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Abstract. High-order and non-submodular pairwise energies are impor-
tant for image segmentation, surface matching, deconvolution, tracking
and other computer vision problems. Minimization of such energies is
generally NP-hard. One standard approximation approach is to optimize
an auxiliary function - an upper bound of the original energy across the
entire solution space. This bound must be amenable to fast global solvers.
Ideally, it should also closely approximate the original functional, but it
is very difficult to find such upper bounds in practice.

Our main idea is to relax the upper-bound condition for an auxiliary
function and to replace it with a family of pseudo-bounds, which can bet-
ter approximate the original energy. We use fast polynomial parametric
maxflow approach to explore all global minima for our family of sub-
modular pseudo-bounds. The best solution is guaranteed to decrease the
original energy because the family includes at least one auxiliary func-
tion. Our Pseudo-Bound Cuts algorithm improves the state-of-the-art in
many applications: appearance entropy minimization, target distribution
matching, curvature regularization, image deconvolution and interactive
segmentation.

Keywords: Binaryenergyminimization,high-orderandnon-submodular
functions, auxiliary functions, parametric maxflow, pseudo-bounds.

1 Introduction

Recently high-order [2,3,12,13,15,26,29,37] and non-submodular pairwise
[11,16,21,19] energy minimization have drawn tremendous research interests.
Those energy functions arise naturally in many computer vision and image pro-
cessing applications. Examples of high-order functions include but are not limited
to constraints on segment volume [12,37], clique labeling consistency [13,18,35]
and matching target distributions [2,3,12,29]. Pairwise non-submodular energies
occur in deconvolution [11], curvature regularization [8,11,28], inpainting [16]
and surface registration [16].

In general, optimization of high-order or non-submodular pairwise energy is
NP-hard. Existing approximation methods make optimization tractable either
by global or local linearization. Well established LP relaxation methods such as
QPBO [4,30] and TRWS [19] are examples of global linearization techniques
for solving non-submodular energies in vision [16]. By relaxing the integrality
constraints, they globally transform the original function into a linear function
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with extra variables and linear constraints. Unlike global linearization, local
techniques iteratively approximate the original energy around current solution,
for instance, using Taylor approximations [11,12,17,24] or auxiliary functions
[2,3,11,27,29,31]. The recent Fast Trust Region (FTR) method [12] finds the
optimal solution of a local approximation within a trust region, i.e. a region near
current solution where the approximation can be trusted. The trust region size
is adaptively adjusted depending on the quality of current approximation using
well-known trust region paradigms [38]. The recent studies [11,12] have shown
that FTR achieved the state of the art performance in many applications. Our
work is more closely related to bound optimizers, which take auxiliary functions
[2,3,11,22,27,29,31] as local approximations and were recently shown to yield
competitive performances in several vision problems [3,11,29].

1.1 Bound Optimization

We tackle binary energy functions E(S) where S = {sp | p ∈ Ω} is a vector
of binary variables for pixels p ∈ Ω. Bound optimizers iteratively minimize an
auxiliary function bounding the original energy across the entire solution space.

Definition 1 (Auxiliary function). At(S) is an auxiliary function of E(S)
at current solution St if it satisfies the following conditions:

E(S) ≤ At(S), ∀S (1a)

E(St) = At(St). (1b)

Then, the current solution St is updated to the global optimum of the auxiliary
function:

St+1 = argmin
S

At(S) , t = 1, 2, . . . (2)

Ideally optimization of the auxiliary function is easier than that of the original
energy. Bound optimizers guarantee not to increase the original energy at each
iteration since we have

E(St+1) ≤ At(St+1) ≤ At(St) = E(St). (3)

Examples of well-known bound optimizers include mean-shift [9], difference of
convex functions (DC) programming techniques [1], expectation maximization
(EM) and submodular-supermodular procedures [27]. Besides, bound optimizers
successfully tackled various problems in machine learning [39], computational
statistics [22] and nonnegative matrix factorization [23].

In vision, boundoptimizerswere recently used for high-order or non-submodular
pairwise energies [3,29,11,31]. The recent Auxiliary Cuts [3] work derived bounds
for certain class of high-order functions. A variant of Auxiliary Cuts (LSA-AUX)
is proposed in [11] for quadratic pseudo-boolean optimization.
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Fig. 1. Illustration of how pseudo-bound optimization framework updates current solu-
tion from St to St+1. Instead of optimizing only one auxiliary function At(S), we explore
a parametric family of pseudo-bounds. The best solution with the minimum original
energy is chosen among the set of all global minima for the family. They correspond
to breakpoints of parametric maxflow method [20] that can be efficiently explored in
polynomial time. By optimizing the family of pseudo-bounds, larger decrease in energy
is achieved (St → St+1). [Best viewed in color]

1.2 Motivation and Contributions

Typically, for bound optimizers, one auxiliary function is chosen and optimized
at each iteration. Furthermore, such an auxiliary function has to be an upper
bound for the original energy E(S) across the entire solution space, see At(S) in
Fig.1. However, in practice, it is difficult to find bounds that approximate well the
original energy while being amenable to fast global solvers. Although working
well for some applications, auxiliary cuts [3,11] may converge to undesirable
solutions for several types of functions, see a representative example in Fig. 2.

Our main idea is to relax the bound condition for an auxiliary function replac-
ing it with pseudo-bounds, which may better approximate the original energy.
Consider the example in Fig.1. Auxiliary function At(S) does guarantee that its
global minimum decreases the original energy E(S), see Sec.1.1. However, there
are many other approximation functions whose global minimum also decrease
the original energy. For example, optimal solutions for (a) and (c) decrease E(S)
because these functions are local upper bounds for E(S) around their global
minima. Function (b) does not have this local bound property, but its global
minimum still decreases the original energy. Moreover, solutions obtained by
minimizing other approximation functions, e.g. (c), could be better than the one
from the upper bound, i.e. auxiliary function At(S). In that sense, relaxing the
upper bound constraint allows better approximations of E(S).

We want to design an optimization algorithm using a larger class of relaxed
bounds, which could give better solutions than proper auxiliary functions. The
key challenge is choosing such pseudo-bounds so as to guarantee the original
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energy decrease; note that the upper bound constraint was used when proving
(3). One way to proceed could be to design some specific relaxed bounds that
guarantee the decrease for E(S) by construction. For example, in some appli-
cations it might be possible to design a particular approximation function that
is guaranteed to locally dominate the original energy only around its global
optimum, as in Fig.1 (a) or (c), which is sufficient to prove the decrease of E(S).

This paper follows an alternative approximation approach. Instead of a single
auxiliary function, at each iteration we optimize a family of pseudo-bounds that
includes only one proper bound, while the bound constraint is relaxed for the
other functions. As shown in Sec.2.1, inclusion of one proper bound is sufficient to
guarantee the original energy decrease when the best solution is selected among
global minima for the whole family. As illustrated in Fig.1 and confirmed by our
practical experiments, relaxation of the bound constraint allows to significantly
improve the quality of optimization compared to auxiliary functions, even when
pseudo-bounds come from the same class of globally optimizable functionals.

A parametric family of pseudo-bounds is built as follows. We start from a
known optimizable, i.e. submodular, auxiliary function and add a unary bound
relaxation term weighted by a parameter. In order to explore all global min-
ima for the whole parametric family efficiently, we propose parametric maxflow
[20,14,10], reviewed in Sec. 2.2. To find all global minima for the whole family
in polynomial time, the unary bound relaxation term must be monotone w.r.t.
parameter. This practical consideration is important when selecting parametric
pseudo-bound families for specific applications, e.g (12), (16), or (19). Note that
parametric maxflow can be easily parallelized to further accelerate our algorithm.

Our contributions can be summarized as follows.

– This paper proposes a new general pseudo-bound optimization paradigm for
approximate iterative minimization of high-order and non-submodular bi-
nary energies. It is a generalization of the standard majorize-minimize prin-
ciple relaxing the bound constraint for an auxiliary function.

– We optimize a parametric family of pseudo-bounds at each iteration. To
guarantee the energy decreases we include one proper bound in the family.

– In the context of discrete optimization, we propose parametric maxflow tech-
nique [20,14,10] to explore all global minima for the whole family in low-order
polynomial time. To guarantee this complexity, we can choose families of
pseudo-bounds with monotone dependence on parameter.

– We propose and discuss several examples of pseudo-bound families for dif-
ferent high-order and non-submodular pairwise energies.

– Our parametric Pseudo-Bound Cuts algorithm (pPBC) improves the-state-
of-the-art in many energy minimization problems, e.g. entropy based image
segmentation, target distributions matching, curvature regularization and
image deconvolution. In particular, we outperform the standard GrabCut
algorithm [32] both in terms of energy and segmentation error statistics.
Our pseudo-bound approach is more robust to initialization and binning.
Our pPBC algorithm also gives lower energy than Auxiliary Cuts [3] and Fast
Trust Region [12] for distribution matching, see Fig. 2, and other challenging
optimization problems in computer vision, see Section 4.
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Fig. 2. Matching target foreground color distribution using auxiliary cuts [3], fast trust
region [12] and pPBC. pPBC achieves the lowest energy.

2 Parametric Pseudo-bound Cuts (pPBC)

2.1 Our Pseudo-bound Framework

First, we define a family of pseudo-bounds for a scalar parameter λ with values
in some set Λ ⊆ R, for example Λ = [λmin, λmax].

Definition 2 (Pseudo-Bound). Assume energy E(S), some current solution
St ∈ {0, 1}Ω and parameter λ ∈ Λ. Then, function Ft(S, λ) : {0, 1}Ω ×Λ→ R is
called a pseudo bound for energy E(S) if there exists λ′ ∈ Λ such that Ft(S, λ

′)
is an auxiliary function for E(S) at current solution St.

Wemay informally refer to pseudo-bound function Ft(S, λ) as a family of pseudo-
bounds or a parametric family.

Our goal is to iteratively update current solution St for energyE(S). Instead of
bound optimization discussed in Sec.1.1, we propose Algorithm 1 that computes
new better solution St+1 by optimizing pseudo-bound Ft(S, λ) as follows.

Proposition 1. Assume energy E(S), current solution St and a pseudo-bound
family Ft(S, λ) over parameter λ ∈ Λ. Let Sλ denote an optimal solution for
Ft(S, λ) at any particular λ:

Sλ = argmin
S

Ft(S, λ). (4)

Then, λ∗ = argminλE(Sλ) gives solution St+1 := Sλ∗
reducing original energy

E(St+1) = E(Sλ∗
) ≤ E(St).

Proof. Pseudo-bound family Ft(S, λ) contains an auxiliary function Ft(S, λ
′) for

some λ′. Optimization over the whole family should give better solution than
one particular function E(Sλ∗

) ≤ E(Sλ′
). Then, the proposition follows from

the property of auxiliary functions E(Sλ′
) ≤ E(St), see (3). ��

We construct a pseudo-bound family at current solution St by augmenting
some auxiliary function At(S) with a weighted bound relaxation term Rt(S):

Ft(S, λ) = At(S) + λ Rt(S). (5)
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Algorithm 1. Parametric Pseudo-Bound Cuts (pPBC)

1 S0 ←− Sinit

2 For t = 0, 1, 2, ..., repeat until convergence
3 Construct an auxiliary function At(S) at current solution St;
4 Combine At(S) with unary relaxation term Rt(S) to form pseudo-bound

Ft(S, λ) = At(S) + λ Rt(S)
5 //Optimize the parametric family of pseudo-bounds

Sλ = argminS Ft(S, λ), for λ ∈ Λ
6 //Score candidate solutions and update

λ∗ = argminλE(Sλ), St+1 ←− Sλ∗

Note that for λ = 0 our pseudo-bound Ft(S, λ) in (5) reduces to auxiliary
function At(S). Starting from the same current solution St, our pseudo-bound
optimization is guaranteed to find at least as good or better solution than
optimization of bound At(S). While pseudo-bound may not be a proper bound
for λ 	= 0, it may better approximate the original energy E(S), see Fig.1.

In the context of binary energies E(S) we typically choose some submodular
At(S) and modular (unary) Rt(S). The resulting pseudo-bound family (5) is of
the form (6) that allows to efficiently explore the whole set of solutions Sλ with
standard parametric maxflow techniques reviewed in Sec. 2.2. The next solution
St+1 = Sλ∗

can be computed by selecting Sλ with the lowest value of original
energy E(S), as summarized in Alg.1.

2.2 Overview of Parametric maxflow

Parametric maxflow technique [20,14,10] is a building block in our proposed
algorithm. For all λ in some interval Λ = [λmin, λmax], parametric maxflow can
efficiently generate a (finite) set of all distinct solutions Sλ ∈ {0, 1}Ω minimizing
energy E(S, λ) of form

Sλ = argmin
S

E(S,λ)
︷ ︸︸ ︷
∑

p∈Ω

(ap + λbp)sp +
∑

(p,q)∈N
φpq(sp, sq) (6)

where φpq are submodular pairwise terms for a set of pairwise factors N . Note
that the unary terms in (6) linearly depend on parameter λ.

As discussed in [7,20], interval Λ can be broken into a finite set of subintervals
between breakpoints λ1 < λ2 < ... < λk ∈ Λ such that any λ inside each given
interval [λi, λi+1] gives the same solution Sλ = Si. Parametric maxflow identifies
all breakpoints and solutions Si by making a finite number of calls to the maxflow
procedure, see [20,7] for details. Importantly, in monotonic case when coefficients
bp in (6) are either all non-negative or all non-positive, optimal solutions Si

have a nestedness property leading to guaranteed polynomial complexity. This
necessitates our choice of relaxation term Rt(S) to have unary coefficients of the
same sign.
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(a) Volumetric prior, Sec.3.1.1 (b) Bhattacharyya prior, Sec.3.1.3

Fig. 3. Pseudo-bound families for two cardinality functions. Auxiliary functions are
red.

3 Examples of Pseudo-bounds

Algorithm 1 for minimizing energy E(S) depends on pseudo-bound (5) and re-
quires specific choices of a submodular auxiliary function At(S) and a unary
relaxation term Rt(S). This section provides practical pseudo-bound examples
for a wide range of high-order and non-submodular pairwise energies E(S).

3.1 High-Order Energies

3.1.1 Volumetric Potential [12,37] like ψ(|S| − V0) for convex symmetric
function ψ(·) penalize deviation of segment size |S| from target volume V0. For
example, if ψ(x) = x2 and S ⊂ St we can use the following pseudo bound family1

illustrated in Fig.3(a)

Ft(S, λ) = (|St| − 2V0)|S|+ V 2
0

︸ ︷︷ ︸

At(S)

+λ (|S| − |St|)
︸ ︷︷ ︸

Rt(S)

. (7)

3.1.2 Appearance Entropy was proposed for image segmentation in [35] as
a general color consistency criterion that can be combined with other standard
terms, e.g. boundary smoothness, as in the following binary segmentation energy

E(S) = |S| ·H(S) + |S̄| ·H(S̄) + |∂S| (8)

where H(S) and H(S̄) are entropies of color histograms inside foreground S
and background S̄ and |∂S| = ∑

{p,q}∈N ωpq|sp − sq| is segmentation boundary

length. Indirectly, color entropy was also used for segmentation in [40,32,6].
Entropy can also be used as a clustering criterion for any image features that
can be binned. In fact, entropy and related information gain criterion are widely
used in learning, e.g. for contextual clustering [25] or decision trees [34].

1 For ψ(x) = x2 our volumetric potential is non-submodular pairwise, see also Sec.3.2.
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Entropy-based energy (8) from [35] is related to a well-known minimum de-
scription length (MDL) functional [40,6] for color model fitting. In particular,
for two segments it reduces to a color model fitting energy in GrabCut [32]

E(S, θ1, θ0) = −
∑

p∈Ω

logPr(Ip|θsp) + |∂S| (9)

where θ1 and θ0 are variables corresponding to unknown color models for fore-
ground S and background S̄. As shown in [35], globally optimal S for high-order
energy (8) and mixed optimization functional (9) coincide if color models θ are
represented by histograms. Since (9) is known to be NP-hard [36], it follows that
high-order entropy energy in (8) is also NP-hard.

Equivalence of global solutions for entropy (8) and color-model fitting (9) sug-
gests that (8) is minimized indirectly when applying standard block-coordinate
descent (BCD) techniques [40,32,6] to energy (9) separately optimizing variables
S and θ at each iteration. Below, we show that BCD in [32] can be seen as a
bound optimization method for entropy (8). Then, we use the corresponding
auxiliary function to build a family of pseudo-bounds that generate significantly
better results, as shown by our experiments in Sec.4.1.

Proposition 2. Assume fixed histograms θ1t and θ0t computed from the colors
of current solution St (foreground) and its complement S̄t (background). Then,

At(S) := E(S, θ1t , θ
0
t ), (10)

with E as in (9), is an auxiliary function for entropy-based energy (8) at St.

Proof. It follows from a cross entropy discussion in [35]. Indeed, as easy to check

E(S, θ1t , θ
0
t ) = |S| ·H(S|St) + |S̄| ·H(S̄|S̄t) + |∂S| (11)

where H(·|·) is a cross-entropy of color distributions in two sets of pixels. In-
equality H(A|B) ≥ H(A|A) = H(A) for ∀A,B ⊂ Ω implies

E(S, θ1t , θ
0
t ) ≥ E(S)

where E(S) is from (8). It is also easy to check that E(St, θ
1
t , θ

0
t ) = E(St). ��

Corollary 1. Block-coordinate descent (BCD) for mixed functional (9), as in
GrabCut [32], is a bound optimization for entropy-based energy (8), see Sec.1.1.

Proof. Two steps during each iteration of BCD in
GrabCut are (I) optimization of segment S by apply-
ing graph cuts to energy (9) with fixed color models,
as in Boykov-Jolly [5], and (II) optimization of color
models θ1, θ2 in energy (9) with fixed segmentation.
Prop. 2 implies that the segmentation step optimizes
auxiliary function At(S) for energy (8) at St and gives
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next solution St+1, as illustrated on the right. Color model re-estimation step
gives new auxiliary function At+1(S) at St+1. �

Our proposed pPBC method for entropy-based segmentation energy (8) aug-
ments the auxiliary function At(S) in (10) with weighted bound relaxation term
λ(|S| − |St|) giving the following family of pseudo-bounds:

Ft(S, λ) = E(S, θ1t , θ
0
t ) + λ (|S| − |St|). (12)

3.1.3 Matching Color Distributions [3,12,29,2] One way of matching
target color distributions is to minimize Bhattacharyya measure:

Bha(S) = −
∑

k

√

pknS
k /|S|, (13)

where nS
k is the number of foreground pixels in color bin k and

∑

k pk = 1 is the
target distribution. For S ⊂ St, a family of pseudo-bounds (Fig. 3) is given as:

Ft(S, λ) = −
∑

k

√

pk

nSt

k |St|
nS
k

︸ ︷︷ ︸

At(S)

+λ (|S| − |St|)
︸ ︷︷ ︸

Rt(S)

(14)

Another option for matching distributions is to use the KL divergence [3]:

KL(S) =
∑

k

pk log
pk

nS
k /|S|+ ε

=
∑

k

pk log pk −
∑

k

pk log

(

nS
k

|S| + ε

)

, (15)

where ε is a small constant used to avoid numerical issue. In this case, for S ⊂ St,
we have the following family of pseudo-bounds (omitting constant

∑

k pk log pk):

Ft(S, λ) =
∑

k

pk

nSt

k

⎛

⎝log
ε

n
St
k

|St| + ε

⎞

⎠nS
k − log ε

︸ ︷︷ ︸

At(S)

+λ (|S| − |St|)
︸ ︷︷ ︸

Rt(S)

, (16)

where At(S) is the auxiliary function derived recently in [3].

3.2 Non-submodular Pairwise Energies

We consider a general class of binary pairwise non-submodular energies, which
are useful in various vision applications [16,11], e.g., segmentation, stereo, in-
painting, deconvolution, and many others. Such energies can be expressed as:

E(S) =
∑

(p,q)∈N
mpqspsq = STMS, S ∈ {0, 1}Ω (17)

where M = {mpq ∈ R | p, q ∈ Ω} is a symmetric matrix containing pairwise
potentials. if mpq ≤ 0 ∀(p, q), energy (17) is submodular and, therefore, global
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Fig. 4. pPBC-T: Pseudo-bounds (purple) and auxiliary functions (red) of non-
submodular potential mpqspsq for current configuration sp,t = 0, sq,t = 0 (left) and
sp,t = 0, sq,t = 1 (right).

Table 1. Auxiliary functions [11] and weighted bound relaxation term for pPBC-T

(sp,t, sq,t) Auxiliary function relaxation term (pPBC-T)

(0, 0) mpq(sp + sq)/2 λ(sp − sp,t + sq − sq,t)
(0, 1) mpqsp λ(sp − sp,t)
(1, 0) mpqsq λ(sq − sq,t)
(1, 1) mpq(sp + sq)/2 λ(sp − sp,t + sq − sq,t)

optima can be reached in a low-order polynomial time using graph cuts [4].
The general non-submodular case is NP-hard. In the following, we propose three
different pseudo-bounds families for (17) for non-submodular pairs (mpq > 0).

pPBC-T(touch) gives pseudo-bounds for each non-submodular potential
mpqspsq,mpq > 0. Depending on the current configuration sp,t and sq,t for sp
and sq, we augment the bound recently proposed in [11] with the relaxation
terms specified as in Table 1. Fig. 4 shows the auxiliary functions in red and
pseudo-bounds in purple for current configuration (0, 0) and (0, 1). Note that
the bound relaxation term for current configuration (0, 1) and (1, 0) is different
from that of (0, 0) and (1, 1). This relaxation allows the pseudo-bounds to touch
the original energy at as many points as possible, yielding better approximation.

pPBC-B(ballooning) This option uses the auxiliary function in Table 1 aug-
mented with a linear ballooning term λ (|S| − |St|).

pPBC-L(Laplacian) We derive the third pseudo-bounds family based on the
Laplacian matrix. Let d(p) =

∑

qmpq and D be the diagonal matrix having d
on its diagonal. Notice that, in the case of supermodular terms (mpq ≥ 0), D is
diagonally positive and, therefore, positive semidefinite. With symmetric matrix
M , it is well known that the corresponding Laplacian matrix L = D − M is
positive semidefinite [33]. Now we write (17) as follows for λ ∈ Λ:

E(S) = ST (M − λD)S
︸ ︷︷ ︸

G(S)

+λSTDS
︸ ︷︷ ︸

H(S)

. (18)

H is a unary potential for binary variables: H(S) =
∑

p d(p)s
2
p =

∑

p d(p)sp.
Also, notice that ∀λ ≥ 1, G is concave w.r.t S because M − λD is negative
semidefinite (as it is the sum of two negative semidefinite matrices:
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Fig. 5. Left: interactive segmentations with BCD (GrabCut) or pPBC from different
initialization (ellipses). Proposed pPBC method is more robust to inferior initialization.
Right: unsupervised figure-ground segmentation with pPBC. Average color is shown.

M − λD = −L + (1 − λ)D). Therefore, let ∇ denotes the gradient, we have
the following pseudo-bounds at current solution St which includes bounds of
(17) for λ ≥ 1.

Ft(S, λ) = G(St) +∇G(St)
T (S − St) + λH(S)

= G(St)−∇G(St)
TSt

︸ ︷︷ ︸

Constant

+ 2[(M − λD)St]
TS + λH(S)

︸ ︷︷ ︸

Unary potential

(19)

4 Experiments

4.1 Appearance Entropy Based Segmentation

Robustness w.r.t Initialization and Binning. We use GrabCut and BCD
interchangeably for the rest of the paper. Left part of Fig. 5 depicts an example
of interactive segmentation with BCD or our proposed pPBC, and shows that
BCD is sensitive to initializations, unlike pPBC. pPBC can even tolerate trivial
initialization, see an un-supervised segmentation example in the right of Fig. 5.

Furthermore, we observed that with more appearance model variables, namely
the number of color bins, BCD is more likely to get stuck in weak local minima.
We randomly generated 500 box-like initializations for an input image, and run
BCD and pPBC for different numbers of color bins, ranging from 163 to 1283.
From the solutions we obtained with BCD or pPBC, we computed the corre-
sponding error rates and energies. Fig. 6 depicts the scatter plots of error rates

Fig. 6. Scatter plots; error rates versus energies for 500 solutions of BCD and pPBC
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Error rate Time

GrabCut (163 bins) 7.1%2 1.78 s
GrabCut (323 bins) 8.78% 1.63 s
GrabCut (643 bins) 9.31% 1.64 s
GrabCut (1283 bins) 11.34% 1.45 s

DD (163 bins) 10.5% 576 s

One-Cut (163 bins) 8.1% 5.8 s
One-Cut (323 bins) 6.99% 2.4 s
One-Cut (643 bins) 6.67% 1.3 s
One-Cut (1283 bins) 6.71% 0.8 s

pPBC (163 bins) 5.80% 11.7 s
pPBC (323 bins) 5.60% 11.9 s
pPBC (643 bins) 5.56% 12.3 s
pPBC (1283 bins) 7.51% 15.9 s
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Fig. 7. Error rates and speed on GrabCut dataset for GrabCut [32], Dual Decomposi-
tion (DD) [36], One-Cut [35] and our pPBC method.

versus energies for the 500 solutions. Points on bottom-left give low energy and
small error rate. The wider these dots spread across the plane, the more local
minima the algorithm converged to. pPBC works much better than BCD for
finer binning and is more robust to initializations.

Comparisons with the State of the Art [35,36] We compare with Grab-
Cut, which as demonstrated in Sec.3.1.2, can be viewed as a bound optimizer.
We run both algorithms on the GrabCut dataset [32] (The cross image excluded
for comparison with [36]). We set the weight of the 8-connected contrast-sensitive
smoothness term to 15 and vary number of color bins. As shown in Tab.3, pPBC
consistently gives lower energies and misclassification errors. Our current im-
plementation does not use a straightforward multi-core CPU parallelization of
parametric maxflow by breaking the range of λ into intervals. Thus, significant
speed up of our pPBC algorithm is possible. In the next experiment we tuned
the smoothness term weight for pPBC and other methods [32,35] to obtain the
best error statistics for each. Fig. 7 shows a competitive performance of pPBC.

Table 3. Statistics of pPBC and GrabCut [32] over the GrabCut database

Mean Energy # of lower energy Mean time(s)

GrabCut [32] - 163 bins 1.2349 × 106 1 1.0s

pPBC - 163 bins 1.2335× 106 38 11.2s

GrabCut [32] - 323 bins 1.7064 × 106 2 0.9s

pPBC - 323 bins 1.7029× 106 37 11.7s

GrabCut [32] - 643 bins 2.2408 × 106 1 0.9s

pPBC - 643 bins 2.2361× 106 47 14.1s
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Table 4. Matching color distribution (KL or Bhattacharyya distance) with Auxiliary
Cuts [3], FTR [12], pPBC and its limited version with λ ≤ 0 for the pseudo-bounds.

KL divergence (15) Bhattacharyya distance (13)

Method Mean energy Mean error Time Mean energy Mean error Time

Auxiliary Cuts [3] 6189 16.54% 1.8s -12402 24.1% 1.7s

pPBC(λ ≤ 0) 6150 14.88% N/A -12451 23.7% N/A

FTR [12] 5868 7.70% 4.40s -14499 3.2% 2.71s

pPBC(λ ∈ [−∞,+∞]) 5849 3.63% 2.98s -14504 2.9% 1.99s

4.2 Matching Color Distributions

We experiment on the database [32], and used the bounding boxes as initial-
izations. Similar to [3,12], the target distribution is learned from the ground
truth. We compared pPBC with auxiliary cuts [3] and FTR [12]. We also tested
a limited version of pPBC where only non-positive λ’s were explored within the
family of pseud-bounds. Note that, when λ is non-positive, the parametric family
includes only auxiliary functions. The mean error rate, energy and running time
are reported in Table 4. Exploring only a family of auxiliary functions (λ ≤ 0)
did not improve the results. pPBC with parameter λ ∈ R yielded the best per-
formance, while being slightly slower than auxiliary cuts (even though pPBC
explores a family of functions instead of only one). FTR yielded comparable
mean energy to pPBC, but is slower. Fig. 2 depicts typical examples.

4.3 Curvature Regularization

We applied our framework to the curvature model proposed in [8], which pe-
nalizes 90 degree angles in a 4-connect neighborhood system. We also compare
pPBC to the recent algorithms (LSA-AUX and LSA-TR) in [11], which were
shown to outperform standard state-of-the-art methods such as QPBO [30] and
TRWS [19]. Fig. 8 plots the energies of the solutions with different weights of the
curvature term. pPBC-T gives the lowest energy among all methods. We also
observed that the best λ for pPBC-T often does not make the pseudo-bound an
auxiliary function, which means the bounding constraint is violated.

Table 5. Average energy with 10 random noisy images

Noise σ LSA-AUX [11] LSA-TR [11] pPBC-L pPBC-B pPBC-T

0.05 40.34 30.83 39.49 39.65 30.81

0.10 130.24 119.84 128.68 128.06 121.20

0.15 277.27 263.06 275.89 276.62 266.35

0.20 482.54 451.78 480.80 482.09 471.11
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Fig. 8. Segmentation with the curvature regularization model in [8]

image+noise LSA-AUX LSA-TR pPBC-T

Fig. 9. Deconvolution results. Top row: noise σ = 0.10, bottom row: σ = 0.2.

4.4 Deconvolution

Fig. 9 depicts a binary image convolved with a mean 3 × 3 filter, with a Gaus-
sian noise added. The purpose is to recover the original image via optimizing
the energy: E(S) =

∑

p∈Ω (Ip − 1
9

∑

q∈Np
sq)

2, where Np is a 3 × 3 neighbor-
hood window centered at pixel p. In this energy, all pairwise interactions are
supermodular. We compared our pPBC-B, L or T to the recent algorithms in
[11] (LSA-AUX and LSA-TR). Table 5 shows average energy of those methods.
Note that LSA-TR achieves lower energy but visually worse deconvolution. For
σ = 0.05 noise, LSA-AUX takes 0.12s, LSA-TR 0.73s and pPBC-T 1.46s.

5 Conclusion

This paper proposes a new general pseudo-bound optimization paradigm for ap-
proximate iterative minimization of high-order and non-submodular binary ener-
gies. It generalizes the standard majorize-minimize principle relaxing the bound
constraint for an auxiliary function. We propose to optimize a family of pseudo-
bounds at each iteration. To guarantee the energy decreases we include at least
one bound in the family. We propose parametric maxflow [20,14,10] to explore
all global minima for the whole family in low-order polynomial time.

To guarantee polynomial time complexity, pseudo-bounds families with mono-
tone dependence on parameter are chosen. We propose and discuss several
options of pseudo-bound families for various high-order and non-submodular
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pairwise energies. Our parametric Pseudo-Bound Cuts algorithm (pPBC) im-
proves the-state-of-the-art in many energy minimization problems, e.g. entropy
based segmentation, target distributions matching, curvature regularization and
deconvolution. In particular, we show that the well-known GrabCut algorithm
[32] is a bound optimizer. Our pseudo-bound approach is more robust to inferior
initialization and finer binning for image segmentation. Our pPBC algorithm
also gives lower energy than Auxiliary Cuts [3] and Fast Trust Region [12] for
distribution matching and other challenging optimization problems in vision.
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