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Abstract. In this paper, we study the problem of face clustering in
videos. Specifically, given automatically extracted faces from videos and
two kinds of prior knowledge (the face track that each face belongs to,
and the pairs of faces that appear in the same frame), the task is to
partition the faces into a given number of disjoint groups, such that each
group is associated with one subject. To deal with this problem, we pro-
pose a new method called weighted block-sparse low rank representation
(WBSLRR) which considers the available prior knowledge while learning
a low rank data representation, and also develop a simple but effective
approach to obtain the clustering result of faces. Moreover, after us-
ing several acceleration techniques, our proposed method is suitable for
solving large-scale problems. The experimental results on two benchmark
datasets demonstrate the effectiveness of our approach.

Keywords: low rank representation, block-sparsity, subspace cluster-
ing, face clustering.

1 Introduction

Face clustering in videos [7, 28] is an important but challenging problem in
computer vision. Specifically, given the faces automatically extracted from a
piece of video (e.g. a movie or an episode of TV series), the task is to partition
these faces into a given number of clusters, such that the faces assigned to each
cluster belong to the same subject. Face clustering is important for many related
applications, such as video organization, video segmentation and content based
video retrieval. However, the video face clustering problem is challenging because
the faces are generally captured in uncontrolled environments and thus the faces
are with large variations in poses, illuminations and facial expressions. Moreover,
the faces may be occluded by hands, glasses or other objects.

Instead of treating each face individually, existing works [7, 28] (see Section 2
for more details) often consider the information based on face tracks (where
each face track is a sequence of faces) when performing the face clustering in
videos. Thus, the following two kinds of relationships among faces can be directly
explored:

1. The inner-track relation: any two faces in the same face track should belong
to the same subject.
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2. The inter-track relation: if any two faces appear in the same frame of the
video, the corresponding two face tracks should belong to different subjects.

It is worth mentioning that, with such prior knowledge, the face clustering prob-
lem can be considered as “self-supervised” [7].

On the other hand, the subspace clustering problem [1, 10, 17] is studied
in many recent works such as [20, 10, 17, 21, 27]. Specifically, given the data
sampled from a union of (linear) subspaces, the goal of subspace clustering is
to partition the data into several clusters, so that each cluster corresponds to
one subspace. Among the subspace clustering methods, the compressed sensing
based approaches [10, 17] assume that the data is self-expressible (i.e., each
data point in its subspace can be represented as a linear combination of the
data points from the same subspace). Particularly, the low rank representation
based methods [17], which encourage the data representation to be low-rank,
have been successfully used in various applications. For example, the result of
subspace clustering can be obtained based on the learnt data representation.
Unfortunately, these unsupervised methods cannot effectively utilize the possible
supervision (such as the prior knowledge) in our problem.

Motivated by the above two aspects, in this paper, we propose a low-rank
representation based approach for face clustering in videos, by effectively ex-
ploiting the available prior knowledge (i.e. the inner-track and inter-track re-
lations). Specifically, we design a weighted block-sparse regularizer on the data
representation to incorporate both kinds of prior knowledge, so that the resul-
tant data representation should be more discriminative. Ideally, the faces in any
face track are linearly represented only by the tracks of faces from the same
subject/subspace, because we encourage the sparsity of the blocks (which cor-
respond to the face tracks) in the data representation. Moreover, if any faces
from two face tracks appear in the same frame, the corresponding representa-
tion coefficients are penalized. Accordingly, we name the proposed method as
weighted block-sparse low rank representation (WBSLRR). We adopt the alter-
nating direction method (ADM) [4, 17] to solve the optimization problem and
we further use several acceleration techniques to make the algorithm scalable to
large-scale dataset. Moreover, we also propose an efficient method to obtain the
face clustering result based on the learnt data representation.

In summary, the contributions of this work include:

— By considering both inner-track and inter-track relations of faces in videos,
we develop a new method named WBSLRR . to learn a more discriminative
low rank representation of faces. We also propose an efficient method to
obtain the face clustering result based on the learnt data representation.

— Several acceleration techniques are used to make the proposed method scal-
able to large-scale datasets.

— Experiments on two benchmark face datasets demonstrate the effectiveness
of our WBSLRR approach for face clustering in videos.



Weighted Block-Sparse LRR for Face Clustering in Videos 125
2 Related Work

There are several existing works [7, 28] for face clustering in videos. Specifically,
based on the information of face tracks, the unsupervised logistic discrinative
metric learning (ULDML) method [7] learns a distance metric, so that faces in
the same track are pulled closer, while faces in any face track are pushed away
from the ones in another face track with the inter-track relation. More recently,
based on the Hidden Markov Random Fields (HMRF) model, a probabilistic
constrained clustering method called HMRF-com [28] is proposed for face clus-
tering in videos. By exploiting the prior knowledge in the neighborhood system
of HMRF, HMRF-com has shown competitive clustering performance. Besides,
the problem of face clustering in videos can be treated as a constrained cluster-
ing problem, as studied in the works such as Penalized Probabilistic Clustering
(PPC) [23], COP-KMeans [24] and HMRF-KMeans [2].

The subspace clustering methods [20, 10, 17, 21, 27] have been applied for face
clustering. However, these methods do not exploit the valuable prior knowledge
in our problem. Moreover, the face images studied in these works are usually
captured under controlled environment, and may be further contaminated by
artificial noises [17], while the face images in our problem are in-the-wild faces
automatically detected from videos, which makes the clustering task more real-
istic and challenging.

The problem studied in this work is related to several other learning tasks,
e.g., the traditional face verification task [9], the image set based classification
task [26, 6, 25, 22] and the weakly supervised learning task [12, 33, 14-16, 30]. In
the traditional face verification (resp., the image set based classification) prob-
lem, each training/test example is a pair of faces (resp., a set of faces from one
subject). In contrast, our problem is basically a clustering problem, where labeled
data (i.e., the faces with groundtruth names) are not available. In the weakly
supervised learning problem, the weak supervision information usually comes
from the captions of news images [12, 33] or the tags of web images [14-16, 30].
For example, in [12, 33], given a set of images, where each image contains several
faces and is associated with a few names in the corresponding captions, the goal
of caption-based face naming is to infer the correct name of each face. Different
from such weak supervision, the prior knowledge in our task is the inner-track
and inter-track relations based on the information of faces tracks.

3 Owur Proposed Approach

3.1 Problem Statement

In the remainder of this paper, we use the lowercase/uppercase letter in boldface
to denote a vector/matrix (e.g. , a denotes a vector and A denotes a matrix).
The corresponding non-bold letter with a subscript denotes the entry in a vec-
tor/matrix (e.g. , a; denotes the i-th entry of the vector a, and A;; denotes
an entry at the i-th row and j-th column of the matrix A). The superscript ’
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denotes the transpose of a vector or a matrix. Moreover, ||A|. denotes the nu-
clear norm of A, tr(A) denotes the trace of A (i.e., tr(A) = Y. Ai;), |Allr
denotes the Frobenius norm of A (i.e., [[Allr = (32, ; A?’j)l/z) and rank(A)
denotes the rank of A. (A, B) denotes the inner product of two matrices (i.e.,
(A,B) = tr(A’B)). I,, denotes a n x n identity matrix, and we omit the sub-
script when the size is obvious. e; denotes the i-th column of I,,. diag(a) denotes
a diagonal matrix where the diagonal elements are in the vector a.

For the problem of face clustering in videos, let {X?}™, denote the face
tracks, where X’ € R?*" is the feature matrix corresponding to the i-th face
track containing n; faces, m is the total number of face tracks and d is the feature
dimension. Besides, let X = [X!,..., X™] € R4*" denote the feature matrix of
all faces, where n = Y " | n; is the total number of faces. Moreover, let us define
a matrix H € {0,1}"*™, where H; ; = 1 if there is a face from the face track
X* and a face from the face track X7 that appear in one frame, and H;; =0
otherwise, Vi,j = 1,...,m. The goal of our task is to cluster the n faces into [
groups, where each group contains the faces from one subject.

3.2 Weighted Block-Sparse Low Rank Representation

Let us assume that the given data are drawn from a union of ! independent
linear subspaces, where each linear subspace corresponds to one subject [20, 17].
Following [10], we also assume that there are enough data sampled from each
subspace, and data matrix is self-expressive, so we have X = XZ, where Z €
R™ ™ ig the data representation matrix. Similarly as in [10, 17], we propose
to obtain the final clustering results of faces based on the data representation
matrix Z, which describes the relationship between faces. To achieve promising
clustering result, we expect that the data representation Z has the following ideal
property [10, 17]: Z; ; # 0 (only) if the i-th face and the j-th face are from the
same subject/subspace, and Z; ; = 0 otherwise. In other words, any face from a
subject should be linearly represented only by the faces from this subject.

As shown in [17], if X is a collection of samples strictly drawn from multiple
independent linear subspaces (i.e., X is noise-free), the optimal solution to the
following problem satisfies the above mentioned ideal property:

min |Z]|. st X = X2, (1)

where ||Z]|, is a convex approximation of rank(Z) [17, 32]. The resultant data
representation matrix after solving (1), which is called the shape intersection ma-
trix (SIM) [8], has been widely used for subspace segmentation [17]. Note that
the formulation in (1) essentially deals with an unsupervised learning problem,
without considering the prior knowledge in our face clustering problem. There-
fore, to learn a more discriminative data representation, we propose to further
exploit the prior knowledge. Specifically, we additionally introduce a regularizer
2(Z) to incorporate the prior knowledge, and formulate our learning problem
as follows:

min |ZI|. +742(2), st. X =Xz, (2)
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where 7 is a tradeoff parameter. Now, the remaining problem is how to design
the regularizer £2(Z) to model the prior knowledge. In this work, we propose
a new regularizer that exploits both kinds of prior knowledge, which will be
introduced below in details.

Recall that X = [X!,...,X™], where each X* corresponds to a face track.
Accordingly, we can divide Z into m x m blocks as follows:

zn oz
Z=| 1 3)
Z(m  Zmm)

where each sub-matrix Z(%7) € R™*™ contains the coefficients for representing
the faces in the face track X7 using the ones in the face track X, as shown in
Figure 1.

Considering the inner-track relation, we extend the previously mentioned ideal
property of the data representation Z to the following block-wise ideal property:
The elements in Z(*7) are non-zeros (only) if the i-th face track and the j-th
face track are from the same subject, otherwise the elements in Z(+7) should be
zeros. As a result, the elements in each Z(“7) of such ideal representation matrix
should be either large or zeros, namely the ideal Z should be block-sparse, as
illustrated in Fig 1.
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Fig. 1. lllustration of the block-sparse property of Z, as well as the relationship between
X and Z in the noise-free case. The different colors in X denote different face tracks.

Inspired by the minimization of the 5 1 norm [17] which promotes the column
sparsity of a matrix, we encourage the above mentioned block-sparse property by
minimizing 20(Z) = 37", >0, \/nlmj |Z(#9)|| p, where we use \/nlmj to normal-

ize the Frobenius norms of {Z (%) }%—1 due to different sizes of the sub-matrices.

Now, let us further consider the inter-track relation. Intuitively, when two
faces respectively from X* and X7 appear in the same frame, these two face tracks
should be from different subjects. As a result, the elements in the corresponding
two sub-matrices Z(*) and ZU") are zeros in the ideal case. To this end, we
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propose a new regularization term 2(Z) based on 2y(Z) as follows:

22) =Y Qi Iz p, (4)
i=1 j—1

1
to 1000 in oulz/experiments). Compared with 2y(Z), if the i-th face track and
the j-th face track are with the inter-track relation, the weight w.r.t. | Z(%9| »
will be enlarged from 1/,/n;n; to Q; j, so the elements in the resultant Z(59)
and Z) will tend to be closer to zeros. With £2(Z) defined in (4), we detail the
optimization problem in (2) as follows:

where Q; ; = + pH; j, with p being a large scalar (which is empirically set

m m

min || Z]. + YYD Qi lIZE e st X =XZ. (5)

i=1 j=1

Recall that, for the in-the-wild faces in our problem, the data X is often contam-
inated by noise, so the equality constraint in (5) may not be perfectly satisfied.
Following [10], we assume that the data X is corrupted by the Gaussian noise,
so the squared Frobenius norm [29] is used to regularize the representation er-
ror (i.e., X — XZ). Accordingly, we arrive at the weighted block-sparse low rank
representation (WBSLRR) problem as follows:

min |2 +5 Y7 3" QulZ 1k + X - X2, (6)

i=1 j=1

where ) is a tradeoff parameter. Once the optimization problem in (6) is solved,
we can obtain the face clustering result based on the optimal solution Z* € R™*".

Notice that, in traditional subspace clustering methods such as [17], to obtain
the clustering result, spectral clustering is usually performed on (|Z*|+|Z*|")/2,
where | - | denotes the element-wise absolute value operator. However, this ap-
proach does not utilize the face track information in our problem, and it may be
computationally expensive when n is large. To this end, we propose to perform
clustering on face tracks at first, and then propagate the labels to the faces,
instead of performing clustering on the faces directly. Specifically, we convert Z*
into an affinity matrix A € R™*™, where each element 4; ; = |Z+ (D) |7/ \/min;
describes the affinity between the corresponding pair of face tracks. Afterwards,
we follow [17] to post-process this affinity matrix A, and use the spectral clus-
tering method [10, 20, 27] on the post-processed affinity matrix to perform clus-
tering on the face tracks. Finally, the clustering result of faces can be directly
obtained by propagating the label from each face track to the corresponding
faces within this face track.

4 Optimization

There are two major challenges when solving the optimization problem in (6).
Firstly, it contains a nuclear norm regularization on Z, which is non-differentiable.
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Secondly, for the face clustering problem in vedios, it is possible that a lot of
faces are automatically detected, and the corresponding data matrix X can be
very large (e.g., we have 17337 faces in the BF0502 dataset, see Section 5 for
more details).

To tackle the first challenge, we use the alternating direction method (ADM)
[4, 17], which has been widely used in the nuclear norm related optimization
problems such as [18, 17]. To address the second challenge, inspired by a recent
work [18], we decompose the representation matrix Z as Z = GW, in which
G € R™ " is a column-wise orthonormal matrix with r being a scalar smaller
than n (r is empirically set to 1000 in our experiments), and W € R"*™. For the
convenience of optimization, we further introduce two variables P =1— GW ¢
R™*™ and J = P € R"*™, and reformulate our optimization problem as follows,

. A 2
et Wl +~v2(I—-J) + 2||XPHF (7)
st. I-GW =P, J=P.

To solve the optimization problem in (7) using ADM [4, 17], we operate on
the following augmented Lagrangian function:

A
L(G,W,J,P,L A, p) = [W]. +y2(1 = J) + | XP[|% + (I- GW — P, L)
P
I =P A+ (IT-GW = P[§ + I - P}),

where L € R™*™ and A € R™*™ are the Lagrange multipliers and p is the penalty
parameter. The optimization problem can be solved by iteratively updating the
variables {G, W, J, P}, the Lagrange multipliers {L, A} and the penalty param-
eter p until convergence. We introduce the detailed updating steps at the t-th
iteration as follows:

Updating G: Gy is calculated as argming £(G, Wy, J¢, Py, Ly, Ay, pr), i.e.,
the optimal solution to the following subproblem:

L
min |[I—P;+
G'G=1 ;Ot

)~ GW .

This problem is known as the matrix procrustes problem [18]. Based on [18], the
optimal solution of the above problem is given by G;y1 = UgV{;, where Ug and
V¢ are two orthogonal matrices obtained by using singular value decomposition
(SVD) of I =P, + L )Wj, ie, UgZcVy = (TP + L)W,

Updating W: W, is calculated as argmingg £(Giy1, W, Je, Py, Ly, Ay, pt),
i.e., the optimal solution to the following subproblem:
2

—~

8)

9

min [W], +
W 2 F

L
W -G, (I—Pt—i—pt)
t

which can also be solved in closed form by using the Singular Value Thresholding
(SVT) [5] method.
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Updating J: J;41 is calculated as argming £(Gei1, Wep1,J, Py, Ly, Aty pi), dee
the optimal solution to the following subproblem:

A 2
J-P,+ "

Pt

min (1 -3)+ !

9)

F

For convenience, let us define J=1- Jijgpand R=1-P, + ’p\:, the above
problem can be rewritten as:

min 2(J) +
3

73wl

Similarly as in (3), we also decompose J and R into m x m blocks. Let us denote
J@3) (resp., R(#7)) as the (i, j)-th block of J (resp., R), then the above problem
can be equivalently rewritten as

m m 2

min 33 QI e+ 33100 R

{J“g)}"J 1 4=1 j=1 =1 j=1

which can be divided into the following m? subproblems:
A 1y S 12
min 7| 30D || p + HJ(w) - RMH . di=1,...,m, (10)
6.9 2 F

where 7, ; = vQ; j/p:. Based on Lemma 3.3 in [31], the closed form solution of

the problem in (10) can be obtained as J*(») = max (1 - l‘R(T;{’J?')‘lF,()) R®9),
With {j*(i’j)}gljzl obtained after solving the m? subproblems in (10), J;11 can
be recovered by J; 41 = I — J*. In this way, the optimization problem in (9) can
be solved.

Updating P: P, is calculated as argming £(Gi41, Wip1, Ji1, Py L, Ay, pr),
i.€., the optimal solution to the following subproblem:

A 2
n 2IIXPHQFJrPtHP*CmHF- (11)
where Ci1q = é(I — G 1 W1 +Ji1 + plt L; + plt A:). Note that, the gradient

of the above objective function w.r.t. P is AX’XP + 2p;(P — Cy41). By setting
the gradient to zeros, we obtain the optimal solution for (11) as

)\ —1
P = ( X'X + I) Ciq1. (12)
2Pt

We now discuss how to calculate Py in (12) more efficiently without us-
ing matrix inversion. Let Vxdiag([o1,...,0r,,0,...,0])V = X'X denote the
SVD of X'X, where Vx € R™*" is an orthogonal matrix and {o; };*, are positive



Weighted Block-Sparse LRR for Face Clustering in Videos 131

Algorithm 1. The algorithm for solving WBSLRR.

Input: X = [X!,...,X™] € R*" H € {0,1}"™*™, X and ~.

Initialize Po, Go, Wo, Jo, Lo, Ao as zero matrices and set ¢t = 0.

while not converge do
1. Calculate G¢4+1 by using Giy1 = Ug Vg, where UgXe Vg = I-P.+ f)‘tf YW;.
2. Calculate W1 by solving (8) using the SVT method [5].
3. Calculate J¢41 by using Jiy1 = 1 — J*, with J* obtained by solving (10) for
{3y
4. Calculate Pyy1 as in (13).
5. Calculate Lit1 as Lyp1 =Ly + pt(I — Gt+1Wt+1 — Pt+1), and compute At+1
as Apy1 = Ar 4+ pe(Je41 — Prya).
6. Calculate pry1 as pi+1 = min(p:(1 + Ap), Pmaz)-
7. Check the following convergence conditions: ||I — G¢+1 W1 — Piyilec < €
and HJtJ,-l — Pt+1Hoo S € .
8.t t+1.

end while

Output: the data representation Z* = Gy W;.

singular values sorted in descending order, with rx = rank(X) = rank(X’'X). As
a result, we have 2’; X'X+1I= Vxdiag([l4wor,...,1+wor,1,...,1]" )V and

(o, X'X + 1)~ = Vxdiag(] | A

1
1+w01""71+wa'rx’ A 204"
For convenience, we define V,., € R"*"X which contains the first rx columns of
Vx, and we define A € R"™X*"X as A = diag([,“7: ,..., ,=7"% ]"). Accordingly,

1+woy? ’ 1+way,,x
we obtain (22 X'X+I)"'=1I-V, AV _,so Py in (12) can be equivalently
calculated as

1))V, where w =

Py =Ciy1 — Vi  AV] _Ciyy, (13)

for which the computational cost is O(rxn?).

Other details, including updating the Lagrange multipliers and the penalty
parameter, as well as the details of the convergence conditions, are summarized
in Algorithm 1, where {po, Ap, pmaz, €} is set similarly as in [17].

Time Complexity and Convergence Analysis. The computational com-
plexities of the main steps for updating the variables {G, W,J, P} in each itera-
tion are O(rn?), O(rn?), O(n?) and O(rxn?), respectively. Therefore, the overall
computational complexity for each iteration in Algorithm 1 is O((r + rx)n?),
and the step 3 for updating J can be efficiently performed in parallel.

The theoretical convergence of ADM with more than two blocks is still an
open issue [17]. However, it has been widely used in many applications because
it empirically converges well in general [17]. In the following experiments, we
also show the empirical convergence of Algorithm 1 (see Section 5 for more
details). Alternatively, the optimization problem in (6) can be addressed by using
a recently proposed algorithm LADMPSAP [19] with convergence guarantees in
theory, which will be studied in our future work.
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5 Experiments

5.1 Datasets

We evaluate the performances of the proposed method and the baseline meth-
ods on two benchmark face datasets (i.e., the Notting-Hill dataset [28] and the
BF0502 dataset [11]) used in [28]. On both datasets, we strictly follow the exper-
imental setting in [28]. The Notting-Hilldataset contains 4460 faces in 76 tracks
detected from the movie “Notting Hill”, and the faces are corresponding to 5
main casts. Following [28], we use the pixel intensities as the feature, so that each
face is represented as a 18000 dimensional feature vector. The BF0502 dataset
contains faces detected from the TV series “Buffy the Vampire Slayer”. In our
experiments, we use the 17337 faces in 229 tracks corresponding to 6 main casts.
To represent each face, we use the 1937-dimensional descriptor [11] extracted
from 13 facial points (e.g. the left and right corners of each eye).

We define the distinguishability value to as the criterion to evaluate how
difficult the clustering problem is on each dataset. Specifically, based on the
groundtruth labels, let us call a pair of face tracks as “same-subject pair” if these
two tracks are from the same subject, otherwise we call it aa “different-subject
pair”. For each pair of face tracks, we calculate the mean of the squared Euclidean
distance between the faces in one track and the faces in the other track. Then,
we define the distinguishability value as the ratio between the average distance
corresponding over same-subject pairs and the average distance over different-
subject pairs. Generally speaking, a larger distinguishability value indicates that
the corresponding clustering problem on this dataset is easier.

A Dbrief summary of the information of the two datasets can be found in
Table 1. According to this table, the BF0502 dataset, with more faces and face
tracks and a smaller distinguishability value, should be more challenging than
the Notting-Hill dataset.

5.2 Baselines and Evaluation Criterion

We compare our proposed method with the most recent work HMRF-com [28],
as well as the baselines mentioned in [28]. Specifically, the following methods are
used as the baselines:

— the traditional clustering method: Kmeans [3] is used in two ways as the
baselines in [28]. Specifically, “Kmeans-1” is directly performed on the whole
dataset after using PCA, and “Kmeans-2” denotes the Algorithm 2 in [28], in
which Kmeans is used in Stage 2. Note that neither of these two approaches
utilize the prior knowledge.

— the constrained clustering method: The Penalized Probabilistic Clustering
(PPC) method [23] used the Gaussian mixture models, with the prior knowl-
edge in our problem considered as pairwise constraints.

— the metric learning based method: The unsupervised logistic discriminant met-
ric learning (ULDML) method [7] proposed for the face track clustering in
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videos. In [28], two methods (called “ULDML-cl” and “ULDML-km”) are pro-
posed based on the learnt metric. Specifically, for ULDML-cl, a complete-link
hierarchical clustering method is employed on the corresponding distance ma-
trix between the face tracks [7]. For ULDML-km, Kmeans is performed based
on the learnt metric.

— the hidden markov random fields based method: HMRF-com [28] is a proba-
blistic constrained clustering approach based on HMRF. Note that the prior
knowlege is considered in the combined neighborhood system.

To further study our proposed method, we also compare our WBSLRR with
the following five compressed sensing based subspace clustering methods on
both datasets: Least Squares Regression (LSR) [20] , Sparse Subspace Clus-
tering (SSC) [10], Low Rank Representation (LRR) [17], Correlation Adaptive
Subspace Segmentation (CASS) [21] and Low Rank Sparse Subspace Cluster-
ing (LRSSC) [27]. For fair comparison, we apply our acceleration techniques
in our implementation of LRSSC [27], and we use the LRR method with the
squared Frobenius norm regularization on the representation error. Basically,
both WBSLRR and these subspace clustering methods seek for a desired data
representation Z, based on which clustering can be performed. The major dif-
ference between these approaches is the regularizations on Z in their objective
functions, which are briefly summarized in Table 3. Based on Table 3, we can ob-
serve that LRR is a special case of our WBSLRR if we drop {2(Z) in (6), while
LRSSC can be treated as a special case of our WBSLRR by replacing (2(Z)
with ||Z||; (i.e., LRSSC encourages the general sparsity without considering of
the information of the face tracks). For fair comparison, for all these subspace
clustering methods (i.e., LSR, SSC, LRR, CASS and LRSSC), the clustering is
also performed based on the affinity matrix A € R™*™ (as we introduced in
Section 3.2), so that the information of face tracks is also utilized.

Following [28], we use accuracy (based on the confusion matrix) for perfor-
mance evaluation, which is defined as the number of correctly clustered faces
over the total number of faces. The confusion matrix is derived from the best
1-to-1 match between the partition of all faces and the groundtruth labels, which
is obtained by using the Hungarian method [13]. As suggested in [28], each algo-
rithm is repeated for 30 times, and the mean accuracy and standard deviation
are reported. Due to the page limitation, we omit the parameter settings of these
baselines, which can be found in [28]. The results of the state-of-the-art baselines
listed in Table 2 are from the tables in [28]. For fair comparision, we manually
tune the parameters and report the best results of our method and the subspace
clustering methods as suggested in [28].

5.3 Experimental Results

In this section, we verify the effectiveness of our proposed method with two exper-
iments. In the first experiment, we compare the results of our proposed method
with the state-of-the-art results in [28] on the two datasets. In the second exper-
iment, we compare our method with several subspace clustering approaches.
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Table 1. A brief summary of information about the two datasets. “#” means “the
number of”, and “dim” stands for the feature dimension.

Dataset — m(#tracks) n(#faces) d(dim) I[(#subjects) distinguishability value
BF0502 229 17337 1937 5 1.09
Notting-Hill 76 4660 18000 6 1.46

Table 2. The clustering accuracies (meantstandard deviation%) of the state-of-the-
art methods and our proposed method on two datasets under two settings. The results
of the baseline methods are from [28]. The best accuracies are highlighted in boldface.

BF0502 Notting-Hill

Setting 1 Setting 2 Setting 1 Setting 2
Kmeans-1 39.31 £4.51 39.31 +4.51 69.16 % 3.22 69.16 + 3.22
Kmeans-2 42.05 £ 5.45 42.05 £5.45 73.43 £ 8.12 73.43 £8.12
PPC 43.64 £4.61 42.54 +3.98 79.71 + 2.14 78.88 +5.15
ULDML-km 29.05 + 2.84 41.62 4+ 0.00 72.66 £ 12.78 73.18 + 8.66
ULDML-cl  39.01 £0.00 49.29 + 0.00 51.72 + 0.00 36.87 £ 0.00
HMRF-com  47.77 £3.31 50.30 +2.73 81.33 & 0.43 84.39 + 1.47
WBSLRR (ours) 59.55 + 0.51 62.76+1.10 95.24 +0.00 96.29+0.00

Methods

Comparison with the State-of-the-Art Methods. In this experiment, we
evaluate all the methods under the following two settings:

— Setting 1: we only utilize the inner-track relation in all the methods,
— Setting 2: both inter-track and inter-track relations are available to all the
methods.

For our WBSLRR method, we solve the optimization problem in (6) with the
second term, namely §2(Z), replaced with £29(Z), in order to exclude the consid-
eration of inter-track relation under setting 1. and directly solve the optimization
problem implement (6) under setting 2. For each method, the clustering accu-
racies on two datasets are shown in Table 2. According to Table 2, we have the
following observations:

Firstly, our proposed method WBSLRR outperforms all the baseline methods
(on both datasets) under both settings. Comparing WBSLRR with the second
best method (i.e. the HMRF-com method) on the two datasets, the relative im-
provement is about 20% (resp., 15%) on the BF0502 dataset (resp., the Notting-
Hill dataset). The results clearly demonstrate that WBSLRR can make better
use of the prior knowledge (i.e. the inner-track and inter-track relation) for the
face clustering problems in videos .

On both datasets, the performances of WBSLRR under setting 2 are better
when compared with those under setting 1, which demonstrates that it is bene-
ficial to additionally consider the inter-track relation in (6). For HMRF-com, we
have similar observations, i.e., the results under setting 2 are better than those
under setting 1 on both datasets.
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Fig. 2. The objective values of our optimization problem in (6) with respect to the
number of iterations, on the Notting-Hill dataset

For almost all the methods, the performances on the Notting-Hill dataset are
generally better than those on the BF0502 dataset. One possible explanation is
that, the BF0502 dataset contains more faces and face tracks and it is also with
smaller distinguishability value, which indicates that the face clustering task on
the BF0502 dataset is more challenging.

Last but not least, we take the Notting-Hill dataset as an example to show
the objective values of the optimization problem in (6) with respect to different
iteration numbers in Figure 2. We can observe that our optimization algorithm
empirically converges well.

Comparison with the Subspace Clustering Methods. The mean accu-
racies and the standard deviations as well as the running times of five existing
subspace clustering methods and our WBSLRR on both datasets are reported
in Table 3. All the algorithms are executed on a desktop with Intel Xeon CPU
(3.2Ghz) and 16GB memory).

From Table 3, we observe that our WBSLRR achieves the best accuracies on
both datasets and it is also reasonably fast compared with other methods. Note
that the difference between our WBSLRR and LRR is that we additionally use
the regularizer {2(Z) to encourage the block-sparsity of the representation matrix
Z. WBSLRR outperforms LRR, which clearly demonstrates the effectiveness of
the proposed regularizer 2(Z) for exploiting the available prior knowledge in
our task.

Moreover, we observe that both WBSLRR and LRSSC outperform LRR in
terms of the clustering accuracy, which indicates that more robust results can
be achieved by further encouraging the sparsity of Z. Our WBSLRR achieves
better results than LRSSC, which demonstrates it is more beneficial to encourage
the weighted block-sparsity on the data representation according to the prior
knowledge in our WBSLRR, rather than promoting the general sparsity by using
the /1 norm regularization as in LRSSC.
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Table 3. The regularizations on Z in different subspace clustering methods and our
WBSLRR, and their clustering accuracies (meantstandard deviation%) as well as run-
ning times (in seconds) on two datasets. The results of CASS on the BF0502 dataset are
not available because CASS cannot be used on large datasets like the BF0502 dataset.
The best accuracies are highlighted in boldface.

N BF0502 Notting-Hill
Methods Regualrization on Z Accuarcy(%) Time(s) Accuarcy(%) Time(s)
LSR 1Z||% 50.19 £1.93 131.53 89.89 £+ 0.00 7.36
SSC I1Z]2 36.52 £ 0.91 24554.59 75.50 +7.90 2931.00
LRR |Z]|| 51.17 £2.94 1208.53 93.11 £ 0.00 31.92
CASS Y7, |X diag(Ze)|.  N/A N/A 93.18 % 0.00 29610.15
LRSSC IZ|l. +~)Z];  58.08+5.37 8211.20 94.03+0.00 545.93

WBSLRR (ours)  ||Z]l. +v2(Z)  62.76£1.10  693.43 96.2940.00 194.14

LRR outperforms LSR and SSC on both datasets. One possible explanation
is that by using the nuclear norm regularizer on Z, LRR can better grasp the
global structure [17] of the given data. While CASS achieves relatively better
results than LRR, LSR and SSC on the Notting-Hill dataset, it is slow and thus
cannot be applied on the large dataset BF0502.

Finally, the five subspace clustering methods generally achieve better results
than the baseline methods in Table 2. One possible explanation is that, the
self-expressiveness assumption of the data is generally satisfied and the prior
knowledge is also considered in the post-processing procedures of these subspace
clustering methods.

6 Conclusions

To effectively solve the face clustering problem in videos, in this paper, we have
proposed the WBSLRR method, which exploits the two kinds of prior knowl-
edge (i.e. the inner-track and inter-track relations) while learning a low rank
representation of the given data. We also propose a post-processing approach
to efficiently obtain the clustering result of faces based on the resultant data
representation. After using several acceleration techniques in our algorithm, the
proposed method is scalable for solving large scale problems. The experimental
results have demonstrated the effectiveness of our approach when compared with
several state-of-the-art baselines and subspace clustering methods.
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