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Abstract. Motion segmentation can be addressed as a subspace cluster-
ing problem, assuming that the trajectories of interest points are known.
However, establishing point correspondences is in itself a challenging
task. Most existing approaches tackle the correspondence estimation and
motion segmentation problems separately. In this paper, we introduce an
approach to performing motion segmentation without any prior knowl-
edge of point correspondences. We formulate this problem in terms of
Partial Permutation Matrices (PPMs) and aim to match feature de-
scriptors while simultaneously encouraging point trajectories to satisfy
subspace constraints. This lets us handle outliers in both point loca-
tions and feature appearance. The resulting optimization problem can
be solved via the Alternating Direction Method of Multipliers (ADMM),
where each subproblem has an efficient solution. Our experimental evalu-
ation on synthetic and real sequences clearly evidences the benefits of our
formulation over the traditional sequential approach that first estimates
correspondences and then performs motion segmentation.

Keywords: Motion segmentation, point correspondence, subspace clus-
tering, partial permutation matrix.

1 Introduction

Motion segmentation is a challenging problem whose outcome can positively
impact many scene understanding techniques. It is well known that, under an
affine camera model, the trajectories of independent motions lie in different
linear (or affine) subspaces [26]. Thus, given the trajectories of points belonging
to multiple moving objects, motion segmentation can be addressed as a subspace
clustering problem.

Recently, there has been a surge of subspace clustering algorithms [8,13,30,15,9]
reporting highly accurate results on benchmark datasets (e.g., [29]). However,mo-
tion segmentation is still far from being a solved problem. Indeed, most existing
methods assume that complete point trajectories are available as input. For ex-
ample, in the Hopkins155 dataset [29], perfect trajectories were obtained by man-
ually labeling the points throughout the sequences. Such manual intervention is,
of course, impractical in many realistic scenarios. While some methods are robust
to small amounts of outliers (e.g., [8,13,9]), their performance quickly degrades
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as the number of mismatches increases. In practice, interest point detection and
correspondence estimation are challenging tasks. Inevitable outliers and missing
data make the problem even harder.

While research in the area of point correspondence estimation has also been
progressing [19,33,10], existing methods are not being considered in the context
of motion segmentation. Therefore, they cannot benefit from constraints asso-
ciated with the problem. In particular, when observing multiple motions, the
underlying point trajectories should lie in a union of subspaces.

In this paper, we introduce an approach to performing motion segmentation
with unknown correspondences. In contrast to existing techniques that proceed
in two stages (i.e., first correspondence estimation and then motion segmenta-
tion), this allows us to (i) benefit from the motion segmentation constraints
throughout the entire process; and (ii) not require any pre-processing stage to
clean up the trajectories used for motion segmentation, and thus be robust to
outliers and missing observations. This, we believe, is a crucial step towards
making motion segmentation applicable to more realistic scenarios.

More specifically, given interest points extracted independently in all the
frames of a video sequence comprising both inliers and outliers, we exploit the
constraint that data lying in the union of subspaces should be self-expressive. In
other words, a trajectory lying in a subspace can be expressed as a linear com-
bination of the other trajectories in the same subspace. We therefore search for
Partial Permutation Matrices (PPMs) and combination coefficients that auto-
matically select and reorder the inlier points so as to make them self-expressive.
Furthermore, we make use of the fact that matched feature descriptors have a
similar appearance across the frames and thus, when correctly arranged, should
form a low-rank matrix. To obtain a solution to the resulting optimization prob-
lem, we employ the Alternating Direction Method of Multipliers (ADMM), and
show that each subproblem can be solved efficiently. Given the combination co-
efficients, we can then separate the different motions by normalized cuts [21] or
spectral clustering, as in [8,13,30,15,9].

We demonstrate the robustness and effectiveness of our method on several real
sequences. Our experimental evaluation evidences the benefits of our formulation
over sequentially solving correspondence estimation and motion segmentation,
as is done by existing approaches. Importantly, on Hopkins155, our formulation
with unknown correspondences achieves competitive results with the state-of-
the-art motion segmentation methods that exploit perfect trajectories as input.

2 Related Work

Over the years, many techniques [1,5,12,25,24,18,8,13,15,9] have been proposed
to tackle the problem of motion segmentation. These techniques can be roughly
categorized into those working with dense observations, and those tackling the
sparse points case.

In the dense scenario, the use of optical flow has been investigated to sep-
arate the motion of different objects observed in two frames [5,1], or in very
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short sequences [25,24]. Dense point trajectories were also employed for motion
segmentation in longer videos [18].

Our work is more directly related to methods that perform motion segmen-
tation of sparse trajectories [26,32,31]. In particular, our approach draws inspi-
ration from the recent subspace clustering literature [8,13,15,9]. Subspace clus-
tering approaches exploit the fact that the trajectories of points belonging to
multiple independent motions lie in a union of subspaces. As such, the data can
be thought of as self-expressive in the sense that each trajectory can be rep-
resented as a linear combination of the other trajectories that lie in the same
subspace. The motion segmentation problem is then typically recast as that of
finding the coefficients of this linear combinations. Different penalty functions
have been proposed to regularize these coefficients, such as sparsity in Sparse
Subspace Clustering (SSC) [8], low-rank in Low Rank Representation (LRR) [13],
or density in [15,9] of the coefficient matrix. The resulting coefficients are then
used to build an affinity matrix, from which motion segmentation is achieved
via spectral clustering or normalized cuts.

Whether dense or sparse, trajectory-based methods all assume that the cor-
respondence problem has been solved beforehand, and that the trajectories are
thus given as input. While some advances have been made towards handling
outliers [8,13,9] and incomplete point tracks [23,4], the resulting techniques still
require relatively clean data to yield good accuracy.

Ultimately, motion segmentation methods strongly rely on the accuracy of
point correspondences. These correspondences can typically be obtained by in-
dependently matching local feature descriptors [14,16], or by making use of the
temporal nature of the data to track sparse [22] or dense [2] image points. Rather
than treating each point independently, several methods have been proposed to
jointly find nonrigid correspondences between two sets of points [11,28,7]. In [27],
this is achieved by combining point location and appearance.

In the case of a single rigid motion, it was shown that correspondence estima-
tion can be expressed as a rank-minimization problem in terms of PPMs [19].
Indeed, when correctly organized, the trajectories of rigidly moving points form
a rank 4 matrix. While, in [19], this was achieved by incrementally incorporat-
ing one frame at a time, which is subject to error propagation, this idea was
pursued for Robust Object Matching using Low-rank and sparse constraints
(ROML) [33,10], where a whole sequence was treated at once. Furthermore,
in [33,10], this framework was extended to minimizing the rank of a matrix built
from feature descriptors, thus making the approach applicable to more general
correspondence problems.

However, while attractive, general solutions to the correspondence problem,
such as [27,33,10] do not permit taking into account the specific constraints
of the task at hand. Here, in contrast, we introduce an approach that jointly
performs correspondence estimation and motion segmentation, and can thus
incorporate the subspace constraints in motion segmentation throughout the
whole process. As a result, not only does it yield high segmentation accuracy,
but it also improves correspondence estimation.
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3 Problem Formulation

We now present our approach to robust motion segmentation with unknown
correspondences. Intuitively, we seek to select the inlier input points and reorder
them such that they satisfy the subspace constraints (i.e., the point trajectories
lie in a union of subspaces) and appearance constraints (i.e., the matched feature
points have similar appearance across the images).

More specifically, let wfi ∈ R
2×1 be the 2D location of point i detected in

frame f of an F -frame sequence depicting multiple motions. Furthermore, let
tfi ∈ R

d×1 be the appearance descriptor of the same point in the same frame.
The locations of all points in frame f can be concatenated in a 2×Nf position
matrix Wf = [wf1, · · · ,wfNf

]. Similarly, we can group all feature descriptors
in frame f in a d×Nf matrix Tf = [tf1, · · · , tfNf

].
In the absence of point correspondence across the frames, and even if we

assume Nf = N, ∀f , simply stacking up of all the position matrices {Wf}Ff=1

does not yield valid point trajectories. However, there exists a reordering of
the columns of the position matrix in each frame that yields coherent point
trajectories1. Furthermore, when applied to the descriptor matrices {Tf}Ff=1,
this ordering should also make the appearance of corresponding features coherent
across the frames. In the presence of outliers, i.e., Nf �= Nf ′ , f �= f ′, this process
should not only reorder the points, but also select the inliers.

Following [19,4,33], we utilize Partial Permutation Matrices (PPMs) to model
this reordering. Let Pf ∈ {0, 1}Nf×N denote the PPM that selects and reorders

the N inlier point coordinates in frame f . Given the F PPMs {Pf}Ff=1, we define
the trajectory matrix as

Dc = [(W1P1)
T | · · · |(WFPF )

T ]T . (1)

In an ideal, noise-free scenario, there exist PPMs such that the trajectory matrix
Dc satisfies the subspace constraints. In practice, to account for noise of mea-
surements, we decompose Dc into a clean measurement matrix Lc and a noise
matrix Ec. This can be written as

Dc = Lc +Ec . (2)

As was shown in [8,13], the fact that trajectories lie in a union of subspaces
can equivalently be formulated in terms of self-expressiveness of the data. Note,
however, that self-expressiveness only holds in the noise-free case. In our for-
mulation, we therefore make use of the clean measurement matrix Lc to encode
self-expressiveness. This yields

Lc = LcC , (3)

1 Note that this global reordering is subject to an ambiguity, since the order of the
trajectories themselves is irrelevant. This, however, can easily be solved by fixing the
order in the first frame of the sequence.
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where each clean trajectory is represented as a linear combination of the other
trajectories, with C storing the (unknown) combination coefficients. In the pres-
ence of affine subspaces, an additional constraint of the form 1T

NC = 1T
N , where

1N is a column vector of 1s, can be further imposed.
For feature appearance, we define the Nd×F descriptor matrix obtained from

the PPMs {Pf}Ff=1 as

Dd = [vec(T1P1)| · · · |vec(TFPF )] , (4)

where vec(·) vectorizes its matrix argument in a columnwise manner.
Since, in a noise-free scenario, each specific feature point should have the same

appearance in all the frames, Dd should have low rank (ideally rank one). To
tackle the more realistic case of noisy measurements, however, we decompose Dd

into a clean low rank component Ld and a noise component Ed. Therefore, we
have

Dd = Ld +Ed. (5)

In this formalism, our goal is to propose a formulation to motion segmentation
with unknown correspondences, which satisfies the following requirements:

1. The matrix of clean inlier point trajectories Lc should be self-expressive.
2. The matrix of clean inlier feature descriptors Ld should have low-rank.
3. Noise and outliers in both point locations and feature descriptors must be

accounted for.

While Point 1 is partially accounted for by the constraint in Eq. 3, it is cru-
cial to prevent non-zero coefficients in C for any two trajectories belonging to
different motions. Indeed, to perform motion segmentation, C needs to reflect
the membership of the trajectories to their respective subspace. As was shown
in [9], this can be achieved with any p-norm regularizer on C. Here, in particu-
lar, we make use of the Frobenius norm, which is convex and easy to minimize.
To address Point 2 in our requirements, we propose to search for the Ld with
minimum rank. To this end, we employ a nuclear norm regularizer on Ld, which
is a convex surrogate to the rank function. Finally, Point 3 is addressed in two
different ways. First, outliers in the point locations are accounted for by the
PPMs. Second, to model further noise in the locations and in the descriptors,
which we expect to be sparse, we make use of �1 regularizers on Ec and Ed as
convex surrogates to the �0 norm.

Integrating all these constraints, we express motion segmentation with un-
known correspondences as the optimization problem

min
{Pf}F

f=1,C,Lc,d,Ec,d

1

2
‖C‖2F + λ1‖Ld‖∗ + λ2‖Ec‖1 + λ3‖Ed‖1

s.t. Lc = LcC ,
(
1T
NC = 1T

N

)
,

Dc = Lc +Ec, Dd = Ld +Ed ,

1T
Nf

Pf = 1T
N , Pf1N ≤ 1Nf

, Pf ∈ {0, 1}Nf×N ,

(6)
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where λ1, λ2, and λ3 balance the different terms in the objective function, and
where the constraints on {Pf}Ff=1 enforce these matrices to be PPMs. Note that
these PPMs appear in (6) via the matrices Dc and Dd as can be seen from their
definitions in Eqs. 1 and 4, respectively.

Note that, for motion segmentation with known correspondences, the use of
the nuclear norm on the coefficients C has been advocated in the past [13]. This
was motivated by the fact that a low-rank C would inherently incur a low-rank
L, thus reflecting the fact that the trajectories of K motion form a rank 4K
matrix. However, as was shown in [9], under the self-expressiveness constraint
L = LC, minC

1
2‖C‖2F and minC ‖C‖∗ are equivalent. With this observation,

the Frobenius norm comes as a natural choice over the nuclear norm in (6) due
to its computational simplicity.

Importantly, note that, in (6), the trajectory matrix Dc and the descriptor
matrix Dd share the same PPMs {Pf}Ff=1. This induces a connection between
motion segmentation and point correspondence, and thus makes the two prob-
lems work in a cooperative manner and help each other during the optimization
procedure. As will be shown in our experiments, this collaboration not only yields
accurate motion segmentation, but also improves the point correspondence re-
sults over methods dedicated to this task only.

3.1 Solving (6)

Due to the discrete nature of PPMs, (6) is non-convex. Here, we propose to
solve it via the ADMM, which has proven effective for many non-convex prob-
lems such as matrix separation [20], non-negative matrix factorization [34], and
correspondence estimation [33]. The ADMM works by decomposing the original
optimization problem into several smaller subproblems, each of which can be
solved efficiently.

We therefore seek to decompose (6) into several subproblems. With the
ADMM, this is achieved by first deriving the augmented Lagrangian of (6),
which can be expressed as

Lρ({Pf}Ff=1,C,Lc,d,Ec,d, {Yi}4i=1) =
1

2
‖C‖2F + λ1‖Ld‖∗ + λ2‖Ec‖1 + λ3‖Ed‖1

+tr
(
YT

1 (Lc − LcC)
)
+ tr

(
YT

2 (1
TC− 1T )

)

+tr
(
YT

3 (Dc − Lc −Ec)
)
+ tr

(
YT

4 (Dd − Ld −Ed)
)

+
ρ

2
(‖Dc − Lc −Ec‖2F + ‖Lc − LcC‖2F + ‖Dd − Ld −Ed‖2F + ‖1TC− 1T ‖22) ,

(7)

where {Yi}4i=1 are the matrices of Lagrange multipliers corresponding to the
four constraints in (6), and ρ is the penalty parameter2. Note that, although not
explicitly written here, the constraints on the PPMs are maintained.

2 Note that, for ease of notation, we have omitted explicitly writing the dimension of
the vectors of all 1s, now all denoted by 1.
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The ADMM then consists of iteratively updating the individual variables so
as to minimize Lρ while the other variables are fixed. In the following, we derive
the update for each of our variables. We denote by a superscript t the current
value of the variables and by a superscript t+ 1 the new values.

From Eq. 7, it can be seen that Lc only appears in linear and least-squares
terms. Therefore, its update can easily be obtained in closed-form. More specif-
ically, it is given by

Lt+1
c =

[(
Yt

3 +Yt
1(C

tT − I)
)
/ρt +Dt

c −Et
c

] [
I+ (I−Ct)(I−CtT )

]−1

. (8)

Similarly, all the terms involving C are simple linear and quadratic terms.
This yields the closed-form update

Ct+1 =
[
I+ ρt(Lt+1

c
T
Lt+1

c + 11T )
]−1 (

Lt+1
c

T
Yt

1 − 1Yt
2 + ρt(Lt+1

c
T
Lt+1

c + 11T )
)
.

(9)

Although not as straightforward, the updates for Ld, Ec and Ed can still be
computed efficiently. To this end, we note that these updates correspond to the
solutions of the following optimization problems:

Lt+1
d = argmin

Ld

λ1/ρ
t‖Ld‖∗ + 1/2‖Ld − (Dt

d −Et
d +Yt

4/ρ
t)‖2F , (10)

Et+1
c = argmin

Ec

λ2/ρ
t‖Ec‖1 + 1/2‖Ec − (Dt

c − Lt+1
c +Yt

3/ρ
t)‖2F , (11)

Et+1
d = argmin

Ed

λ3/ρ
t‖Ed‖1 + 1/2‖Ed − (Dt

d − Lt+1
d +Yt

4/ρ
t)‖2F . (12)

Problems (10), (11) and (12) are convex programs whose solutions can be
obtained in closed-form. To this end, let us define the soft-thresholding opera-
tor [3] Tτ [x] = sign(x) ·max(|x| − τ, 0), which operates elementwise on scalars or
matrices. The optimal solution to (10) can then be obtained as

Lt+1
d = UTλ1/ρt(Σ)VT , (13)

where [U, Σ,V] = svd(Dt
d − Et

d + Yt
4/ρ

t). The updates for Ec and Ed can be
written as

Et+1
c = Tλ2/ρt(Dt

c − Lt+1
c +Yt

3/ρ
t) . (14)

Et+1
d = Tλ3/ρt(Dt

d − Lt+1
d +Yt

4/ρ
t) . (15)

The PPMs {Pf}Ff=1 are binary matrices, and thus updating them is non-
trivial. Recall that, in Eq. 7, the PPMs appear via Dc and Dd only. Therefore,
{Pf}Ff=1 can be updated by solving the problem

min
{Pf}F

f=1

‖Dc − (Lt+1
c +Et+1

c −Yt
3/ρ

t)‖2F + ‖Dd − (Lt+1
d +Et+1

d −Yt
4/ρ

t)‖2F

s.t. 1TPf = 1, Pf1 ≤ 1, Pf ∈ {0, 1}Nf×N ,

(16)
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whereDc = [(W1P1)
T | · · · |(WFPF )

T ]T ,Dd = [vec(T1P1)| · · · |vec(TFPF )] (as
defined in Eqs. 1 and 4, respectively).

Problem (16) can then be decomposed into F independent subproblems, each
of which only involves one PPM. The subproblem for frame f can be written as

min
Pf

‖WfPf − αT
f (L

t+1
c +Et+1

c −Yt
3/ρ

t)‖2F

+‖vec(TfPf )− (Lt+1
d +Et+1

d −Yt
4/ρ

t)ef‖22
s.t. 1TPf = 1, Pf1 ≤ 1, Pf ∈ {0, 1}Nf×N ,

(17)

where ef is a binary column vector with only the f th element set to 1, and
αf = [e2f−1|e2f ]. Problem (17) turns out to be a binary assignment problem,
which can be solved by the Hungarian algorithm in polynomial time [17]. The
details of the solution of Problem (17) via the Hungarian algorithm are given in
appendix. Once we have computed the updates {Pt+1

f }Ff=1, Dc and Dd can be
updated accordingly.

Finally, the Lagrange multipliers {Yi}4i=1 and ρ can be updated as

Yt+1
1 = Yt

1 + ρ(Lc − LcC) , (18)

Yt+1
2 = Yt

2 + ρ(1TC− 1T ) , (19)

Yt+1
3 = Yt

3 + ρ(Dc − Lc −Ec) , (20)

Yt+1
4 = Yt

4 + ρ(Dd − Ld −Ed) . (21)

ρt+1 = min(ηρt, ρm) , (22)

where η > 1 and ρm is the predefined maximum for ρ.
The process of iteratively updating all the variables is repeated until conver-

gence, or until a maximum number of iterations is reached. Note that, while
the ADMM does not have theoretical guarantee of global convergence for non-
convex problems, in our simulation we find it always converges to the correct
solution for our problem. The empirical convergence of our algorithm will be
discussed in Section 4. Our algorithm for motion segmentation with unknown
correspondences is summarized in Algorithm 1.

4 Experimental Evaluation

To evaluate the effectiveness of our approach for motion segmentation with un-
known point correspondences, we conducted extensive experiments on both syn-
thetic data and real images. In total, we performed four different sets of ex-
periments, which we discuss below. To measure/compare the performances of
different algorithms, we use the following criteria: (i) Accuracy in motion seg-
mentation, expressed as

ACCms =
total number of correctly segmented trajectories

total number of trajectories
,
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Algorithm 1. Motion segmentation without correspondences via the ADMM

Input:
Position matrices {Wf}Ff=1, descriptor matrices {Tf}Ff=1,
λ1, λ2, λ3, η > 1, ρm, ε;

Initialize: C0, {P0
f}Ff=1, E

0
c = 0, E0

d = 0, {Y0
i }4i=1 = 0, ρ0;

while not converged do
1. Update (Lc,C,Ld,Ec,Ed) by Eq. (8), Eq. (9), Eq. (13), Eq. (14) and Eq. (15);
2. Update {Pf}Ff=1 by solving F binary assignment problems (17) using the Hun-
garian algorithm, and then update Dc and Dd accordingly;
3. Update {Yi}4i=1 and ρ by Eq. (18)-Eq. (22);
4. Check the convergence conditions ‖Lc − LcC‖∞ ≤ ε, ‖1TC − 1T ‖∞ ≤ ε,
‖Dc − Lc −Ec‖∞ ≤ ε and ‖Dd − Ld −Ed‖∞ ≤ ε;

end while

Output: Coefficient matrix C, PPMs {Pf}Ff=1.

and (ii) Accuracy in point correspondences, computed as

ACCpc =
1

FN2

F∑

f=1

‖Pf ◦P∗
f‖0 ,

where {P∗
f}Ff=1 are the ground truth correspondences (in PPM matrix), ◦ de-

notes the element-wise (Hadamard) product, and ‖ · ‖0 is the �0 norm which
counts the number of non-zeros entries.

4.1 Experiment-1: Synthetic Data, Noise-Free Case

In this first set of experiments, we aim to study the convergence of our algorithm.
In other words, we want to understand, with perfectly controlled inputs, whether
or not the proposed algorithm converges; and if so, whether it converges to the
correct solution.

To this end, we synthesized two motion matricesM1,M2 ∈ R
2F×4 by simulat-

ing F random rotation and translations, and two independently moving objects
with shape matrices S1,S2 ∈ R

4×N/2. This yields a total of N 3D points in mo-
tion. Under an affine camera model, the measurement matrix of the synthesized
sequence can be computed as X = [M1S1|M2S2] ∈ R

2F×N . We chose F = 25
and N = 40 in all our synthetic experiments. In addition to X, which contains
point locations, we synthesized a 128-dimensional appearance vector (i.e., fea-
ture descriptor) for each feature point. The choice of 128D is only to conform to
the convention of SIFT feature descriptors which will be used in all our real im-
age experiments. We randomly generated 128-dimensional random vectors and
required that the same feature point across multiple images has identical de-
scriptors. Given this synthesized sequence, we randomly permuted the points,
so that all the correspondence information is lost.
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With this data, we tested our algorithm starting from two different initializa-
tion conditions (V1 and V2): (V1) Initialize the unknown permutation matrices
{Pf}Ff=1 as the identity matrices (generally only 0-2% accuracy); (V2) Initial-

ize the unknown permutation matrices {Pf}Ff=1 by a set of random permuta-
tions, under the constraint that 60% of the point correspondences are correct.
The parameter of our method were set to (V1) ρ0 = 10−6, η = 1.01; (V2)
ρ0 = 10−2, η = 1.01, which reflects the better initialization of (V2).

Fig. 1(a) depicts typical convergence curves (observed over 10 random tri-
als) corresponding to the two initialization cases. We report the objective func-
tion value (12‖C‖2F + λ1‖Ld‖∗ + λ2‖Ec‖1 + λ3‖Ed‖1) and the primal residuals3

(‖Dc − Lc − Ec‖F , ‖Lc − LcC‖F , ‖Dd − Ld − Ed‖F , ‖1TC − 1T ‖F ). Note that
our algorithm converges to the same objective function value independently of
initialization. Note also that better initialization leads to faster convergence.
Here, the number of iterations reduces from 1800 to about 700. In terms of
wall-clock time, this corresponds to a reduction from about 2 minutes to 46
seconds on a regular Core-i7 PC with 8GB of memory. In this experiment, the
average ACCms and ACCpc over the ten random tests were all 100% for both
initializations. This shows that, starting from virtually no point correspondence
information, our algorithm successfully recovers both the correct point matches
(with 100% accuracy) and the correct motion segmentation results.

4.2 Experiment-2: Synthetic Data, with Noise and Outliers

We then investigated the robustness of our algorithm to different amounts of
outliers and noise, using synthetic data. In the same manner as above, we gen-
erated a 25-frame sequence of 40 points sampled from two independent motions,
and drew feature vectors from i.i.d. Gaussian distributions. We then randomly
permuted the point correspondences. We incrementally increased the number of
outliers from 0 to 20 by adding gross errors to both the point coordinates and
the feature descriptors. In addition to outliers, we also added fixed zero-mean
Gaussian noise with standard deviation σ to the inliers.

Fig. 1(b) depicts the performance (averaged over 5 random trials) of our algo-
rithm under different amounts of outliers and at fixed inlier noise level. In par-
ticular, we show the motion segmentation accuracy as a function of the number
of outliers for 3 different levels of Gaussian noise. Note that the performance of
our algorithm degrades gracefully as the amount of noise and outliers increases.
Overall, our algorithm is rather robust to these adverse yet realistic conditions.
For example, when the amount of measurement noise is moderate (i.e., σ from
0 to 0.1), our algorithm can almost achieve perfect motion segmentation results
even for large number of outliers.

4.3 Experiment-3: Real Images, Hopkins155 Dataset

The Hopkins155 multibody dataset is a popular dataset for benchmarking mo-
tion segmentation methods. It contains 155 video sequences, which are however

3 Here we plot the maximum value of the four primal residuals.
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Fig. 1. (a) Convergence curves for the objective function value and the primal residuals.
Blue curves: initialization (V1); red curves: initialization (V2). (b) Accuracy of motion
segmentation by adding different amounts of outliers and Gaussian noise.

all generated from 49 source video sequences. Among the 49 sequences, 28 are
indoor scenes containing some checkerboard patterns, and the remaining 21 are
outdoor natural scenes with no checkerboard pattern. While having a checker-
board pattern simplifies manual feature point matching, the repetitive pattern
can actually confuse an appearance-based automatic feature matching algorithm.
For example, SIFT descriptors computed at different corner points in a checker-
board are very similar. Since our algorithm makes use of appearance information
(i.e., SIFT), we tested it on the 21 outdoor sequences first. More importantly,
these 21 sequences are also much more realistic than the checkerboard ones. By
dividing some of the sequences with three motions (g1g2g3) into subsequences
with two motions(g1g2, g1g3, and g2g3), we obtained 27 sequences which cover
most of the outdoor scenes in Hopkins155. The objective for this set of experi-
ments on the real images of Hopkins155 is to verify the practical usefulness of
our algorithm.

To create appearance observations, we computed a 128D SIFT descriptor at
each one of the feature point locations provided with the Hopkins155 dataset.
We then deliberately threw away all feature correspondence information. Given
this input, our goal is to recover the missing point correspondences, and at the
same time, to segment (cluster) all the feature points into correct motion groups.

Conventionally, when no point correspondences are given, motion segmenta-
tion is performed in a two-stage approach: (i) Point correspondences are
estimated by, e.g., matching feature appearance or SIFT descriptors, and (ii)
Subspace segmentation methods such as SSC [8] or LRR [13] are applied to the
estimated point correspondences. Therefore, we employed the following methods
as baselines: (1) SIFT matching followed by SSC, denoted by SIFT+SSC; (2)
SIFT matching followed by LRR, denoted by SIFT+LRR; (3) ROML match-
ing using embedded features [27,10] followed by SSC, denoted by RE+SSC;
(4) ROML matching using embedded features [27,10] followed by LRR, de-
noted by RE+LRR; (5) ROML matching using SIFT feature [10,33] followed by
SSC, denoted by RS+SSC; (6) ROML matching using SIFT feature followed by
LRR, denoted by RS+LRR. Note that the embedded features combine the SIFT



Robust Motion Segmentation with Unknown Correspondences 215

(a) (b) (c) (d)

Fig. 2. Motion segmentation results of different algorithms for the cars2 07 g12 se-
quence. Points marked with the same color and marker (◦ or ×) are from the same
motion: (a) SIFT + SSC; (b) RE + SSC (RE: ROML with embedded feature); (c) RS
+ SSC (RS: ROML with SIFT feature); (d) Our algorithm. Best viewed in color.

features and the point coordinates by manifold learning [27], and were used for
ROML in [10].

For ROML-based methods ((3)–(6)) and our algorithm, we initialized {Pf}Ff=1

with the PPMs recovered from SIFT matching, and set ρ0 = 10−2, η = 1.01. We
tuned the respective parameters of baselines to achieve the best results, and
empirically set λ1 = 1, λ2 = 0.05, λ3 = 5/

√
N in our algorithm.

In Table 1, we summarize the results in terms of ACCms and ACCpc. From
Table 1(a), we can see that our algorithm outperforms the baselines in terms
of both correspondence and motion segmentation accuracies. Moreover, when
given 100% complete trajectories, SSC and LRR achieve ACCms of 99.31% and
97.16%, respectively. This means that our algorithm, while not requiring any
point correspondence as input, achieves motion segmentation results comparable
to SSC and better than LRR.

Furthermore, when looking at the sequences whose ACCpc of SIFT matching
is less than 75% (see Table 1(b)), we find that our algorithm outperforms the
baselines significantly in terms of both motion segmentation and point corre-
spondence. For visual comparison, in Fig 2 we show the motion segmentation
results of different algorithms on one sequence of Hopkins155.

Out of curiosity, we also performed experiments on the Hopkins155 checker-
board sequences. Due to the algorithmic complexity of ROML and of our method
(mainly in the step solving the binary assignment problems), we selected the se-
quences with at most 200 trajectories. From the results in Table 2, we can see
that our approach also outperforms the baselines on the checkerboard sequences.
This shows that jointly solving motion segmentation and feature correspondence
indeed helps compensating for the lack of discriminative appearance.

4.4 Experiment-4: Real Images, Other Real Sequences

Here, we show that our algorithm can be applied to perform motion segmen-
tation in more realistic scenarios, where neither interest points nor point corre-
spondences are provided.

Given video sequences with multiple motions, we first ran a SIFT detector
over the frames to get the locations and descriptors of the detected interest
points. Note that these interest points contain both inliers and outliers. The
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Table 1. Average motion segmentation and point correspondence accuracies (%) on
the Hopkins155 27 non-checkerboard sequences

Methods SIFT+SSC SIFT+LRR RE+SSC RE+LRR RS+SSC RS+LRR Ours

( a) All 27 non-checkerboard sequences

ACCms 84.83 80.10 88.47 88.47 93.03 91.30 97.29

ACCpc 84.86 84.86 87.86 87.86 95.46 95.46 98.03

( b) The 6 sequences whose ACCPC of SIFT matching is less than 75%

ACCms 75.01 75.57 82.35 79.47 91.60 84.34 99.59

ACCpc 64.09 64.09 75.73 75.73 86.70 86.70 95.35

Table 2. Average motion segmentation and point correspondence accuracies (%) on
the Hopkins155 checkerboard sequences with at most 200 trajectories

Methods SIFT+SSC SIFT+LRR RE+SSC RE+LRR RS+SSC RS+LRR Ours

ACCms 60.86 60.25 75.68 63.14 78.68 66.07 83.24

ACCpc 32.27 32.37 46.85 46.85 53.76 53.76 65.02

number of inlier points can be empirically approximated as N = Nsift − 10,
where Nsift is the minimum number of SIFT matches from the first frame to any
other frame. We then ran our algorithm to automatically select the inlier points,
establish correspondences between them, and segment the trajectories into their
respective motions.

We tested our algorithm on the airport sequence taken from the airport motion
segmentation dataset [6]. Fig. 3 shows the results on three frames sampled from
the 40-frame sequence. The inlier points are marked differently and each type
of marker corresponds to one motion. Note that in each frame, 75-125 interest
points were automatically extracted by the SIFT detector, and only 21 points are
set as inliers, i.e., the number of outliers is 2-4 times as large as that of inliers.
Moreover, the measurements of coordinates and descriptors are contaminated
by noise due to the illumination variations across the sequence. As challenging
as this sequence is for the task of motion segmentation, after manually labeling

Fig. 3. Motion segmentation results of the airport sequence: Points marked with the
same color and marker (◦ or ×) are from the same motion. Best viewed in color.
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the ground-truth correspondences for evaluation purpose, we found that our
algorithm yields ACCms = 96.43% and ACCpc = 94.17%.

5 Conclusions

In this paper, we have proposed a unified framework to solve the problem of
motion segmentation with unknown point correspondences. Our problem formu-
lation is based on two important constraints: First, the recovered inlier point
trajectories should satisfy the subspace constraints; Second, the matching fea-
ture descriptors should be low-rank, ideally rank one. With these two constraints,
we have formulated our problem in terms of PPMs, which simultaneously select
and reorder the inlier points. We have shown that our problem formulation can
be solved via the ADMM. We have verified the effectiveness and robustness of
our algorithm on both synthetic and real-world data and showed that it outper-
forms the existing two steps methods in terms of both motion segmentation and
point correspondence accuracies. Our future work will focus on developing more
efficient algorithms to solve the binary assignment problem using the inherent
spatial constraints of motion segmentation.

Appendix

Solving (17) via the Hungarian Algorithm

From Problem (17), it is not straightforward to get the cost matrix for the Hun-
garian algorithm. Note, however, that we have vec(WfPf ) = (I⊗Wf )vec(Pf ),
vec(TfPf ) = (I ⊗ Tf )vec(Pf ), where ⊗ is the Kronecker product. Let us de-
fine Gf = I ⊗ Wf , af = vec[αT

f (L
t+1 + Et+1

1 − Yt
1/ρ

t)], Jf = I ⊗ Tf , and

bf = (Mt+1 +Et+1
2 −Yt

3/ρ
t)ef . Then Problem (17) becomes

min
Pf

‖Gfvec(Pf )− af‖22 + ‖Jfvec(Pf )− bf‖22

s.t. 1TPf = 1, Pf1 ≤ 1, Pf ∈ {0, 1}Nf×N .
(23)

Therefore the assignment cost Q1
f (or Q2

f) corresponding to the first (or second)
term in (23) is the squared Euclidean distance between each column of Gf (or
Jf ) and af (or bf ). The total assignment cost is then Qf = Q1

f +Q2
f . With this

assignment cost, Problem (17) becomes solvable via the Hungarian algorithm.
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