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Abstract. Visual context is used in different forms for saliency computation.
While its use in saliency models for fixations prediction is often reasoned, this is
less so the case for approaches that aim to compute saliency at the object level. We
argue that the types of context employed by these methods lack clear justification
and may in fact interfere with the purpose of capturing the saliency of whole
visual objects. In this paper we discuss the constraints that different types of
context impose and suggest a new interpretation of visual context that allows
the emergence of saliency for more complex, abstract, or multiple visual objects.
Despite shying away from an explicit attempt to capture “objectness” (e.g., via
segmentation), our results are qualitatively superior and quantitatively better than
the state-of-the-art.

1 Introduction

The remarkable ability of the visual system to rapidly attend towards salient stimuli en-
ables humans to effortlessly filter visual input and allocate attentional resources differ-
entially to salient regions. The computational prediction of this outcome can facilitate
numerous applications in both the analysis of images (i.e., in computer vision) and their
synthesis (i.e., in graphics). For example, the need to adjust visual context to a range
of display devices has motivated image/video retargeting and content-aware resizing
techniques that rely on saliency prediction [12,49,4,34,19]. A capacity to predict what
is salient or not has also spared much computational resources in image classification
[39], retrieval [13], object recognition [43] image and video compression [15,50], and
served various other applications such as image thumbnailing [34,45], visualization and
symmetrization [47,18,42] and object segmentation [21,30].

Judging by this variety of applications, the abundance of existing work on saliency
computation and the need for perceptually-consistent and accurate saliency predictions
are not surprising. We begin this work by taking a closer look at the mechanisms used
to compute saliency and to examine the constraints and limitations they may pose on
the computational process. Central to our exploration is the concept of “context” and
part of our goal is to argue that it (i.e., context) alone is a sufficient substrate from which
saliency can fully emerge. As we show later, despite using this single building block, our
saliency results exceed state-of-the-art performance from methods that employ diverse
set of additional tools and mechanisms.
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1.1 Saliency and Context

From an ecological perspective, the saliency of a constituent in a visual scene is the
degree to which it demands the allocation of computational (attentional) resources in
order to better inquire its role in the visual stimulus. In practice, as is also acknowledged
in both perceptual [46,38,16] and computational [29,14] accounts, saliency is strongly
influenced (and often fully determined) by the degree to which the constituent stands
out from its context. Combining the two, the saliency of a visual constituent cannot be
determined without knowledge or understanding of the context in which it is embed-
ded. Interestingly, this constituent-context duality has taken different forms in previous
research of saliency computation.

Saliency is primarily driven in a bottom-up manner, depending on low level visual
cues in the visual scene. In one of the first biologically plausible computational models
for controlling visual attention, Koch and Ullman [31] followed Treisman and Gelade
[46] and introduced the idea of a saliency map. Visual input is first decomposed into
several maps encoding early visual features. Spatial competition in terms of hierarchical
center-surround differences then determines their convergence to a unique map encod-
ing saliency at each location. Most subsequent bottom-up saliency algorithms followed
this model and compute the saliency of pixel constituents based on their local context
(i.e., neighborhood) at multiple scales [27,22,10,25]. Alternatively, context was also
considered globally, e.g., as a smoothed version of the amplitude [23] or the phase [20]
spectrum of the image. Deviations from the original non-smoothed spectrum with re-
spect to this global context are then considered as salient locations when transformed
back to the spatial domain.

In addition to its categorization as local or global, bottom-up saliency may also be
viewed at the level at which it operates. Unlike the models mentioned above, that mainly
act spatially in order to reproduce human visual search strategies or predict visual fixa-
tions, other methods aim at detecting saliency at the higher level of objects. While the
(local) visual context used by the first class of methods is reasonably intuitive, the forms
of visual context employed by the latter (object-level) approaches typically remain un-
explained. We argue below that this somewhat obscure relationship often constrains the
nature of visual objects they may capture in order to measure their saliency.

Considering the scope of saliency as discussed above, we define visual context of a
constituent as follows:

Definition 1. The visual context of a constituent is the set of visual units in the image
that are used in the computational process that measures its saliency.

This somewhat general definition intentionally lacks a particular spatial relationship
between the constituent and it context. It is used in Sec. 2 to discuss the contribution
of different types of visual context to detecting saliency at the object level and to point
at the constraints that these types of context may impose. Then, in Sec. 3, we suggest
a novel approach to visual context, which is intuitively justified and can capture object
saliency for both simple, complex, and abstract objects (Fig. 1) all without explicit
reference to “objectness” or the use of segmentation.

Before beginning our closer look at visual context, one disclaimer is advised. Like
many others, in this work we too discuss the notion of visual context that is associated
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Fig. 1. Salient objects in visual stimuli can have different flavors. As is typical in virtually all
benchmark databases, salient objects can be uniform singletons (panel a). However, salient ob-
jects can be multi-part and heterogeneous (panel b), they can have some multiplicity (panel c), or
they can even be completely abstract (like the ”hole” in panel d). By their implied notion of visual
context, most computational saliency models impose certain constraints on the types of objects
they can handle, with practical success limited to the simpler cases. Here we show computed
saliency map (thresholded at 80%) from two state-of-the-art algorithms (CSPR [29] and PCAS
[35]) and our own method. By modeling context instead of the objects we significantly reduce the
constraints on the nature of objects that may be detected as salient, as is illustrated by the better
assignment of saliency in all these cases.

with bottom-up saliency. But the latter may be strongly modulated or even overridden
by top-down factors as well, including the experience (or expertise) of an observer or his
biases due to task definition [26]. Such factors give rise to other forms of visual context
and modulation of bottom-up saliency by semantic interrelations between visual objects
[7,5] or the global structuring of a scene [6,41,37,40]. These types of context remain
outside the scope of our present work.

2 Background and Related Work

Approaches to salient object detection embrace the same notion of a saliency map dis-
cussed above (sometimes with additional steps like segmentation) but employ different
types of visual context (in the sense of the Def. 1) to compute such maps (see Fig. 2).
To address the specific contribution of the types of context used we roughly categorize
the different approaches into the following two groups:

Contrast-Based Saliency: In the first group are approaches that associate saliency
with high contrast between local or regional structures. To measure this contrast,
the computational mechanisms employ various center-surround structures. The vi-
sual constituent for which a measure of saliency is computed is regarded as the
center and is spatially surrounded by its context. Some approaches define the sur-
round component independent of visual content, e.g., as the local neighborhood of
a pixel [24,48,1,32] or larger regular blocks [33]. In other approaches, the surround-
ing context depends on a grouping process which typically results in a superpixel
representation of the image [29,11]. Apart from reducing computational costs, su-
perpixels are preferable due to their capacity to preserve locally coherent structures
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(a) (b) (c)

Fig. 2. Different types of visual context (marked in red) of a visual constituent (marked in blue).
(a) The local neighborhood of a pixel. (b) Pixels at the surround of a larger scale region. (c)
k-nearest neighbors of a patch.

(unlike pixels or predefined blocks). To a certain extent, these structures facilitate
meaningful central constituents when measuring contrast and therefore are more
suitable for saliency assignment.

Rarity-Based Saliency: The second group of approaches consider saliency as distinct-
ness or rarity. Intuitively, these may signal the importance of a visual constituent
compared with the redundancy of recurring visual information. Often in this ap-
proach the context is a global representation of the entire visual input. A constituent
is then considered salient if its representation does not conform with the context.
For example, such a representation may be the image mean color vector that is
used as reference to measure the saliency at all other pixels [2,4]. Alternative rep-
resentation has considered a smoothed version of the phase spectrum [28] in or-
der to suppress non-salient components in the original spectrum and thus highlight
salient locations after transforming back to the spatial domain. In a somewhat re-
lated way, image patches that are highly dissimilar to their k-nearest neighbors were
considered salient as this indicates their dissimilarity to all other patches [19,11].
Recently, this measure of dissimilarity has been shown oblivious to patch statistics,
leading to a new measure based on the distance of each patch to the average patch
along the principal components of the patch distribution [35].

An important factor in approaches from both of the groups above is the scale at
which saliency is computed. When the context is predefined as the surround in a cer-
tain center-surround structure or as a global description of the visual input, its scale
may be selected arbitrarily. In case it is determined by a grouping process, the scale
may be influenced by different input parameters. However, in both cases there is no
single appropriate scale. Tightly localized context would essentially capture edge infor-
mation while context of excessive spatial scale may falsely signal non-salient areas and
incorporate visual information whose relevance to the saliency of a visual constituent
is unclear. Thus, the saliency map is often a combined result of computations across
multiple scales.

Other complexities that visual objects may exhibit pose additional constraints to the
nature of visual objects that may be captured during saliency computation. Indeed, the
implicit motivation underlying contrast-based saliency is the possibility that at a certain
scale the center part of the center-surround structure will capture the object to allow
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Fig. 3. Binarized saliency maps demonstrate the challenges in capturing whole salient objects by
contrast (top) and rarity (bottom) based approaches. The two leftmost columns in each category
show example images and our maps. Constrast: Saliency maps in columns c and d are generated
as part of saliency computation algorithms, but are not their final output (which includes addi-
tional steps). They are shown here to demonstrate how capturing large or discontiguous objects
is constrained when relying on regional center-surround. In column c computation is based on
rectangular structures of varying size and aspect ratio [32] whereas in column d neighboring su-
perpixels were used to estimate contrast [29]. The constraints are even more restrictive when only
local considerations are involved [1] as shown in column e. Rarity: The challenge remains when
relying on rarity aspects of saliency, as demonstrated by the maps in columns c-e [19,35,14].
When the object consists of multiple parts, only those with rare appearance are detected. The bot-
tom map in panel e demonstrates how a large object may render the appearance of its surrounding
more rare and therefore more computationally salient.

the comparison of its appearance against its surroundings. This implies that the object
is expected to be compact and spatially continuous. Compactness and spatial continu-
ity may not be required for rarity-based saliency, which assumes that the target object
constitutes few units with rare visual properties with respect to the entire visual input.
However, this approach ignores spatial relations between elements forming the con-
text and may not account for figure-ground relations. In fact, when relying on rarity,
the surrounding of a visual object may be considered more salient when the object is
larger. The rarity aspect of saliency is also challenged when it comes to considering
composite/heterogeneous objects. In these cases, different parts of a salient object may
be assigned very different saliency values (see Fig. 3).

The limitations just discussed have led many scientists to use additional information
and computational processes to possibly capture the nature of visual objects. Often,
saliency maps are used as input to subsequent segmentation processes such as adap-
tive thresholding [2] fuzzy-growing [33], compactness and density analysis [24], and
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iterative region expansion [52]. Additional considerations are configural cues such as
convexity [48] or closure [29], or higher-level factors such as objectness [11] and vi-
sual organization priors [35,19]. In other cases, the additional information used is more
explicit and extracted directly from a collection of images (e.g., [32]).

While many of the approaches above indeed improve the original saliency mapping,
The difficulty of modeling the nature of visual objects often leads to ad hoc methods
that blur the distinction between bottom-up saliency and its applications in subsequent
computations. In this work we propose a completely different approach. Instead of try-
ing to capture the object, we put the emphasis on modeling the context that leads to
visual saliency. As we show later, this paradigm shift leads to superior saliency results
even if no additional object-specific information or computational processes (like seg-
mentation) are employed.

3 Modeling Visual Context to Compute Saliency

Essentially, the same fundamental question is at the basis of most approaches to saliency
computation: “To what extent does a visual constituent stand out from its context”. This
question implies that a certain constituent is at hand when its saliency is measured or
estimated. When the desired constituent is an object, this idea raises the issues described
above that limit the performance. Instead of trying to capture the object, we wish to con-
sider a somewhat dual question: “What are the characteristics of visual context which
allow to consider the visual information it embeds (be it an object or not) as salient”.

To answer this question, we suggest to model visual context based on the several
characteristics of visual information. Given a particular representation of the units that
compose it (pixels, superpixels, patches, etc...), we consider a single context element, or
coxel, to be a region or a subset of the image with the following properties (see Fig. 4):

Smoothness: Nearby units that compose the coxel are expected to have similar visual
appearance. The more distant the units, more leeway is allowed in their similarity.

Apathy to contiguity: A coxel may be either contiguous or not, i.e., it may constitute
several distinct connected components in the image plane.

Enclosure: To qualify as a saliency coxel, the spatial layout of the context element
should “enclose” (strictly or approximately) some visual information.

While many ways can be used to define elementary image units from which cox-
els are composed, we elect to do so via the approximately regular, boundary adhe-
sive patches such as those obtained from the SLIC superpixels algorithm [3]. Let V =
{v1, . . . , vn} be the set of all these patches. Each patch is associated with a single coxel,
the latter being a subset of V with the properties outlined above. Let C be the mapping
from each patch to its coxel, such that C(vi) is the coxel of patch vi. We denote the set
of all coxels by C. Initially, ∀i, C(vi) = {vi} and |C| = N .

Let G = (V,E) be the weighted complete graph on V , where the weight w(Eij) of
each Eij reflects the contextual gap between its corresponding patches vi and vj . Two
general factors affect the contextual gap – similarity in appearance and image distance.
The contextual gap as a whole, and the similarity distance in particular, can be evaluated
in various ways. Here we choose to use a particularly simple form that takes only the
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raw color as a measure of appearance and the following blend of color and distance to
express contextual gap

w(Eij) = 1−
(
1− α ∗ sij
1 + β ∗ cij

)
(1)

where cij and sij are the appearance (color) distance and the spatial distance between
the pair of patches, respectively, and α and β control their significance (α = 0.5 and
β = 7 were used). This results with contextual gaps in the range [0, 1] that are lower
for edges linking similar and nearby patches and higher otherwise. The choice to ex-
press appearance similarity very simply via color only is intentional since it implies that
the strength of our approach must emerge from the proposed concept of context and the
derived estimation of saliency. Indeed, as we’ll show, while our algorithm can accept ar-
bitrarily sophisticated appearance measures, even the naı̈ve one employed here already
results in better than state-of-the-art saliency performance (even without endowing it
with segmentation or other additional computational processes).

With the initial coxels set and pairwise contextual gaps between patches determined,
our algorithm proceeds by repeatedly altering between two computational phases. The
first phase enables coxels to extend by gradually merging together coxels of increasing
contextual gap. The second phase accumulates saliency votes for visual information that
is embedded in (i.e., enclosed by) coxels. Upon convergence, the entire image becomes
a single coxel and the saliency map is finalized.

More formally, given the graph G and a predefined desired quantization level of con-
textual gaps 0 = w1 < w2 < . . . < wm = 1, the steps described in Algorithm 1 (and
illustrated in Fig. 5) are repeated until a single coxel is reached. In the first phase, coxels
are extended by merging existing coxels by progressively relaxing the contextual gap
allowed. Leveraging the smoothness property, initially only nearby and highly similar
components are considered for merging. Apathy to contiguity is supported by the fact

Fig. 4. The complexity and diversity of visual context that our model allows is demonstrated by
this synthetic image. White, colored, and grayscale patches (superpixels) compose a scene of
circles surrounding an “empty” salient region (cf. Fig. 1d). Context elements can be regarded at
the level of these patches or at a higher level depicting circles and white background. Although the
appearance of context units varies around the empty salient region (e.g., along the curved green
path) and away from it (straight green line), at some level they should be considered as part of the
same context element. In our approach to context this is possible due to the smoothness property
and the lack of contiguity which allow context elements from different sides of the salient region
to merge.
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that the increased contextual gaps wl gradually permit the merging of more distant and
less similar coxels even if they are disconnected. Thus, a pair of patches vi and vj may
(and at some point, will surely) belong to the same coxel, such that C(vi) = C(vj).

Algorithm 1. Contextual Emergence of Saliency

1: S(Eij) := 0 ∀i, j = 1..n {Initial votes for saliency bridges}
2: l := 0
3: while |C| > 1 do

{Phase I: Extend coxels}
4: for all Eij , s.t w(Eij) ≤ wl and C(vi) �= C(vj) do
5: C = C− C(vj)
6: C(vi) = C(vi) ∪C(vj)
7: end for

{Phase II: Accumulate saliency votes}
8: for all Eij s.t C(vi) = C(vj) do
9: T := {vk : Eij traverses vk} − {vi, vj}

10: if |T | = |T − C(vi)| then
11: S(Ei,j) = S(Ei,j) + 1
12: end if
13: end for
14: l := l + 1.
15: end while

During the second phase of each iteration, coxels that emerged up to this point are
used to add saliency for the visual information they enclose. This is done by considering
“visibility edges” or “saliency bridges”, i.e., edges between patches of the same coxel
that do not traverse another patch from that coxel. More abstractly, saliency bridges
reflect interference in their associated context element and therefore suggest that visual
information they traverse deserve a quota of saliency (all in the spirit of seeking the
“extent to which a visual constituent stands out from its context”). The longer (i.e.,
more iterations) the relationship between a coxel and its enclosed region endures, the
more “votes” saliency bridges will accumulate to indicate so.

It is easy to see that the algorithm always terminates. Since merging coxels reduces
their total number, and since for every edge Eij there exist some threshold wl that
exceeds its contextual gap w(Eij), the iteration must end. Indeed, when wl = 1 all
remaining coxels merge into one final element, no saliency bridges are possible any
longer, and the iteration terminates. In practice we represent saliency bridges by the
image pixels they traverse and votes are accumulated in those pixels. Although one
could employ different ways to obtain a dense map from the spatially distributed votes
assigned to pixels, we apply a kernel density estimation [9,44] to produce the final
saliency map.
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(a) (b) (c) (d)

Fig. 5. Schematic depiction of the two phases of Algorithm 1. (a) Initial coxels (SLIC superpixels
[3]) with their color-coded appearance content. (b) Coxels with small contextual gaps (initially,
those which are very proximate and similar) are merged to larger, uniquely labeled components.
Note that at this time no saliency bridges occur as any edge between two patches from the same
component traverses another patch from that component. (c) At a future merging step, the thresh-
old on contextual gaps is large enough to allow distant coxels to merge (implied by similar labels).
(d) At this point, saliency bridges cross image patches from other coxels, leading to accumulation
of their saliency measure. To avoid clutter, only selected number of saliency bridges are shown.

To conclude, we consider context as relevant to the saliency of a visual constituent
when it exhibits certain properties that allow it to form coherently while spatially en-
closing the constituent. By considering any visual information that is not part of a con-
text element as salient, we successfully disregard issues of shape, size, contiguity, or
topology, thus significantly reducing the constraints on the nature of objects that may
be detected as salient (see Figs. 1 and 3). We note that the saliency bridges mecha-
nism implicitly encourages enclosure, the third property we defined as desired. Indeed,
saliency is voted for along saliency bridges, and the latter are more frequent for coxels
that better enclose an image region. In addition, since saliency bridges are more likely
to occur closer to the image center, an implicit centeral bias is predicted. This may in
fact support the biological plausibility of the model and perhaps partially explain why
humans have central bias. Finally, since coxels are apathetic to contiguity, the entire ap-
proach can capture abstract salient objects in the form of “holes” or “gaps” in a group
of scattered similar elements (cf. Fig. 1).

4 Evaluation

To evaluate our model 1, we use the five datasets employed in the proposed benchmark
by Borji et al. [8] and an additional dataset that was published recently by Yan et al. [51],
all of which are described below.

MSRA: 5000 images of resolution 400 × 300. For each image, nine users annotated
what they considered the most salient object by a single bounding-box.

ASD: 1000 images (taken from the MSRA dasaset). For each image, a single annotator
manually labeled the boundaries of a single salient object (or several of them in a
few cases).

1 Implementation will be made publicly available at http://www.cs.bgu.ac.il/˜icvl
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SED1,SED2: Each contains 100 images, of resolution∼ 300×225. The datasets were
designed to avoid ambiguities by only including images that clearly depict a single
(SED1) and exactly two salient objects (SED2). Each of three annotators manually
labeled the boundaries of a single or two salient objects, respectively.

SOD: 300 images of resolution 481× 321, selected from the Berkeley Segmentation
Dataset (BSD) [36] and labeled by seven annotators. Each annotator was shown a
random subset of possible segmentations depicted as boundaries overlapped on the
image and chose the segments composing salient objects by clicking on them.

ECSSD: 1000 images of resolution ∼ 400 × 300, taken from BSD, the VOC dataset
[17] and the internet. Salient objects were manualy segmented by five annotators.
However, the produced ground truth maps are binary.
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Fig. 6. Detection accuracy: (a) AUC scores of the “Top-4” algorithms, GCON, CASD, CSPR and
FUZE, are compared with the rarity based approach recently suggested by Margolin et al. (PCAS)
and our approach. On the MSRA dataset, our approach is comparable to PCAS which outper-
forms the “Top-4” algorithms. More significant improvements are obtained for the other four
datasets. The most significant improvement is for the SED2 dataset, specifically designed to in-
clude two salient objects in every image. (b) F-Measure scores of the “Top-4” algorithms, PCAS
and our approach, based on the precision-recall curve. Excluding the ECSSD dataset on which
the CSPR algorithm that employs shape prior shows better scores, our approach is better than or
comparable to other algorithms on all other datasets despite using nothing else but raw contextual
consideration.

According to the recent benchmark by Borji et al. [8], the 4 highest scoring algo-
rithms (henceforth, the “Top-4”) to-date are FUZE [11], CSPR [29], CASD [19] and
GCON [14]. Recently, Margolin et al. [35] have shown their approach (henceforth
PCAS) outperforms these methods on all datasets used for the benchmark in terms
of area under the ROC curve (AUC) scores. We compare our results to these five state-
of-the-art algorithms, based on the same ranking used in the Borji et al. benchmark [8],
both in terms of AUC scores and in terms of F-measure. Figure 6a shows AUC scores
for each dataset, based on true positive rate and false positive rate, by varying a thresh-
old from 0 to 1 on the normalized saliency maps. Our approach is comparable to PCAS
on the MSRA dataset and outperforms all five algorithms on all other datasets. In-
terestingly, the most significant improvement is achieved on the SED2 dataset, which
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includes two salient objects in every image and departs the most from the typical sce-
narios of single salient object around the center of the image.

Figure 6b shows the evaluation results according to the precision-recall curve (PR),
obtained during the calculation of the ROC curve. The reported scores are based on
the F-Measure defined as Fα = (1+α)Precision×Recall

α×Precision+Recall . As in previous evaluations
[8,14,2], we set α = 0.3 to weigh precision more than recall.

While the quantitative evaluation reveals superior results, it is important to note that
this happens despite being done on unequal grounds. As discussed in Sec. 2, almost all
previous approaches to which we compare use additional processes and biases to im-
prove the raw saliency maps by incorporating object properties [11], shape priors [29],
face detection [19], or center bias [35]. Our results so far are intentionally stripped of
any such additional computations and yet the proposed contextual computation outper-
forms the state-of-the-art (despite also using the most naı̈ve similarity measure). As
we show in Sec. 5, our results can be improved further by incorporating even simple
additional steps.

5 Further Improvement by Segmentation

While our raw saliency maps already provide superior results, it is interesting to exam-
ine the possible contribution of additional computational steps that are more related to
visual objects. To this end, we follow Cheng et al. [14] and use our saliency maps to
initialize the GrabCut segmentation algorithm (instead of the manual initialization with
a rectangular region, as in the original GrabCut). Unlike Cheng et al. [14], who initial-
ized GrabCut with binary saliency maps based on a fixed threshold, we sought a way to
compare results across thresholds so they can be evaluated against the results presented
in Sec. 4. Hence, the task becomes one of combining GrabCut with information from
our raw (and graded) saliency maps in order to improve overall saliency results.

A possible approach to pursue the above would initialize GrabCut with binarized
saliency maps based on all threshold values 0 ≤ τi ≤ 1. New foreground regions sug-
gested by GrabCut at each threshold (if they indeed emerge) would then be assigned
saliency values in a revised map. This still leaves open the particular strategy of as-
signing saliency values to aggregated foreground regions. As the segmentation may not
capture the entire object or it might include non object regions, careless assignment of
saliency values may significantly reduce true-positives (TP) or increase false-positives
(FP) and thus reduce performance rather than improving it.

If new foreground regions were assigned their raw saliency values, then FP rate in
the revised map could not exceed that in the raw map. Indeed, empirical results based
on this approach reduced preformance, implying that the GrabCut segmentation misses
parts of the objects that contributed to the results (hence decreasing TP rate). In order
to enhance the saliency of foreground regions while preserving the saliency of missed
objects parts, we use the following strategy (demonstrated in Fig.7). At each threshold,
any suggested foreground region in the revised map is assigned its raw saliency, normal-
ized to the range between the average and maximum values of that region. Only after
all threshold values are considered, the remaining regions in the revised map (possibly
including missed object parts) are assigned their raw saliency values.
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(a) (b) (c) (d) (e)

Fig. 7. A schematic demonstration of the GrabCut based improvement. The original saliency map
(a) is thresholded at different levels (b) to initialize GrabCut, which may suggest new foreground
regions at each level (c). New regions are accumulated in the revised map (d). Whenever a region
is added to that map, its saliency values are normalized to the range between the average and
the maximum values of that region in the original map. The remaining regions are assigned their
original saliency values (e).
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Fig. 8. Improvement of our original results using the GrabCut segmentation algorithm. Scores are
presented in terms of AUC (panel a) and in terms of F-Measure (panel b).

Using the procedure above, Fig. 8 shows the improvement with respect to our pre-
vious results (based on the same evaluation metrics). More specifically, using this seg-
mentation step, original AUC scores improve by ∼ 1%− 3% and F-measures increase
by ∼ 1% − 5%. Since many of the previous algorithms also use additional computa-
tions beyond raw saliency, an equal ground comparison to the prior art should consider
these numbers (rather than those from Sec. 4, which already outperform existing ap-
proaches), that indicate that our algorithm exhibits performance which is better than the
state-of-the-art by a large margin.

Finally, although it is important to consider objective quantitative measures and re-
sults as above, we believe that much of the strength of our approach is revealed at the
qualitative level. Indeed, most benchmark databases for saliency detection include rel-
atively simple saliency scenarios, with one (usually visually coherent) salient object
typically at a central position. As we argue, the principles underlying previous saliency
algorithms (i.e., contrast-based or rarity-based) permit to handle these cases to some ex-
tent, but constrain the complexity, frequency, and level of abstraction of the detectable
salient objects. In focusing on modeling the context only, our approach is more flexible
as indeed was demonstrated already in Fig. 1. Another qualitative comparison for novel
images that depict more general saliency scenarios is shown in Fig. 9.
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Fig. 9. Example images and normalized saliency maps (thresholded at 30%). The datasets from
which the input images are taken are noted on the left. Our saliency maps seem to coherently
indicate the saliency of large and complex objects as a whole (first two rows) and allow the de-
tection of multiple salient objects (following two rows). In contrast, no certain level of saliency
seems to allow similar detection accuracy by state-of-the-art methods. The last image of a pyra-
mid demonstrates the significance of the enclosure property of visual context for the detection of
abstract salient regions.

6 An Unavoidable Commentary about Salient Object Databases

The evaluation of any apcroach inherently depends on two aspects of the dataset to
which it is applied. One aspect is ground truth representation. With respect to the
datasets above, an apparent problem in this regard is the bounding-box approach used
for labeling the MSRA dataset which, as already criticized by Achanta et al. [2], pro-
vides limited accuracy. A simple case where this approach may clearly distort evalua-
tion results is when the area ratio between the object and its bounding box is small (e.g.,
a boomerang). In such a case, false positives within the bounding-box would wrongfully
enhance performance while a perfect detection would result in a lower score. To pro-
vide a more accurate representation of ground truth, Achanta et al. [2] proposed the
ASD dataset in which objects are manually segmented. However, since the data were
labeled by a single annotator, the ground truth saliency maps are binary (as is also the
case for the ECSSD dataset) whereas the evaluated algorithms may produce graded
saliency maps. This discrepancy alone already questions the evaluation reliability.

A second aspect concerns the visual content of the datasets. Although widely used
and having size and stimulus variety, the existing datasets are rather restricted in many
other ways. For example, as analyzed by Borji et al. [8], these datasets have a strong
location-bias and most scenes have low-clutter. An undesired implication is the over-
fitting of models to existing datasets. Moreover, the suggested ground truth does not
allow to evaluate other levels of saliency. This is demonstrated in Borji’s benchmark,
where methods aiming at fixation prediction show significantly lower performance than
methods that seek saliency at the object level.
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7 Discussion and Future Directions

We argue that the implicit assumption of having a certain visual constituent at hand
when its saliency is measured is at the basis of using different types of context to detect
salient objects. The intent for this constituent to be an object motivates its modelling
in terms of contrast and rarity. Thus, the nature of visual objects that may be captured
is constrained, which necessitates object-specific information and additional computa-
tional processes to facilitate better predictions. By modelling visual context instead, we
disregard object appearance and reduce these constraints. This allows the saliency of
more complex, abstract, or multiple visual objects to emerge. In contrast with previous
methods, our approach cannot be categorized as based on contrast or rarity. Our new
interpretation of context relies on more basic, general principles.

The ability of our model to outperform the state-of-the-art with no explicit use of
object-specific information indicates the dependency of object-based saliency compu-
tation on the way context is interpreted in the first place. This is further emphasized by
the fact that this superior performance is obtained from low level patches and a single,
simple visual feature (i.e., color). Indeed, further development of the suggested theory
for contextual emergence of saliency could incorporate additional and more sophisti-
cated features and consider pixels as basic context units. We believe that this would
allow to explore the nature of our context based saliency approach for a variety of more
complex scenes and perhaps its feasibility for predicting human fixations. However, ac-
cording to the critisism in section 6, this would require to extend the datasets with more
general scenes in terms of complexity, multiplicity, and spatial location. In addition, it
would require a new type and more general ground truth that allows to evaluate saliency
detection across different levels (fixations and objects). We hope that our novel defini-
tion of low-level, non-semantic visual context and the contextual emergence of saliency
that follows it would motivate further work in these directions.
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