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Abstract. We present a novel grasping approach for unknown stacked
objects using RGB-D images of highly complex real-world scenes. Specif-
ically, we propose a novel 3D segmentation algorithm to generate an effi-
cient representation of the scene into segmented surfaces (known as sur-
fels) and objects. Based on this representation, we next propose a novel
grasp selection algorithm which generates potential grasp hypotheses and
automatically selects the most appropriate grasp without requiring any
prior information of the objects or the scene. We tested our algorithms
in real-world scenarios using live video streams from Kinect and publicly
available RGB-D object datasets. Our experimental results show that
both our proposed segmentation and grasp selection algorithms consis-
tently perform superior compared to the state-of-the-art methods.
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1 Introduction

Grasping unknown objects in real-world environments is still a challenging task
for visual perception and autonomous robot manipulation [3]. There are two
main problems in a general grasping pipeline. First, an accurate segmenta-
tion of an object of interest is required to separate it from the environment.
This is an intrinsically challenging problem, especially when the scene contains
a large variety (textured, non-textured, planar and non-planar) of stacked ob-
jects with no information about their sizes, shapes or, visual appearance (e.g.,
color, or texture). The difficulty is compounded with the additional challenges
of real-world environments (e.g., variable lighting conditions, shadows, clutter,
and inherent sensor noise). Many state-of-the-art approaches handle this task
either through recognition-based methods (e.g., [11,6,18,34,30,2]) or learning-
based methods (e.g., [27,20]). While the former methods restrict the system to
a fixed number of objects (whose models were previously stored or learned), the
latter are also not suitable due to their high computational runtime when deal-
ing with unknown objects in unknown environments (e.g., home or workplace).
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Second, the selection of the most appropriate grasp from nearly an infinite
number of possible grasps is a great challenge in the case of unknown stacked
objects. Many approaches (e.g., [8,29]) use 2D or 3D object models to determine
feasible grasps. Other approaches (e.g., [12,19,5]) assume that the objects to be
grasped belong to a particular set of shape compositions and therefore reduce
the number of possible grasps by fitting shape primitives (e.g., boxes, cylinders,
or superquadrics). However, these shape abstractions are not accurate in the case
of stacked and occluded objects. Learning-based approaches (e.g., [17,32,24,3])
handle the case of unknown objects using 2D and 3D features. However, all
these approaches consider simple situations where the objects are isolated on a
table. In the case of stacked and occluded objects, it is a very challenging task
to generate the most appropriate grasp from a noisy partial view of the object
(particularly from a single camera viewpoint).

We present a purely vision-based approach which addresses both the afore-
mentioned problems in a model-free manner. To handle the first problem,
we present a novel 3D segmentation algorithm (Sec. 3.1-3.2) which segments
the scene into surfels and object hypotheses. For the second problem, we
present a novel algorithm (Sec. 3.3) which generates potential grasps (specifi-
cally two-finger pinch-grasps) using surfels and automatically selects the most
appropriate grasp for the objects in the scene. We tested our algorithms using
live video streams from Microsoft Kinect and challenging object datasets, where
we demonstrate that our algorithms improve both the segmentation and grasp
selection performance for unknown stacked and occluded objects (Sec. 4). In
summary, the contributions of this paper are:

1. Our proposed 3D segmentation algorithm segments unknown stacked and oc-
cluded objects compared to themethods in [24,28], which only segment objects
isolated from each other. Our algorithm is completely model-free compared
to the methods in [27,20] which require learning and parameter tuning on spe-
cific datasets. Hence, our algorithm is capable of separating a large variety of
objectswithout anyprior information about the objects or the scene (e.g., prior
information about the table plane, or background). Our segmentation results
are superior compared to the state-of-the-art methods (Sec. 4.2)

2. Our proposed grasp selection algorithm generates potential grasps and au-
tomatically selects the most appropriate grasp for unknown stacked and oc-
cluded objects. To the best of our knowledge, this is the first work to deal with
unknown stacked objects in a complete model-free way. Our grasp selection
results outperform the state-of-the-art grasp-selection methods (Sec. 4.3).

3. We evaluate the performance of our algorithms in real-world environments
using our in-house mobile robot with a 7-DOF arm to grasp unknown stacked
objects (see video in the supplementary material).

2 Related Work

Vision-based object grasping approaches can be divided into three main cat-
egories [3], grasping of known, familiar, and unknown objects. For grasping
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known objects, active-exploration-based methods (e.g., [25]), or learning-based
techniques (e.g., [31,22]) assume that a detailed 2D or 3D model of the object
is available which is matched to the current scene for segmentation and pose
estimation. Based on the model and the estimated pose, a large number of grasp
hypotheses are generated and their quality is evaluated to compute the most
appropriate grasp. Methods (e.g., [4]) use analytical approaches (by modeling
the interaction between a gripper and an object using tactile sensing [23]) to
generate force-closure grasps and rank them by optimizing the parameters of
a dexterous hand [35]. Others use learning through demonstration approaches
(e.g., [9]) to efficiently associate grasps to known objects. Recently, methods
(e.g., [12,19]) evaluate the shape of the object by fitting shape primitives (e.g.,
boxes, cylinders, cones, and superquadrics) thereby reducing the number of po-
tential grasps. However, all these methods require a prior knowledge about the
objects, which restricts their application in real-world environments containing
unknown objects.

For grasping familiar objects, methods (e.g.,[32,22,7]) learn relationships
between visual features and grasp quality on a set of training objects. This
knowledge is then used to grasp resembling objects. For instance, in [32], grasp
hypotheses were learned based on a set of local 2D image features (edges, tex-
tures and color) using synthetic data to grasp novel objects. The method of [22]
used a support vector machine (SVM) to predict the grasp quality based on the
hand configuration and the parameters of the superquadric representation of the
objects. In the work of [7], grasp selection was learned on a set of simple geomet-
rical shapes and applied to grasp novel objects. However, most of these methods
were trained using synthetic models and implemented in simulation. Grasping
unknown objects is acknowledged to be a difficult problem particularly in the
presence of a large variety of objects (i.e., with different sizes, shapes, textures,
and layouts) and scenes (i.e., with clutter, indistinguishable background, and
different lighting conditions). In this context, [21] used 2D contours of objects to
approximate their centers of mass for grasp selection. The method in [28] used a
selection algorithm to determine grasping points on the top-surface of an object.
The method in [24] used a bottom-up segmentation algorithm and an SVM to
learn the grasp selection of unknown objects. Recently, an early cognitive system
presented in [14] was applied to the problem of grasping unknown objects based
on edge and texture features. However, all of these methods consider the simple
scenario of objects isolated from each other, which undermines the segmenta-
tion problem. This is not true when dealing with unknown real-world situations
(e.g., Fig. 1B). Considering the important requirements for the next generation
of service robots [14]), the grasping capabilities need to be implemented and
evaluated in complex situations (i.e., scenes with unknown stacked and occluded
objects).

In this paper, we present a purely vision-based grasping approach which has
the following advantages, compared to the other methods: First, it is a fully
model-free approach (i.e., no prior information about the objects or the scene
is required), in contrast to the methods (e.g., [3,17,16,24,14]) which learn grasp
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Fig. 1. Overview of our proposed grasping approach. First, we take a depth image (A)
and a color image (B) as input and generate two segmentations: mid-level surfels (C),
and high-level object hypotheses (D). Next, we use surfels to generate grasp hypotheses
(E) and subsequently select the most appropriate grasp (F).

selection on training data using specific datasets. This allows our approach to
generalize to different real-world environments (e.g., kitchen, or a workplace).
Second, our approach successfully handles a large variety of unknown objects
in unknown layouts compared to the methods (e.g., [17,16,24,28,14]) which con-
sidered only simple situations.

3 Proposed Grasping Approach

As illustrated in Fig. 1, first, we produce a 3D segmentation of the scene into
mid-level surfaces (known as surfels), and high-level object hypotheses. Second,
we use these segmentations to generate potential grasp hypotheses. Our overall
approach addresses two key problems: i) accurate segmentation of unknown
stacked and occluded objects and ii) selection of the most appropriate grasp in a
model-free manner. For the first problem, we propose a new 3D segmentation
algorithm which produces a layered representation of the scene in terms of mid-
level and high-level information (i.e., surfels, and objects respectively). On the
mid-level, our algorithm (see Sec. 3.1) follows an optimization procedure using
simulated annealing to partition a given point cloud into surfels. On the high-
level, our algorithm (see Sec. 3.2) combines perceptually similar surfels into
object hypotheses using graph-cuts. For the second problem, we propose a
novel algorithm (see Sec. 3.3) which generates potential grasp hypotheses and
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Fig. 2. Segmentation into surfels and their refinement. A-B: initial partitioning used
for initialization, C-D: partitioning after 5 iterations of simulated annealing.

subsequently evaluates them to select the most appropriate grasp in a model-free
manner.

3.1 Segmentation into Surfels

As illustrated in Fig. 2, our segmentation proceeds in two stages: i) initial seg-
mentation (see Fig. 2A) and ii) its iterative refinement (see Fig. 2C). In the first
stage, our algorithm produces an initial partitioning of the point cloud in terms
of surfels. In the second stage, the algorithm iteratively refines these surfels
(by exchanging boundary points between neighbors) so that their boundaries
accurately conform to the physical object boundaries in the scene.

Initial Segmentation. The algorithm starts with a clustering technique in
which structurally homogeneous points (i.e., those which have close 3D prox-
imities, and similar local- and global-orientations of their surface normals) are
grouped into distinct clusters. Our clustering algorithm is similar to the two-pass
binary image labeling technique described in [33]. It has been, however, modified
to label point cloud using our distance metric Dc . We define a comparator func-
tion C, which compares a point i with its neighboring point j as given below:

C(i, j) =

{
true if(Dc < δDc).
false otherwise

(1)

If C(i, j) = true, then a common label is assigned to both the points i and j,
otherwise a new label is created by incrementing the largest assigned label by
one. Our distance metricDc is a linear combination of three terms: 3D proximity,
co-planarity, and global-orientation disparity. Dc can be written as:

Dc =
√
||p(i)− p(j)||2 + ||βn(i)− βn(j)||2 + ||γn(i)− γn(j)||2, (2)

where, ||.|| represents the normalization within the local neighborhood. The
terms p, βn, and γn represent the 3D coordinates, surface normal local orienta-
tion, and surface normal global-orientation of a query point respectively. For a
point i, the orientation βn(i) is determined by the average dot product between
its surface normal ni and the normals of all the points in a local neighborhood
Ω of radius σ as:

βn(i) =

∑size(Ω)
j=1 acos(dot(ni,nj))

size(Ω)
. (3)
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The global-orientation γn(i) is determined by the atan2 angle between the sur-
face normal ni and a vector vc (drawn from the camera reference frame to the
corresponding point i in the point cloud) as:

γn(i) = atan2(||cross(ni,vc)||, dot(ni,vc)). (4)

Our algorithm proceeds as follows: the first point of the point cloud is assigned a
unique label. For the remaining points, each unlabeled point i is compared to its
left, left-top, and top neighbors using Eq. 1. If multiple neighbors with different
labels satisfy the criterion in Eq. 1, the label of one of the neighbors is assigned to
the current point i and equivalences are set for all of these neighbors. Otherwise,
a new label is assigned to the point i by incrementing the largest assigned label
by one. This procedure is iteratively repeated until all points are labelled. In the
second pass, the labelled image is scanned again, and all equivalent regions are
assigned the same region label using the union-find algorithm as in [33]. This
produces a partitioning into regions whose boundaries are subsequently refined
using an optimization technique as described in the following.

Refinement. We introduce an objective function, which when optimized, en-
forces structural homogeneity (i.e., similar normal orientations) of the points
within each surfel. The optimization is based on a simulated annealing algorithm
which proceeds as follows: The algorithm uses the initial segmentation as an ini-
tial solution and iteratively updates the solution by exchanging boundary points
between neighboring surfels to generate a new partitioning. The algorithm termi-
nates if the objective function does not increase or when the maximum number
of iterations is reached (if the algorithm is allowed to run for a fixed number
of iterations). In order to converge to a solution close to the global optimum, it
is important to start with a good partition. We use our initial segmentation as
a first rough partitioning for the simulated annealing algorithm. In our exper-
iments, we found that there are several advantages of this initialization which
include: i) the initial segmentation is automatic (i.e., our clustering algorithm
automatically segments the point cloud into structurally distinct clusters). ii)
Our initial segmentation is perceptually accurate because structurally homoge-
neous points are grouped into distinct clusters. Since the initialization is close to
the optimal solution, this speeds up the convergence of the simulated annealing
algorithm. Let K be the number of surfels we obtain from the initial segmenta-
tion. We define S = {s1, s2, . . . , sK} to describe the initial partitioning where,
each surfel sk is represented by a cluster of 3D points in the point cloud as shown
in Fig. 1C.

Objective Function Our objective function is defined to evaluate the homogeneity
as a distribution of local orientations (φ, ψ, and α) of the surface normals of the
points within each surfel sk. The orientations are measured in the same manner
as in [30]. Mathematically, the φ, ψ, and α values of a point i ∈ sk are computed
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with respect to its surfel’s centroid skc as:

φ(i) = acos(dot(ni,vn)), ψ(i) = acos(dot(nsk ,vn)), α(i) = atan2(ρ, τ),
ρ = dot(cross(nsk , cross(vn,ni)), τ = dot(nsk ,ni)

(5)

where vn is a normalized vector between p(i) and surfel centroid skc . In order to
define our objective function, we first define three feature histograms Φ, Ψ, and
Ω based on the distribution of φ, ψ, and α values of the points in sk respectively.
Mathematically, Φ, Ψ, and Ω are written as:

Φsk = ||hist({φi})||, Ψsk = ||hist({ψi})||, Ωsk = ||hist({αi})||, ∀i ∈ sk, (6)

where, the term ||hist|| represents the normalized histogram. For a given initial
solution S, our objective function C(S) is given by:

C(S) =

K∑
k=1

⎛
⎝
√√√√ 1

nb

nb∑
j=1

(Φj
sk )

2 +

√√√√ 1

nb

nb∑
j=1

(Ψ j
sk)

2 +

√√√√ 1

nb

nb∑
j=1

(Ωj
sk)

2

⎞
⎠ , (7)

where Φj
sk
, Ψ j

sk
, and Ωj

sk
represent the number of entries in the jth bin of the

corresponding histograms. The term nb represents the total number of bins of
the corresponding histogram. In our experiments, we divide the φ and ψ values
in 50 bins ranging from 0 to 180 deg, and the α values in 50 bins ranging from
−π to π. The simulated annealing algorithm updates S iteratively as follows:
at each iteration, the algorithm generates a new partitioning Snew based on the
previous one (i.e., Sold) by moving the boundary points between the neighboring
regions. A boundary movement proceeds as follows: first, the algorithm places a
rectangular patch of σ×σ pixels around a query boundary point p and computes
its distance with respect to each surfel center sk which lies within the patch and
is adjacent in the point cloud (i.e., the minimum pairwise distance between p
and the points of sk is less than a distance threshold δadj = 5mm), as:

ζ(p, sk) =
√
||cp − c̄sk ||2 + ||βp − β̄sk ||2, (8)

where, c̄sk , and β̄sk represent the mean of the CIELab color, and β values of
all points within the surfel sk respectively. Next, the algorithm assigns the label
of the surfel with the minimum ζ value to the query boundary point p. This
procedure is repeated for all boundary points of each surfel in S to generate
Snew. The new partitioning (Snew) is evaluated using the objective function in
Eq. 7 and is accepted as valid if it increases C(S). This iterative refinement is
repeated until either of the two following termination conditions is met: i) the
change in the cost between two successive iterations is less than a threshold ε, or
ii) the total number of iterations exceeds a predefined number Nmax. The final
partitioning, S∗, is subsequently used to produce high-level object hypotheses
(Sec. 3.2). Our proposed initial segmentation algorithm has several advantages
including: i) simulated annealing refines the surfels iteratively and produces a
valid segmentation at the end of each iteration. This is advantageous because



666 U. Asif, M. Bennamoun, and F. Sohel

1

28

15

13

14

5

9

10

3

4

18 161719

11

12

20

21

22

6

7

23

24

25

1

2 3

4

5
6

7
8 9

10
11

12

13

14

15 16

1 1

19

20
21

22

23

24
25

26

26

Fig. 3. The merging process of surfels based on graph-cut. Left: the segmentation into
surfels. Right: our undirected graph structure. Cuts (arcs) are placed between the nodes
which do not satisfy convex shape relationship.

we can stop the algorithm at any iteration and still achieve a valid segmenta-
tion, compared to the graph-based or region-growing methods, where one has
to wait until all the cuts have been added to the graph, or until the growing is
completely performed. ii) Our algorithm successfully recovers boundary errors
(caused by missing depth information or smooth variations in the normal di-
rections of touching surfaces) from a single RGB-D image of the scene. This is
advantageous in situations where only a single partial view of the environment
is available.

3.2 Perceptual Grouping into High-Level Object Hypotheses

The next key contribution is the merging of the surfels (i.e., whether two surfels
correspond to the same object instance) to generate high-level object hypotheses
in a model-free manner (i.e, without any prior knowledge of the objects in the
scene). Our perceptual grouping algorithm follows a graph-based merging ap-
proach in which an undirected adjacency graph (built on surfels using adjacency
relations such as 3D proximity) is reduced in a greedy manner. As illustrated in
Fig. 3, the nodes of the graph represent the surfels and an edge between any pair
represents the adjacency between the corresponding surfels. The cuts are placed
on the edges which do not satisfy the merging criterion. Our merging criterion is
based on the shape relationship (i.e., convex or concave) between two adjacent
surfels. To estimate the shape relationship between two adjacent surfels sk, and
sj , we construct a straight line between a point from sk (i.e., the point which is
maximally distant above/below the sj plane) and a point from sj (i.e., the point
which is maximally distant above/below the sk plane). As illustrated in Fig. 4,
this line lies below both the surfels when they belong to the same object instance
(e.g., two sides of a box shown in Fig. 4A). When the surfels belong to different
object instances (e.g., box placed on a cylindrical container as shown in Fig.
4C), this line lies above either of the two surfels. Mathematically, we compute
the projected distance dp of the midpoint of the line from each surfel plane (see
Fig. 4). If dp < 0 for both the surfels, we report that the two surfels have a
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A B C

E F G H

D

Fig. 4. Top row: Shape relationship analysis between two adjacent surfels. (A-B): when
surfaces belong to the same object instance, the line lies below both surfels. (C-D):
when one surface protrudes from its supporting surface, the respective line lies above
either of the two surfaces. Bottom row: Co-planarity between two surfaces. (E-F): when
surfaces are not aligned, their distance histograms do not intersect. (G-H): the distance
histograms of co-planar surfaces intersect.

convex-shape, otherwise a concave-shape relationship. We iteratively check this
condition for a set of 5 lines (in our experiments) and merge the two surfels if all
lines satisfy the convex-shape relationship criterion. This procedure efficiently
combines surfels which belong to distinct object instances however, ignores those
which are not adjacent in the 3D Cartesian space (e.g., in Fig. 3, surfels 16, 17,
18, and 19 belong to the floor surface but are not connected in the 3D Cartesian
space). To efficiently handle this problem, we detect surfels which are co-planar
and do not have a convex relationship with any surfel (e.g., see edges represented
by the dotted lines in Fig. 3-Right), and merge them subsequently. To measure
co-planarity between two surfels, we check if they have similar mean normal di-
rections and are aligned. The alignment is checked by building a histogram of
the projected distances of each surfel points from the combined plane (i.e., the
plane which best fits the 3D points of the union of the two surfels) and comput-
ing their intersection. As shown in Fig. 4F, the histograms of two non-aligned
surfels do not intersect. On the other hand, the histograms of a co-planar pair
intersect (as shown in Fig. 4H).

3.3 Grasp Synthesis

We apply our layered representation of the scene (i.e., surfels and object hypothe-
ses) to perform grasp synthesis of unknown objects in a model-free manner. Our
proposed algorithm proceeds in two steps. i) grasp generation, and ii) grasp se-
lection. For grasp generation, the algorithm generates pairs of grasping points
using reflection symmetry (i.e, co-linearity of the 3D points and similar orien-
tations of their surface normals in the 2D image plane and the 3D Cartesian
space) between points along the boundaries of the surfel. For grasp selection,
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Fig. 5. Grasp synthesis using surfels. Left (top row): shows the angles α and β in the
2D image plane and the 3D Cartesian space respectively. Left (middle row): shows
grasping points which satisfy our reflection symmetry criterion. Left (bottom row):
shows the patches a and b used to extract shape descriptors. Their corresponding
distance histograms show mode values (highlighted in red) smaller and larger than a
threshold (20mm) for the cases when majority points are collision (e.g., a) and void
(e.g., b) respectively. Right: illustration reference frames Lg and Lr, the approach point
pap, and the approach vector vap.

the algorithm evaluates the grasp hypotheses based on the shape descriptors (a
distance histogram representing the distances between a grasping point and all
points in a rectangular region) of their corresponding grasping points to select
the most appropriate grasp.

Grasp Generation. Our general grasp notation G for a surfel s is defined as:

Gs = {pg, qg, L
r,pap} (9)

As illustrated in Fig. 5, pg and qg are two grasping points located on the bound-
ary of the surfel s. Lr is a local reference frame whose origin is the midpoint pm

of the vector pgqg (i.e., straight line connecting the two grasping points). The x,
z and y axes of Lr correspond to the direction vector ˆpgqg, surface normal npm

and ˆpgqg × npm respectively. pap is a point located at a distance dal from Lr

along +npm (positive direction of the normal) and is used as the approach point
to align the gripper for the corresponding grasp (see Fig. 5-right). The grasping
points are determined by finding two points from the surfel boundaries, which
satisfy the reflection symmetry criteria in both the 2D image plane and the 3D
Cartesian space (i.e., their surface normals minimize the angles α, and β as
shown in Fig. 5-left-top). The algorithm stores all pairs of (pg, qg) whose corre-
sponding angles α, and β, are within ±2 (as shown in Fig. 5-left-middle). This
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procedure is repeated for each surfel and the generated grasp hypotheses are
subsequently ranked as explained in the following.

Grasp Selection. For each object of the segmented scene, its generated grasp
hypotheses are first ranked in the order of increasing distance to the mean po-
sition of their corresponding surfel. This encourages the grasping of the object
from a point that is close to its center of gravity. Next, the ranked grasp hy-
potheses are evaluated in terms of the shape descriptors of their corresponding
grasping points. The extraction of our shape descriptor proceeds in two steps:
i) a rectangular patch is constructed in the 2D image plane such that its major
and minor axes are co-linear and perpendicular to the the line pgqg respectively
(see Fig. 5-left-bottom). ii) Next, each neighboring point (i.e, the point which
lies in the rectangular patch and does not belong to the corresponding surfel)
is iteratively classified as void or collision (i.e., if its distance to the correspond-
ing grasping point is greater or less than a distance threshold respectively). If
several points in the patch are classified as collision (i.e., the mode of patch’s
distance histogram is less than a fixed threshold), the corresponding grasp hy-
pothesis is discarded. This facilitates the selection of grasp hypotheses, whose
corresponding grasping points have sufficient void space for the gripper to fit its
fingers without collision with the neighboring surfaces. After the evaluation of
the grasp hypotheses based on their shape descriptors, the highest ranked grasp
is selected as the most appropriate for grasp execution.

Grasp Execution. This section describes our grasp execution procedures. Once
the most appropriate grasp is selected by the grasp selection algorithm, inverse
kinematics is used to drive the gripper to the grasp location. Inverse kinematics
represent the following mapping:

Gs = (pg, qg, L
r,pap) → (Lg, dg). (10)

As illustrated in Fig. 5-right, Lg denotes the gripper reference frame calibrated
with respect to the camera. The orientation of Lg is such that zLg

(z-axis of Lg

frame) is parallel to the grippers fingers, xLg

connects the fingers and yLg

=
zLg × xLg

, and the origin pLg

is placed between the two fingers. The term
dg corresponds to the distance between the fingers. The grasp execution algo-
rithm proceeds as follows: the gripper is set to a pre-grasp configuration (i.e.,
dg = dg(max)), and is moved to the approach point, pap (i.e., pLg

= pap),
along the shortest directed path vap. Next, the gripper orientation is set to align
with the object surface (i.e., zLg

= npm), and xLg

= ˆpgqg, and the gripper
is translated along the direction npm until it reaches the grasp-position (i.e.,
pLg

> pm). Finally, the fingers move from the pre-grasp configuration to the
grasp-configuration (i.e., dg ≤ |pgqg|) and the grasp-execution concludes when
the joints settle in a static configuration. There are several advantages of our
grasp selection algorithm which include: i) Using surfels to generate pairs of
grasping points facilitates the determination of appropriate pairs and reduces
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outliers (i.e., grasping points which belong to other object instances). This also
reduces the computational complexity by analyzing a fixed number of object sur-
faces compared to the methods (e.g., [14,17]), which search for grasping points
in the entire image space or the entire point cloud. ii) The reflection symme-
try criterion reduces the number of grasp hypotheses to a small number of ap-
propriate grasps from which the best grasp is automatically selected using our
ranking procedure (based on the shape descriptors of the corresponding grasping
points). This is computationally more efficient compared to the methods which
use shape abstractions to evaluate a nearly infinite number of possible grasp
hypotheses [12].

4 Experiments

We evaluated the performance of our algorithms in terms of segmentation accu-
racy (Sec. 4.2) and grasp selection accuracy (Sec. 4.3). To quantify the perfor-
mance and to comprehensively compare with the state-of-the-art methods, we
used three popular object datasets which are publicly available. We also tested
the performance on live video streams from Microsoft Kinect to validate the suit-
ability of our algorithms for robotic applications (see video in the supplementary
material). All experiments were done on a multi-core i7 machine without any
GPU support.

4.1 Datasets

We used two datasets for the evaluation of our segmentation performance. The
first dataset is the Washington RGB-D object dataset (WRGBD) [15], which
provides 8 different video sequences of office and kitchen environments. Each
video sequence in the dataset is a series of RGB-D images captured using a
Kinect sensor from different viewpoints. The variable characteristics of the scenes
such as different illumination settings, variable viewpoints, and a large variety of
objects, make WRGBD a very challenging dataset for object segmentation pur-
poses. The ground truth of the WRGBD dataset is available in two forms: 2D
bounding boxes around salient objects in each scene and, labeled point clouds for
each video sequence. The second dataset is the Object Segmentation Database
(OSD) [26]. OSD contains RGB-D images of table-top scenes in which a large
variety of objects are stacked over each other in several layouts. This is a great
challenge for the segmentation algorithms to separate distinct objects particu-
larly when they occlude each other. The ground truth for this dataset is available
in the form of manually annotated segmentation masks for each object in the
scene. For the evaluation of our grasp selection algorithm, we used the Cornell
grasping dataset [13]. This dataset contains 1035 images of 280 different objects
in different layouts, each annotated with several ground-truth positive and neg-
ative grasping rectangles. A grasping rectangle is an oriented rectangle in the
image plane, which defines the orientation of a parallel gripper with respect to
the image plane [13].
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Fig. 6. 3D Boundary recall (left) and 3D under-segmentation errors (right) of our
algorithm compared to the other methods on the OSD dataset.

Table 1. Object segmentation results on WRGBD dataset

percentage of objects detected

Object category Soda Can Coffee Mug Cap Bowl Flashlight Cereal Box Average

Method in [20] 90.3% 84.2% 88.0% 85.5% 98.3% 95.4% 90.3%

Ours 93.5% 87.3% 91.7% 90.5% 98.5% 98.2% 93.3%

4.2 Evaluation of Object Segmentation

To quantitatively measure segmentation quality (i.e., how accurately the bound-
aries of its segments conform to the physical object boundaries), we used two
standard metrics namely: 3D boundary recall, and 3D under-segmentation er-
ror as suggested in [37]. We compared our results with three state-of-the-art
segmentation methods namely: hierarchical graph-based (GBH) [10], SLIC [1]
and Quickshift (QS) [36]. The boundary recall and under-segmentation results
are shown in Fig. 6-left and Fig. 6-right respectively. The results show that the
performance of our algorithm is not dependent on the number of segments. On
the contrary, other methods (i.e., [10,1,36]) improve as the number of segments
(specified by the user) increase. Furthermore, our algorithm achieved the best
boundary recall and under-segmentation results compared to the other methods.
These improvements are credited to our proposed optimization-based segmen-
tation refinement procedure (see Sec. 3.1 for details), which results in supe-
rior conformity of the surfel boundaries to the physical boundaries compared to
state-of-the-art methods. Table. 1 shows our object segmentation results on the
WRGBD. As shown in the table, our approach achieved the best performance
in the four selected object categories and, on average, attained at least a 3.0%
higher average precision compared to the method in [20]. On the OSD dataset,
our algorithm achieved the best performance in the precision scores compared to
the methods in [27] and [20] as shown in Table 2. These improvements are cred-
ited to our proposed merging criteria (see Sec. 3.2 for details), which efficiently
combines perceptually similar surfels into distinct object hypotheses.
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Table 2. Object segmentation results on
OSD dataset

Algorithm Precision (%) Recall (%)

Ours 94.41 96.20

[27] two SVMs 89.98 97.05

[27] one SVM 93.75 95.48

[20] 62.14 70.93

Table 3. Evaluation of Grasp selection
performance

Algorithm Distance (%) Orientation (%)

Ours 77.6± 2.5 61.5± 1.8

[13] 75.3 ± 2.9 60.1± 3.2

[24] 70.3 ± 6.3 58.5± 7.2

[28] 68.6 ± 10.5 52.9± 8.8

4.3 Evaluation of Grasp Selection

We compared our grasp selection results (on the Cornell grasping dataset) with
the methods in [28,24]. For our evaluation, we compared the top-ranked rect-
angle for each method with the set of ground-truth rectangles for each image.
We present our results using distance and orientation metrics as suggested in
[13]. Table. 3 shows the results of our proposed grasp selection algorithm com-
pared with the other methods. Our proposed algorithm outperforms the other
segmentation-based grasp selection methods [24,28] by up to 7.3% for the dis-
tance metric and 3% for the orientation metric. Our results also show a superior
performance (i.e., an improvement of 2.3% for the distance and 1.4% for the
orientation metrics respectively) compared to the learning-based method in [13].
These improvements are credited to the use of our proposed reflection symmetry
criteria to generate appropriate grasp hypotheses on surfel boundaries which are
subsequently evaluated using our proposed shape descriptor to automatically
select the most appropriate grasp for an unknown object in a model-free manner
(see Sec. 3.3 for detail).

5 Conclusion

We successfully addressed the challenging problems of the segmentation and
grasp selection of unknown stacked and occluded objects without the use of any
prior information (model-free) of the objects or the environment. This was ac-
complished by the introduction of a novel 3D segmentation algorithm, which
efficiently handles the case of stacked and occluded objects. We subsequently
presented a novel grasp selection algorithm, which generates appropriates grasps
hypotheses using surfel boundaries and automatically selects the most appropri-
ate grasp in a model-free manner. Our segmentation and grasp-selection results
show superior performance compared to the state-of-the-art methods.
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