph structure G.
foreach part i and mixture type ti do

αti
i ←− SVMTrain ({vi, pvi , tvi}, i, ti).

end
- Use the part template above to initialize the model parameters θ.
for i← 1 to C do

- Mining Hard negative examples: N ← NegativeMining(θ, G,N).
- Retrain model jointly: θ ← JointSVMTrain(θ, G,N, {vi, pvi , yvi}).

end
- return graph G and parameters θ.

parameters in the relational model. Based on this initialization, we iterate be-
tween mining hard negative examples and retraining model parameters jointly
as in the Structured SVM. The iteration is run for a fixed number of times.

Implementation Details. In the current implementation, the number of key
poses is set as 3. Due to the subjectivity of key pose, we design a simple yet
effective method to determine the locations of key pose given a specific video. We
start by dividing the video into three segments of equal duration. Then, in each
segment, we uniformly sample a frame as the key pose. To handle the temporal
miss-alignment of training videos, we conduct uniform sampling four times and
obtain four instances for each positive video. This method also increases the
number of training samples for structured SVM learning and makes the learning
procedure more stable. The iteration times C of Algorithm 1 is set as 5.

The inference task is to determine the locations and mixture types (p, t) of a
given video v by maximizing the discriminative score S(v, p, t) defined in Equa-
tion (3). Since our relational graph G = (V,E) is a tree, this can be done
efficiently with dynamic programming. For a node (i, j) at location pi,j with
mixture type ti,j , we can compute its score according to the message passed
from its children kids((i, j)):

Si,j(pi,j , ti,j) = b
ti,j
i,j + α

ti,j
i φ(v, pi,j) +

∑

(m,n)∈kids((i,j))

Cm,n(pi,j , ti,j), (6)

Cm,n(pi,j , ti,j) = max
tm,n

{
b
tm,nti,j
(m,n),(i,j)+

max
pm,n

[
Sm,n(pm,n, tm,n) + β

tm,nti,j
(m,n),(i,j)ψ(pm,n, pi,j)

]}
.

(7)
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Equation (6) computes the local score of part (i, j) located at pi,j with mixture
type ti,j , and Equation (7) collects message from the child nodes and computes
scores for every mixture type tm,n and possible location pm,n to obtain the best
score given the parent’s location pi,j and type ti,j . Based on these recursive
functions, we can evaluate the score in a depth-first-search (DFS) order and
pass the message from leaf nodes to the root node. Once the message has been
passed to the root node, S1,1(p1,1, t1,1) represents the best score for each root
position and mixture type.

Implementation Details. During detection, we will use the temporal sliding
window of 40 frames with a step size of 20, if the testing sample is a video
stream instead of a video clip. For final detection, we choose a threshold of −2
for detection score to generate multiple detections, and use the post-processing
technique of non-maximum suppression to avoid repeated detections [31].

6 Experiments

In this section, we present the experimental results on three public datasets: the
MSR-II dataset [4], the UCF Sports dataset [14], and the JHMDB dataset [7].

Experiment Details. For all these datasets, we extract Histogram of Oriented
Gradients (HOG) and Histogram of Optical Flow (HOF) as low-level features
[24]. HOG features capture the static appearance and HOF features describe the
motion information. The feature cell size is up to the resolution of the video,
and we select a cell size of 4× 4× 2 for the MSR-II dataset, and 8× 8× 2 for the
UCF Sports and the JHMDB dataset. The cuboid size of each part is determined
automatically according to the size of the person in the video. For the mixture
number of each part, the default setting is 8.

Results on the MSR-II Dataset. The MSR-II dataset includes three action
classes: boxing, hand-waving, and hand-clapping. The dataset is composed of 54
video sequences that are captured in realistic scenarios such as parties, schools,
and outer traffics, with cluttered background and moving people. Following the
scheme in [4], we use a subset of the KTH [16] for training and test our model on
the MSR-II dataset. Specifically, we train our model on the KTH dataset with
20 positive examples for each class and the number of joints is 10 (see Figure
2). For action detection evaluation, we use the same scheme in [4] and report
the average precision (AP) for each class. Although the action class is relatively
simple, the MSR-II dataset is a challenging benchmark for action detection due
to its realistic scene and the cross-dataset testing scheme. The experimental
results can demonstrate the effectiveness of our approach for detecting simple
action in realistic scenarios.

We plot the precision-recall (PR) curves in Figure 4 and report the average
precision (AP) for each class in Table 1. Our method performs quite well on
the action of hand waving but relatively poorly on the action of boxing. This
result could be due to the fact that the action of boxing involves heavy occlusion
with two arms and pose estimation in the action of boxing is more difficult than
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Fig. 4. Results on the MSR-II dataset. We plot the PR curves for the three action
classes: boxing, hand-clapping, and hand-waving. We compare our results with GMM
methods with or without adaption [4] and SDPM [19] (state-of-the-art). Best viewed
in color.

in hand waving. We compare our results with two other methods: GMM adap-
tion method [4] (baseline) and spatiotemporal deformation part model (SDPM)
(state-of-the-art method) [19]. We observe that our method outperforms these
methods in all action classes. Especially for the actions of hand-waving and hand-
clapping, our APs are almost twice those of state-of-the-art results. In these two
action classes, key poses are well detected and yield important cues for discrim-
inating action from other classes. For the action of boxing, the improvement of
our method is not so significant. The superior performance demonstrates the
effectiveness of our key pose based approach for detecting simple actions in
realistic scenarios.

Table 1. Results on the the MSR-II dataset. We report the APs for the three action
class and mean AP (mAP) over all classes. We compare our results with GMM methods
with or without adaption [4] and SDPM [19] (state-of-the-art).

Method Boxing Hand-clapping Hand-waving mAP

Baseline [4] 17.48% 13.16% 26.71% 19.12%

SDPM [19] 38.86% 23.91% 44.70% 35.82%

Our result 41.70% 50.15% 80.85% 57.57%

Results on the UCF Sports Dataset. The UCF Sports dataset [14] is com-
posed of 150 realistic videos from sports broadcasts. The dataset has 10 action
classes including diving, lifting, skating and so on (see Figure 5). Following the
experimental setting [9], we split the dataset into 103 samples for training and 47
samples for testing. We evaluate the action localization using the “intersection-
over-union” criterion and a detection is regarded as correct if the measure is
larger than 0.2 and the predicted label matches. We plot the ROC curves and
report the AUC for each action class. The UCF Sports dataset is more chal-
lenging than the MSR-II dataset due to the fact that the videos are cropped
from sports broadcasts with large intra-class variations caused by camera mo-
tion, scale changes, viewpoint changes, and background clutter. The experiments
on the UCF sports dataset can verify the effectiveness of our approach for more
complex actions with articulated poses.
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Fig. 5. Results on the UCF Sports dataset. Left: We plot the AUC per class of our
detection result with a varying overlap thresholds. Center: We compare our results
with the Figure-Centric Model [9] and the SDPM (state of the art) [19], when the
overlap threshold is set as 0.2. Right: We compare the detection performances of these
methods with varying thresholds (from 0.1 to 0.6). Best viewed in color.

Figure 5 shows the results of our method. We first plot the AUC of the ROC
curve for each action class with respect to the varying overlap threshold in the
left of Figure 5. These curves show that our method achieves a high detection
rate for many action classes, such as lifting, horse-riding, and walking. We com-
pare our approach with two recently published methods: figure-centric model
(FCM) [9] and spatiotemporal deformable part model (SDPM) [19]. The FCM
resorts to latent learning and detects 2D parts frame-by-frame with smooth con-
straints. The SDPM obtains the state-of-the-art detection performance on the
UCF Sports dataset. From the comparison of the ROC curve and the AUC
curve with respect to varying overlap thresholds in Figure 5, we conclude that
our method outperforms the others and obtains the state-of-the-art performance
on this challenging dataset. These results demonstrate that our method is not
only suitable for simple action class such as MSR-II dataset, but also effective
for more realistic action classes recorded in unconstrained environment.

Results on the JHMDB Dataset. The JHMDB dataset is a recently pro-
posed dataset with full human annotation of body joints [7]. It is proposed for a
systematic action recognition performance evaluation using thoroughly human
annotated data. It also selects a subset of videos, called sub-JHMDB, each of
which has all the joints inside the frames. The sub-JHMDB contains 316 clips
distributed over 12 categories, including catch, pick, and swing (see Figure 6).
The results in [7] show that this subset is much more challenging for action
recognition than the whole dataset. No action detection results are reported in
this subset and we have made the first attempt with our method. Using the same
evaluation in the UCF Sports dataset, we plot the ROC curves and report the
AUC for each action class.

We plot the AUC of ROC curve for each action class with respect to the
varying overlap thresholds in the left of Figure 6. From the results, we observe
that our method still performs quite well for some action classes on this more
challenging dataset, such as golf, swing, and push. However, due to the chal-
lenges caused by low resolution, strong camera shaking, illumination changes,
some action classes obtain relatively low detection rates such as jump and climb-
stairs. In order to compare our method with others, we adapt the state-of-the-art
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Fig. 6. Results of the sub-JHMDB dataset. Left: We plot the AUC per class of our
detection result with varying overlap thresholds. Center: We compare our results with
the state-of-the-art approach in action recognition [25], when the overlap threshold is
set as 0.2. Right: We compare the detection performance with varying thresholds (from
0.1 to 0.6). Best viewed in color.

Fig. 7. Examples of action detection in three datasets. Our model is able to detect
human actions and also estimate human poses accurately in most cases. Best viewed
in color.

approach [25] in action recognition to action detection, and design a very com-
petitive baseline method. Specifically, we use the improved dense trajectories
(iDTs) as low-level features and choose Fisher Vector as encoding method. It
should be noted that the iDTs are improved version of dense trajectories (DTs)
[24] with several pre-processing techniques such as camera motion estimation
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and compensation, moving human detection, while our method does not require
such pre-processing techniques. For each action class, we train a SVM using the
fisher vector that aggregates the iDTs from the actor volume; that is, we elimi-
nate the iDTs in the background. For detection, we conduct multiscale window
scanning and use non-maximum suppression. Our comparison results are shown
in the right of Figure 6 and the results show that our method obtains better de-
tection performance, especially when the overlap threshold is large. The superior
performance of our method compared to the state-of-the-art approach in action
recognition indicates the importance of human pose in action understanding,
especially for accurate action localization.

Examples of Detection Results. Some action detection examples on the three
datasets are shown in Figure 7. We show the key poses automatically detected
by our method. From these examples, we observe that our model is able to not
only detect human actions, but also estimate human pose accurately in most
cases.

7 Conclusion

This paper has proposed an approach for action detection in video by taking
account of both cues of motion and pose. To handle the large variations of body
part in action videos, a action part is designed as a mixture component. Guided
by key pose decomposition, a relational model is then developed for joint mod-
eling of spatiotemporal relations among body part, co-occurrences of mixture
type, and local part templates. Our method achieves superior performance, as
evidenced by comparing them to the state-of-the-art methods. In addition to
action detection, our model is able to estimate human pose accurately in many
cases, which also provides insights for the research of human pose estimation in
videos.
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24. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion bound-
ary descriptors for action recognition. IJCV 103(1) (2013)

25. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV
(2013)

26. Wang, L., Qiao, Y., Tang, X.: Mining motion atoms and phrases for complex action
recognition. In: ICCV (2013)

27. Wang, L., Qiao, Y., Tang, X.: Motionlets: Mid-level 3D parts for human motion
recognition. In: CVPR (2013)



580 L. Wang, Y. Qiao, and X. Tang

28. Wang, L., Qiao, Y., Tang, X.: Latent hierarchical model of temporal structure for
complex activity classification. TIP 23(2) (2014)

29. Wang, X., Wang, L., Qiao, Y.: A comparative study of encoding, pooling and
normalization methods for action recognition. In: Lee, K.M., Matsushita, Y., Rehg,
J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 572–585. Springer,
Heidelberg (2013)

30. Yang, Y., Saleemi, I., Shah, M.: Discovering motion primitives for unsupervised
grouping and one-shot learning of human actions, gestures, and expressions.
TPAMI 35(7) (2013)

31. Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-
parts. In: CVPR (2011)

32. Yao, A., Gall, J., Gool, L.J.V.: A Hough transform-based voting framework for
action recognition. In: CVPR (2010)

33. Yu, G., Yuan, J., Liu, Z.: Propagative hough voting for human activity recognition.
In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012, Part III. LNCS, vol. 7574, pp. 693–706. Springer, Heidelberg (2012)

34. Yuan, J., Liu, Z., Wu, Y.: Discriminative subvolume search for efficient action
detection. In: CVPR (2009)


	Video Action Detection with RelationalDynamic-Poselets
	1 Introduction
	2 Related Works
	3 Dynamic-Poselets
	4 Sequential Skeleton Model
	5 Model Learning and Inference
	6 Experiments
	7 Conclusion
	References




