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Abstract. Heavy occlusions in cluttered scenes impose significant chal-
lenges to many computer vision applications. Recent light field imaging
systems provide new see-through capabilities through synthetic aperture
imaging (SAI) to overcome the occlusion problem. Existing synthetic
aperture imaging methods, however, emulate focusing at a specific depth
layer but is incapable of producing an all-in-focus see-through image. Al-
ternative in-painting algorithms can generate visually plausible results
but can not guarantee the correctness of the result. In this paper, we
present a novel depth free all-in-focus SAI technique based on light-
field visibility analysis. Specifically, we partition the scene into multiple
visibility layers to directly deal with layer-wise occlusion and apply an
optimization framework to propagate the visibility information between
multiple layers. On each layer, visibility and optimal focus depth estima-
tion is formulated as a multiple label energy minimization problem. The
energy integrates the visibility mask from previous layers, multi-view in-
tensity consistency, and depth smoothness constraint. We compare our
method with the state-of-the-art solutions. Extensive experimental re-
sults with qualitative and quantitative analysis demonstrate the effec-
tiveness and superiority of our approach.

Keywords: occluded object imaging, all-in-focus synthetic aperture
imaging, multiple layer visibility propagation.

1 Introduction

The capability of seeing through occlusions in heavily cluttered scenes is bene-
ficial to many computer vision practical application fields, ranging from hidden
object imaging to detection, tracking and recognition in surveillance. Since tra-
ditional imaging methods use a simple camera to acquire the 2D projection of
the 3D world from a single viewpoint, they are unable to directly resolve the
occlusion problem.

A fundamental solution to the problem is to exploit new imaging procedures.
For example, emerging computational photography techniques based on general-
ized optics provide plausible solutions to capture additional visual information.
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(a) One camera view in the Stanford
camera array

(b) Result of traditional synthetic image
focused on the CD case

(c) Result of occluded object all-in-focus
image by our method

Fig. 1. Comparison results of occluded object synthetic aperture imaging methods

In particular, Synthetic Aperture Imaging or SAI [1–15] provides a unique capa-
bility of seeing-through occlusions. SAI warps and integrates the multiple view
images to simulate a virtual camera with an ultra-large convex lens and it can
focus on different frontal-parallel [1] or oblique [2] planes with a narrow depth of
field. As a result, objects lying on the virtual focus plane, even being occluded
in reality, would be clearly imaged. A downside of traditional SAI, however, is
that objects off the virtual focus plane would appear blurry even though they
are not occluded. The see-through results, hence, depend on the depth of the
virtual focus plane.

The objective of this work is to develop a novel algorithm to generate a depth-
free all-in-focus image(as shown in Fig.1(c)). Here, the all-in-focus image would
contain not only objects on the virtual focus plane of camera array, but also all
objects observed inside the input scene at various depths. Depth free refers to
that given a certain depth, the algorithm can see through all occluders in front
of this depth and generate a clear and complete all-in-focus image of the scene
contents behind it.

Different to in-painting algorithms [16, 17] which can generate visually plausi-
ble results but not guarantee the correctness of the result, our technique is based
on the light field visibility analysis. For every 3D point, we trace all rays pass-
ing through it back to the camera array, and then construct a visibility layer in
which the 3D point is visible in all active cameras. To recover the all-focus image
behind a specific depth layer, we partition the scene into multiple visibility layers
to directly deal with layer-wise occlusion, and apply an optimization framework
to propagate the visibility information between multiple layers. On each layer,
visibility and optimal focus depth estimation is formulated as a multiple label
energy minimization problem. The energy integrates the visibility mask from
previous layers, multi-view intensity consistency, and depth smoothness con-
straint. We compare our method with the state-of-the-art solutions on publica
available Stanford and UCSD light field dataset, and a dataset captured by our-
selves with multiple occluders. Extensive experimental results with qualitative
and quantitative analysis demonstrate the superiority of our approach.

The organization of this paper is as follows. Section 2 introduces several re-
lated works. Section 3 presents the visibility layer propagation based imaging
model. Section 4 details the visibility optimization algorithm. Section 5 describes



All-In-Focus Synthetic Aperture Imaging 3

the dataset, implementation details and the experimental results. We conclude
the paper and point out the future work in Section 6.

2 Related Work

Tremendous efforts have been made on developing light field imaging systems
and post-processing algorithms. On the hardware front, light field camera arrays
with different number of cameras, resolution, effective aperture size have been
built, e.g., Stanford [3], CMU [4], UCSD [5], Alberta [6], Delaware [7], NPU [8],
PiCam [15], etc., and the camera array synthetic aperture imaging technique
has been proved to be a powerful way to see object through occlusion. Similar
camera array technique has been adopted in producing movie special effects. For
instance, in the 1999 movie The Matrix, a 1D camera array is used to create an
impressive bullet dodging scene that freezes time but changes viewpoint towards
the character.

On the algorithm front, one of the most important technique is synthetic
aperture imaging (SAI). By integrating appropriate rays in the camera array,
SAI can generate view that would be captured by a virtual camera having a
large aperture. In addition, through shearing or warping the camera array images
before performing this integration, SAI can focus on different planes in the scene.
For example, the Stanford LF camera array by Levoy et al. [3] consists of 128
Firewire cameras, and for the first time align multiple cameras to a focus plane
to approximate a camera with a very large aperture. The constructed synthetic
aperture image has a shallow depth of field, so that objects off the focus plane
disappear due to significant blur. This unique characteristic makes the synthetic
aperture imaging a powerful tool for occluded object imaging.

Taking advantages of the geometry constraints of the dense camera array,
Vaish et al.[11] present a convenient plane + parallax method for synthetic aper-
ture imaging. A downside of their work, however, is that all rays from the cam-
era array are directly integrated without further analysis. Thus, the clarity and
contrast of their imaging result would be reduced by rays from the foreground
occluders.

Visibility analysis through occlusion is a difficult but promising way to
improve the occluded object imaging quality, and many algorithms have been
developed in this way. Vaish et al.[12] study four cost functions, including color
medians, entropy, focus and stereo for reconstructing occluded surface using syn-
thetic apertures. Their method achieves encouraging result under slight occlu-
sion; however the cost functions may fail under severe occlusion. Joshi et al.[10]
propose a natural video matting algorithm using a camera array. Their method
uses high frequencies present in natural scenes to compute mattes by creating a
synthetic aperture image that is focused on the foreground object. Their result is
inspiring and it has potential to be used for visibility analysis. However, this algo-
rithm may fail in case of textureless background, and cannot deal with occluded
object matting. Pei et al.[13] propose a background subtraction method for seg-
menting and removing foreground occluder before synthetic aperture imaging.
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Their result is encouraging in simple static background, however since this ap-
proach is built on background subtraction, it cannot handle static occluder. In
addition, their performance is very sensitive to cluttered background, and may
fail under crowded scene.

Our method is perhaps closest to the work of Pei et al. [6] which solves the
foreground segmentation problem through binary labelling via graph cuts. In-
stead of labelling the visibility and focusing depth, they label whether a point is
on focus in a particular depth, and aggregate these focus labels in a given depth
range to get a visibility mask for occluded object imaging. Although the result
is encouraging,this method can only deal with front occluder(whose depth range
need to be provided as a prior) labeling problem, and may fail if the occluder has
severe self occlusion or there are multiple occluded objects due to lack of visibil-
ity propagation. In addition, the result of method [6] can only focus on particular
depth of the scene instead of all-in-focus imaging, and the performance will be
decreased in textureless background.

3 Visibility Layer Propagation Based Imaging Model

In this section we will introduce our multiple layer propagation based synthetic
aperture imaging method. Instead of segmenting the observed scene into various
depth layers, our approach segments the entire scene into multiple visibility
layers. The visibility layer is defined on each layer as all the rays which are
not occluded in any cameras, and computed by energy minimization. Points on
each visibility layer do not necessarily need to correspond to the same object or
surface.

By modelling the scene as visibility layers and propagating visibility infor-
mation through layers, we can obtain the focussing depth and corresponded
cameras for all the objects in the scene, including the occlusion object and oc-
cluded objects. So each visibility layer consists of pixels that are visible in all
active cameras. The word active refers to the fact that the pixel position of the
camera has not been labelled as occluded, e.g. not occupied by previous layers.
Extraction of each visibility layer is based on the information of previous visibil-
ity layers. More precisely, according to occlusion mask information of previous
layers, we firstly obtain the current visibility layer, then estimate the depth map
of this layer, and finally update the occlusion mask.

For better understanding of the proposed method, we provide an example
workflow with the Stanford Light Field data in Figure 2.

There are mainly two reasons why we introduce the concept of visibility layer.
First, taking advantage of introduced visibility layer,occlusion problem can be
tackled more directly. The visibility information is propagated from layer to
layer, and in each layer occlusion mask needs to be updated only once. Second,
segmenting the scene into visibility layers instead of depth layers is more bene-
ficial as neighbouring pixels in the same layer tend to belong to the same object
and depth smoothness constraint can be enforced when estimating the depth
map.
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Fig. 2. Flowchart of the multiple layer visibility propagation based synthetic aperture
imaging algorithm

Let L denotes the number of visibility layers in the scene. For each layer, we
need to find a labelling function f : Ω → L, where Ω refers to the set of all
unmasked pixels in all images and L = {0, d1, d2, . . . , dm} denotes the set of
possible labels of these pixels. di (i = 1, 2, . . . ,m) > 0 represents the depth range
of our scene. For a pixel x, if f (x) > 0, then x is fully visible in all active camera
views. Otherwise if f (x) = 0, then x is partially occluded.

Considering the labelling redundancy of camera array(the labels in different
cameras are highly related), the problem can be further simplified. Instead of
labelling all the unmasked pixels of all the cameras, we label all the pixels of
the reference camera equivalently(not only the unmasked pixels, as a masked
pixel of the reference camera may still be fully visible in all the other active
cameras). This means if there are N cameras in camera array, we only label all
pixels of the reference camera view instead of labelling all the unmasked pixels
of all cameras. Specifically, instead of finding above labelling function, we seek
a more succinct labelling, g : Iref → L, where Iref refers to the whole image
area of the reference camera. In our implementation, visibility and depth map
is calculated first on the reference image, then the visibility and depth maps of
all the other cameras are derived based on the calibration information of the
camera array.

Therefore, for each layer � , the problem of estimating fully visible pixels
and corresponded depths can be formulated as a following energy minimization
problem:

E (g;V1, V2, . . . , V�−1) = Ed (g) + Es (g) (1)

where the data term Ed is the sum of data cost of each pixel, and the smooth
term Es is a regularizer that encourages neighboring pixels to share the same
label, while the visibility information Vk(k = 1, 2, . . . , �−1) from previous layers
is used to encode and block the occluded rays.
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As the estimation of visibility information is coupled with depth value and
can only be obtained by analyzing synthetic images of different depth layers, it
is difficult to minimize energy function (1) directly. In this paper, we solve for
g = {V�, D�} by the following two optimization modules:1) optimize the visibility
map V� in the reference camera, 2) calculate the depth map D� of visible pixels.

In order to obtain the fully visible map, in the first module we formulate this
problem as binary energy minimization. If a pixel x is fully visible, it is labelled as
1, otherwise 0. Energy function consists of a unary data term which represents
the cost of assigning a visibility label to a pixel and a pairwise smoothness
term which accounts for smoothness prior of the visibility layer. This energy
minimization problem is then optimized by graph cuts [18].

In the second optimization module, estimation of the optimal focus depth for
pixels in each visible layer is formulated as a multiple label energy minimization
problem and is also solved via graph cuts [18]. The energy function is composed
of a unary data term which indicates the cost of assigning a depth label to a
pixel, and a pairwise smoothness term which accounts for smoothness constraint
of the depth map.

4 Multiple Layer Visibility Optimization

Since our method propagates the binary visibility map between multiple layers,
for a certain layer � ∈ {1, 2, . . . , L}, occluders in front of this layer have been la-
belled and can be easily removed in the images of all cameras. To make the nota-
tion uncluttered, we do not write previous visibility layers Vk(k = 1, 2, . . . , �−1)
explicitly unless necessary. As a result, the visibility energy function can be
written as follows:

E (V�) = Ed (V�) + Es (V�) (2)

Data Term: If a pixel is fully visible in current layer, it should be in focus
for some depth value, and at the same time corresponding pixels that form the
synthetic aperture image should be related by the same point of an object (ex-
cept those occluded by previous layers). Since if a scene point is in focus, its
corresponding pixel in the synthetic aperture image will have a good clarity and
contrast,which can be measured by state-of-the-art focusing metrics. In addition,
the corresponding pixels that form the synthetic aperture image should have a
similar intensity value, which can be measured by various intensity constance
metrics. In this paper, focusing metrics and intensity constance metrics are all
referred to focusing metrics. We define the cost of labelling a pixel as fully vis-
ible based on its corresponding curve of focusing metrics in synthetic images of
different depth layers.

The ideal curve of a fully visible pixel (Figure 3, point A) should satisfy the
following two constraints: (1)it is unimodal throughout the focus depth scope,
and (2) the curve reaches a global minimal, if and only if all visible rays intersect
at the same point on an object in the scene. In contrast, a partially occluded
pixel or a free point without focus should always have a large value through
the entire focus depth scope (Figure 3, point C). That’s because these points
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Fig. 3. Typical focusing curve of different kinds of points. Point A:fully visible texture
region. Point B: Fully visible region with pure color. Point C: partial occluded region
or free point. Point D: textureless region.

are only visible in some of the cameras, thus for unfocused depth and even for
focused depth the cost of those points is high. A textureless object pixel should
have a small value in a small range of depths around the focusing depth (Figure
3, point B),while a textureless background pixel should have a small value over
a broad focus range due to its similarity with the neighborhood pixels (Figure
3, Point D). Besides, in Figure 3, Point D gives a sharp peak near the origin.
That’s caused by the position of focusing depth plane, when it’s too close to the
camera, the out of focus trouble results in an unexpected value.

Reasonably, we cannot estimate the depth of the textureless background pix-
els. Thus, according to the width of low value depth range we remove the tex-
tureless background region before our binary visibility optimization.

Based on the above analysis, we have compared different kinds of metrics to
obtain the desired ideal curve. Part of the comparison result is shown in
Figure 4.Figure 4(a) gives the input images of different cameras, while Figure
4(b), (c) and (d) display the synthetic aperture imaging result, variance im-
age, and maximal color difference(MCD) image in different depths. Comparing
Figure 4(c) and (d), we can see that our MCD Image could describe the mini-
mal color difference more accurately than the viriance Image. Thus, the MCD
measurement is more suitable for visibility analysis.

Figure 4(e) shows the corresponded curves of points A, B and C marked in Fig-
ure 4(a). The focus measures evaluated include DCT energy ratio (DCTR) [19],
diagonal Laplacian (LAPD) [20], steerable filters (SFIL) [21], variance and
MCD. For the first three focus measures,we compute the focus metric using
a 5x5 pixel block on one hundred sampled focus planes. All the results are nor-
malized and mapped to [0 1], where low value represents a good focus. The
result indicates that for a point in textured region without occlusion, all focus
measures can successfully find the focus point(point A in Figure 4(e)). However,
when the textured point is occluded in some cameras(point B in Figure 4(e)),
the curves of DCTR, LAPD, SFIL and variance measures are multimodal with
multiple local minima. In contrast, MCD metric is more stable and more insen-
sitive to occlusion. In the low texture region (Figure 4(e), point C), the first
three measures contain many noises. In contrast, both the variance and MCD
measure reach the global minimum around the ground truth. In addition, the
MCD curve is more sharp than variance and more close to the ideal curve.
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(a) Multiple view images (b) Synthetic Aperture Image (c) Variance Image (d) Our MCD Image
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(e) Comparison results of different focus measures, variance and maximal color difference metric
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Fig. 4. Comparison results of focus measures for different kinds of points, the manually
labeled ground truth focus depth is marked with the red arrow

Based on the analysis above, we select MCD measure to define the data cost
Ed (V�) for each pixel x in the reference camera:

Ed (V�) =
∑

x∈Iref

(
V� (x)− (1−min

d∈D
(MCDd(x)))

)
(3)

where D = {d1, d2, . . . , dm} is the depth range of the scene, MCDd(x)(d ∈ D)
is the MCD focus measure value of the pixel x in depth d:

MCDd(x) = max
∀i�=j

(|Idi (x) − Idj (x)| · B�
i (x) · B�

j(x)
)
/255 (4)

B�
i (x) =

⎧
⎨

⎩
0 if

�−1∑
�0=1

V i
�0
(x) > 0

1 otherwise

(5)
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Idi (x) represents the value of pixel x on the warped image of camera i in depth d.
B�

i (x) is a binary map of camera i to mask fully visible pixels of previous layers.
V i
�0

is the visibility layer �0 of camera i, and can be obtained easily from V�0 of

the reference camera. If B�
i (x) = 0, x is occupied by previous layers, otherwise

B�
i (x) = 1.
A good energy function should reach good solution when the energy is low.

In order to achieve this, we design the data term of the visibility optimization
model as Equation (3), which is introduced to classify all the pixels as visible or
invisible. When min(MCD) is small, or data term is small, the probability that
the point is occluded is low, thus the cost of assigning as a visible point is low. In
addition, according to the definition of MCD, even if one of the camera view is
occluded, the min(MCD) appears to be a large value, and the cost of assigning
this point as a visible point is high by Equation (3). Thus for visibility labelling,
it is straightforward to see that our data term should achieve its minimum when
it is correctly assigned, and achieve a large value for occluded point, which is a
perfect data term that we want.

Smoothness Term: The smoothness term Es (V�) at layer � is a prior regu-
larizer that encourages overall labelling is smooth. The prior is that two neigh-
bouring pixels have a higher probability to belong to the same object and should
be both visible or occluded in the reference camera at the same time. Here we
adopt the standard four-connected neighbourhood system, and penalize the fact
if labels of two neighbouring pixels are different:

Es(V�) =
∑

p∈Iref
q∈Np

Sp,q(V�(p), V�(q)) (6)

Sp,q(V�(p), V�(q)) = min(τv, β(p,q) · |V�(p)− V�(q)|) (7)

β(p,q) = h(|min
d∈D

(MCDd(p))−min
d∈D

(MCDd(q))|) (8)

where τv and β(p,q) denote the maximum and weight of smoothness term re-
spectively. h is a decreasing weighting function that takes into account the MCD
measure similarity between neighbouring pixels. The more similar MCD measure
is, the weight will be higher and the smoothness constraint between pixels will
be stronger.

In this paper, the parameters are given by experiment and we choose he inverse
proportional function as h (.). With the above data term and smoothness term,
our energy function can be minimized via graph cuts [18].

After obtain V�, we formulate the optimal focus depth estimation inside the
visible layer as a multiple label optimization problem, which is also solved via
graph cuts in this work.
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(b) Reference camera view (c) Result of Vaish et al.

(e) All-in-focus image by our method(d) Result of Pei et al.

(a) Ground Truth

(f) Comparison results
Vaish et al. Pei et al. Our method

Fig. 5. Comparison result of different methods on CD case behind plants from Stanford

5 Experimental Results

We have compared the performance of our method with the synthetic aperture
imaging methods of Vaish et al.[11] and Pei et al. [6] on four datasets, including
the CD case behind plants from Stanford, the crowd surveillance scene from
UCSD, and two dataset captured by ourselves. In addition, to illustrate that our
method can be successfully applied when there are multiple visibility layers, we
have captured another two datasets where there are multiple occluders.

To avoid explicit imaging for all the objects far away in the scene, we limit our
search to a range of depths around the objects that our concern. For the CD case
behind plants from Stanford and our own dataset, the accuracy of each method
is compared with the ground truth separately. More implementation details are
given below.

• Experiment 1: CD case behind plants

This dataset contains 105 views on a 21x5 grids (synthetic aperture size 60cm
by 10cm) and the image resolution is 650x515. The scene contains some plants
occluding two CD cases. Our goal is to estimate the depths for all the objects
in the scene and image the scene behind the plants.

Figure 5 shows the comparison result of Vaish et al. [11], Pei et al. [6] and
our method. We can see that all the three methods could see the occluded CD
through the plants, as shown in Figure 5(c), (d) and (e). Pei et al. [6] is better
than Vaish et al. [11] in imaging of the two CD cases. However, the objects away
from the focus plane are blurring, including the CD on the right, who is just
near the focus plane. All-in-focus image in Figure 5(e) shows much better clarity
of our method and is closer to the ground truth in Figure 5(a).
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Fig. 6. Comparison results on crowd surveillance data from UCSD light field data

Figure 5(f) gives the comparison of imaging for several local regions. It can
seen that our method can give all-in-focus image for all the three objects of
different depths, while the method of Vaish et al. [11], Pei et al. [6] can only
focus on given depth plane.

Besides, we use the peak signal-to-noise ratio (PSNR) assessment to com-
pare these methods quantitively (see Table 1). Calculation of PSNR is given in
equation (13) and (14). The PSNR of our all-in-focus synthetic aperture image
achieves 31.1088, which is much higher than 20.8774 of Pei et al. [6]and 18.1225
of Vanish et al [11].

PSNR = 10log10(I
2
max/MSE) (9)

MSE =
1

w · h
∑

x∈X
(I(x)− I’(x))

2
(10)

where w and h denote the image width and height, X is the image region, I(x)
is the pixel intensity value at x in the ground truth image and I ′ denotes the
image to be assessed. Imax = 255 is the maximal intensity value.

• Experiment 2: Crowd surveillance scene

The ”Crowd” dataset is captured by UCSD with 8 synchronous views on an
8x1 grid. There are 276 frames and the image resolution is 640x480. The scene
contains five people moving in the scene and they are frequently occluded by
each other. Our goal is to see through the occluder in the front and image for
all others continuously.

Figure 6 shows the comparison result of our method and Vaish et al [11].
In frame#210, the man in saffron cloth is occluded. In Vaish’s result(Figure
6(b)), the occluded man is blurred by shadows from the occluder. In addition,
people out of the focus plane are all blurred. In contrast, our approach could see
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(d) Our method(b) Vaish et al.(a) Reference view (c) Pei et al.

a b d

(e) Zoom images
c a b dc a b dc

Fig. 7. Comparison results of different methods in the challenging outdoor scene

through occlusion and achieve a clear all-in-focus image (Figure 6(c)). Details
of local region results are shown in Figure 6(d). Our method also shows better
performance in frame#213 and #217 than Vanish’s method.

The success of our work comes from the idea that for every synthetic aperture
imaging result on each frame, the scene can be regarded as static and there
are no moving objects. It’s quite reasonable as no object would make obvious
movements considering the high frequency that camera works. Figure 6 shows
the result of several subsequent frames.

The limitation of our approach is that a scene point needs to be visible at
least in two camera views, otherwise the black hole will appear in the all-in-focus
image(Figure 6(c)).

• Experiment 3: Complex outdoor scene

To further test our method on severe occlusion cases, we have done another ex-
periment with complex outdoor scene. As shown in Figure 7,the street ,trees and
distant buildings are all occluded by nearby flowers. Our aim is to see the be-
hind scene through the occlusion of front flowers. Comparison results of Vaish’s
method [11], Pei’s method [6] and our method are shown in Figure 7(b) and
Figure 7(c) and Figure 7(d). As Vaish’s method only focus on a given depth
plane and cannot eliminate front occluders completely, it cannot provide an
all-in-focus image of the behind scene. And although Pei’s method can remove
some foreground occluder through foreground occluder segmentation and get a
more clear result of target, the targets out of focus plane is still very blurring,
for example the building shown in Figure 7(e). In comparison, our method could
provide a depth free view point and all-in-focus image for any given depth range.
For instance, Figure 7(d) shows the all-in-focus image of scene behind the flow-
ers. Please note that although the depth change and occlusion in this scene is
extremely complex, our method accurately gives the desired all-in-focus result.

• Experiment 4: Seeing through multiple occluded objects

Our method can be applied to the scene where there are multiple occluded
objects. Due to visibility propagation between different layers, we can remove
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(a) Reference camera view (d) Seeing through the front object
by our method

(g) Seeing through the second object
by our method

(b) Seeing through the front object
by Vaish et al.

(e) Seeing through the second object
by Vaish et al.

(c) Seeing through the front object
by Pei et.al

(f) Seeing through the second object
by Pei et.al

Fig. 8. Comparison results of synthetic aperture imaging through multiple objects

(d) Right view of PMVS(c) Left view of PMVS(a) One view of Stanford CD Data (b) All-in-focus synthetic aperture
imaging result by our method

Fig. 9. Comparison with multi-view 3D reconstruction on CD case behind plants
dataset

multiple occluders, focus on the occluded object and obtain an all-in-focus image
of the occluded scene. Figure 8 shows the result of our synthetic aperture imaging
method when there are multiple occluders. Figure 8(a)is the input image of the
reference camera, it can be seen that the red book is occluded by the playing
card, which is further occluded by front yellow box. The standard synthetic
aperture imaging result of the playing card and red book is shown in Figure
8(b) and Figure 8(e)respectively. It can be seen that due to severe occlusion,
Vanish’s method[11] can only get a blurred image of the occluded object. The
state-of-art synthetic aperture imaging result of playing card and red book is
shown in Figure 8(c) and Figure 8(f) respectively. It can be seen that in the case
of severe occlusion, Pei’s method[6] can only get a blurred image of the occluded
object due to the inaccuracy of the estimated foreground label. In comparison,
our method can remove front occluders completely and provide an all-in-focus
image of the scene behind the yellow box(Figure 8(d)) and even the playing
card(Figure 8(g)).

• Experiment 5: Comparison with multi-view 3D reconstruction

Because it may be possible to apply stereo matching for producing see-through
images, in this experiment we compare our approach with one of the state-of-the-
art 3D reconstruction methods PMVS [22] on the public Stanford CD dataset.
Two views of reconstruction result of the scene by PMVS are given in Figure
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9(c) and (d). Due to the severe occlusion of foreground leaves and flowers, the
reconstruction results of background CD contain many holes (as shown by green
and yellow boxes). Our approach performs as an image-based depth peeling
technique, it sequentially removes the front-most visible layers and generates an
all-in-focus image of the observed scene through visibility layer prorogation(as
shown in Figure 9(b)).

6 Conclusions

In this paper, we have presented a novel synthetic aperture imaging approach
for creating all-in-focus images through occlusion. Different from existing syn-
thetic aperture imaging algorithms, we have segment the scene into multiple
visibility layers, and apply an optimization framework to propagate the visibil-
ity information between multiple layers to produce all-in-focus image even under
occlusion.

We believe this approach is useful in challenging applications like surveillance
of occluded people in crowded areas where seeing the people’s appearance maybe
of primary interest, or reconstructing hidden objects through severe occlusion,
or even rendering a depth free viewpoint image. In the future, we would like to
design more robust cost functions for the focus depth estimation, and extend
our work to unstructured light field imaging through occlusion with handhold
mobile phone.
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