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Abstract. In this paper we aim for object classification and segmenta-
tion by attributes. Where existing work considers attributes either for
the global image or for the parts of the object, we propose, as our first
novelty, to learn and extract attributes on segments containing the entire
object. Object-level attributes suffer less from accidental content around
the object and accidental image conditions such as partial occlusions,
scale changes and viewpoint changes. As our second novelty, we propose
joint learning for simultaneous object classification and segment proposal
ranking, solely on the basis of attributes. This naturally brings us to our
third novelty: object-level attributes for zero-shot, where we use attribute
descriptions of unseen classes for localizing their instances in new images
and classifying them accordingly. Results on the Caltech UCSD Birds,
Leeds Butterflies, and an a-Pascal subset demonstrate that i) extracting
attributes on oracle object-level brings substantial benefits ii) our joint
learning model leads to accurate attribute-based classification and seg-
mentation, approaching the oracle results and iii) object-level attributes
also allow for zero-shot classification and segmentation. We conclude that
attributes make sense on segmented objects.
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1 Introduction

The goal of this paper is object classification and segmentation using attributes.
Representing an image by attributes [17, 19, 25] like big ear, trunk, and gray
color is appealing when examples are rare or non-existent, feature encodings are
non-discriminative, or a semantic interpretation of the representation is desired.
Consequently, attributes are a promising solution for fine-grained and zero-shot
object classification [7], personalized object search [23], object description [17],
and many other current challenges in computer vision. Different from existing
work, which computes object attributes either on the entire image [1, 25, 28] or
on parts of the object [6,14,19], we propose to predict the best possible segment
that contains the entire object and compute all attributes on this segment.

One approach to object classification by attributes is to compute the at-
tributes globally; see Fig. 1a. Lampert et al. [25] introduce a directed graphical
attribute model for the recognition of animal categories, even in the absence
of training examples, which is called zero-shot classification. Since their model
optimizes attribute prediction, and not object classification, Akata et al. [1]
adapt the model of [39] and propose attribute embedding learning for supervised
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(a) (b) (c)

Fig. 1. Attributes make sense on segmented objects. Illustration of different
level of attributes, in a picture showing several animals: antelopes, an elephant, and
a small zebra to the right of the elephant. (a) Considering the full image, one can
only expect to describe generic attributes that apply to the whole scene. (b) When
localizing attributes, one faces the problem that not all attributes can be localized.
Partial occlusions, small scales, or uncommon viewpoints might reduce the visibility of a
particular attribute. Moreover, several class-specific attributes are very hard to localize
in practice. (c) We propose to constrain object-specific attributes on segmented objects,
which allows for object-specific description and suppresses irrelevant background signal.

and zero-shot object classification. Inspired by Akata et al., we also optimize
attribute learning for object classification, including the challenging zero-shot
setting. However, we observe that attributes most often reflect object level prop-
erties, e.g., that an antelope has a pointy snout. Hence, considering the whole
image as indicative of the attribute pointy snout is counter-intuitive.

The second approach to object classification by attributes focuses on localizing
salient parts reflecting those attributes; see Fig. 1b. Ferrari and Zisserman [19]
propose local attributes in superpixels and use them for attribute classification
in novel images. Similarly, Bourdev et al. [6] localize attributes by employing
part-based poselet responses, e.g., cropped images of people wearing hats. These
approaches assume that humans should provide the annotations for existing,
pre-defined attributes. For this reason Duan et al. [14] propose to discover dis-
criminative and localized attributes which have to be nameable and approved
by humans. Jia et al. [13] and Wah et al. [36] also propose to build interactive
systems to discover and localize attributes with humans in the loop. Generally
speaking, pinpointing to certain image or object locations allows for finer defi-
nition of attributes. However, such methods appear to face certain limitations.
For one, challenging image conditions, such as partial occlusion, small scales, or
uncommon viewpoints make certain attribute locations visually unidentifiable.
Second, certain object attributes simply cannot be localized. For example, lo-
calizing the attribute of an elephant being a pachyderm is impossible. Hence, an
overly precise localization of attributes is often not needed, as attributes could
be locally untraceable, either due to their nature or the imaging circumstances.



352 Z. Li et al.

In this paper we make a case for a third approach in learning and using at-
tributes. More specifically, and as part of our first novelty, we propose to learn
and extract attributes from segmented objects. For this we assume category-
level attributes, since it is the class and not the instance that pertains the object
properties; for example in Fig. 1c. a zebra is a quadruped animal, even if just
the upper body is visible in this specific picture. As part of our second novelty,
we propose joint learning of attributes for simultaneous segmentation and clas-
sification of the object. This naturally brings us to our third novelty, which is
zero-shot classification. Our joint model performs segmentation and classification
using object-level attributes, enabling us to use attribute descriptions of unseen
classes to localize their instances in new images and classify them accordingly.

The paper is organized as follows. We first discuss the related work in Section
2. In Section 3 we describe our model and how we efficiently infer the seg-
ment from which we extract object-level attributes. In Section 4 we validate our
models using three publicly available datasets, Caltech UCSD Birds [37], Leeds
Butterflies [38], and a-Pascal [17]. We show experimental results in both a fully
supervised classification setting as well as in a zero-shot classification setting.
We conclude our paper in Section 5.

2 Related Work

Classification and Segmentation. Embedding locality in image representa-
tion has become increasingly popular over the recent years. Several works have
shown that localizing the object of interest is beneficial, not only for providing
a spatial support for the object [2, 33], but also for classifying it more accu-
rately [11, 20, 32]. Certainly, semantic segmentation and object detection have
received most of their attention from attempts at using localities for classifica-
tion.

Both the state-of-the-art methodologies, for semantic segmentation and object
detection, adopt a similar two-step approach. In the first step, object location
proposals are extracted. For object detection, bounding box proposals [2,27,32]
are usually computed on the basis of local region coherence. Moreover, the au-
thors of [4, 9, 15] showed that to obtain accurate object proposals for semantic
segmentation, one needs to incorporate richer local properties, as well as strong
machine learning techniques, like efficient graph cuts [22]. For fine-grained recog-
nition, in [40], a joint object detection and segmentation framework is introduced
to localize objects. In [12], Chai et al. make use of region-level cues for discrimi-
native co-segmentation on multiple images. Here, we opt for segmentation object
proposals, as they allow for a more precise delineation of the object, thus en-
abling a better learning of attribute representations.

Once having object proposals, we need to classify them against a pre-defined
set of object classes. For object detection [32] and semantic segmentation [3, 8],
employing non-linear kernel machines [9] and state-of-the-art feature encodings,
such as second-order poolers [8], Fisher vectors [26, 29] or deep learning fea-
tures [21] has shown to yield excellent results. In this work our goal is to be



Attributes Make Sense on Segmented Objects 353

able to perform (zero-shot) object classification and segmentation. Therefore,
we depart from the above works and proceed with the classification and seg-
mentation of objects solely on the basis of attributes, as the use of low-level
features [3, 8, 9, 21, 26] would prohibit us from detecting the unseen classes.

Label and Attribute Embedding. As attributes were originally designed for
describing objects, the learned attributes are not necessarily optimal for classify-
ing (novel) objects. For this reason Akata et al. [1] propose to embed class label
in the space of attributes and use the WSABIE [39] learning criterion, adapted
for attribute learning. This method optimizes the attribute learning directly for
object classification instead of attribute prediction. Our major difference with [1]
is that we look for the best possible segment, while predicting the label of an un-
seen image. The segments, which we search, are integrated as latent variables in
our empirical risk function. From a theoretical standpoint, instead of considering
a fixed margin equal to 1, we minimize our max-margin empirical risk over both
the class label as well as the segmentation quality. This learning methodology
allows for learning of high quality segments.

Efficient Region Computations. As semantic segmentation and object de-
tection entail a great number of free variables, direct optimization of attribute
models on a per segment basis results in a severe computational bottleneck. For
this reason there have been several methodologies proposed in the literature for
efficiently computing classification scores from multiple image regions. In [24]
Lampert et al. employ a branch and bound optimization scheme for visiting sev-
eral thousands of bounding box locations efficiently. Relaxing the constraints for
a bounding box geometry, Vijayanarasimhan and Grauman [35] propose a similar
optimization scheme for arbitrary, free form regions in an image. Yet, both these
methods do not consider any efficient normalization of the representations, as
that would render their methods highly inefficient. For this reasons Li et al. [26]
propose codemaps, which allows for efficient, accurate and normalized region-
level representations by reordering the encoding, pooling and classification steps
over superpixels. In this work we make use of the codemaps framework.

Structured SVMs and Latent SVMs. In the current work the main focus is
multi-class classification, while using the best object segment proposal for each
class. Since the segment proposals are not explicitly evaluated, we treat them
as latent variables of our model, a formulation that resembles latent SVM [18].
Moreover, we use margin rescaling of structured SVMs [31] to include a penalty
for segment proposals with a low-overlap with the ground-truth segment. The
penalty function is based on the intersection over union criterion, also used in
structured output regression [5, 9].

Different from structured output regression our final objective is (zero-shot)
multi-class classification, and not a structured output containing the best seg-
ment for each class label. Hence, our structured loss is built around mid-level
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attribute representations, which also need to be optimized for. For this reason
we follow [1, 39] and employ an embedding function with a ranking objective
instead of a multi-class SVM objective function. In this model the latent seg-
ment variables help to learn better attributes and attributes help to improve
segmentation.

3 Object-Level Attributes

Given an image x, our classification function f is defined as follows:

f(x) = argmax
y∈Y

max
z∈Z(x)

F (z, y), (1)

where z is a latent variable, Z(x) indicates a set of segment proposals for image x,
and F (z, y) a compatibility function between segment z and label y. Intuitively,
this function first finds the best scoring segment z ∈ Z(x), for each class y. Then,
the class y ∈ Y with the highest score is returned as a prediction. Note that we
do not assume the object bounding box or object segmentation is known at
prediction time. Instead the object segmentation is inferred as a latent variable
given the image.

We describe attribute embedding in Section 3.1 and our learning objective in
Section 3.2. In Section 3.3 we discuss how segment proposals are obtained and
how Eq. 1 can be evaluated efficiently, using codemaps [26].

3.1 Attribute Embedding

We follow the label and attribute embedding approaches from [1,39], where each
class label y is embedded in the m-dimensional space of attributes by φ(y) ∈ R

m.
While [1, 39] embed the full image features, we embed the visual features of a
segment z only. Let θ(z) ∈ R

d be the embedding of segment z yielding a d-
dimensional feature vector. In this work we use the state-of-the-art Fisher vector
framework [29] for this visual embedding.

In our model, F (z, y) measures the compatibility between segment z and the
embedding of class y. This compatibility function is defined as:

F (z, y;W,φ) = θ(z)′Wφ(y), (2)

where W ∈ R
d×m is the model parameter matrix, which we need to learn.

We stack the attribute embeddings of each class φ(y) into an embedding
matrix Φ for all classes. In the fully supervised setting, where visual examples
for each class are provided, we also learn the class-to-attribute embedding Φ,
similar to WSABIE [39]. In the case of zero-shot classification, we use the fixed
attribute-to-class mapping Φ = ΦA, which resembles ALE [1].
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3.2 Learning

For training we assume a collection of images {(xi, yi, zi)}Ni=1, in which each
image xi has a ground truth label yi and a ground truth object segment zi.
Furthermore, we assume that there exists a mapping from attributes to classes
ΦA, which defines the relevant attributes for each class. The goal is to learn the
model parametersW and the mapping Φ to minimize the prediction errors, while
selecting object segments of better quality. For learning we employ structured
risk minimization, using a ranking objective built upon [1, 5, 39].

The loss function of a ground-truth image/label/segment triplet (xi, yi, zi) for
a prediction label y, is defined as:

�(y, zi, yi, xi) = max
z∈Z(xi)

Δ(z, y, yi, zi) + F (z, y)− F (zi, yi). (3)

The Δ function, which determines the margin, is defined as:

Δ(z, y, zi, yi) =

{
1−O(z, zi) if y = yi,

1 otherwise,
(4)

where O(z, zi) is the intersection over union between the selected segment z
and the ground-truth segment zi, similar to [5]. This margin re-scaling function
enforces a margin of 1 if the label y and yi do not match. When the labels do
match, the margin is determined by the area of overlap between the segment z
and the ground-truth segment zi.

The following objective is used as the data term in the empirical risk:

R(W,Φ) =
1

N

N∑
i=1

γ(ki)
∑
y∈Y

[�(y, zi, yi, xi)]+ , (5)

where ki is an upper-bound on the rank of the correct label, γ transforms this
rank into a weight, and where [·]+ = max(0, ·). The upper-bound on the rank is
computed as the number of loss-generating labels:

ki =
∑
y∈Y

[[�(y, zi, yi, xi) > 0]] (6)

where, we use Iversons bracket notation to denote [[·]] = 1 if the condition is
true, and 0 otherwise. Following [34], we define the rank to weight function as

γ(k) = 1
k

∑k
j=1 αj , using αj =

1
j .

When applied on the entire image, i.e., when Eq. 3 is defined as �(y, yi, xi) =
Δ(y, yi)+F (xi, y)−F (xi, yi), our objective function is identical toWSABIE/ALE.

Fully Supervised Learning. In the fully supervised case, where we have visual
examples from all classes, we minimize the following regularized risk objective:

min
W,Φ

λ

2
||W ||2 + μ

2
||Φ− ΦA||2 +R(W,Φ), (7)
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where λ and μ are trade-off parameters between the data term and the regular-
ization, which we set using cross-validation. Regularizing towards the pre-defined
class-to-attribute encoding (Φ−ΦA) allows us to exploit this high-level semantic
prior. This could be particularly beneficial in the case when just a few examples
per class are available.

Zero-Shot Classification. In the setting of zero-shot classification, visual
training examples are given only for a subset of the classes, while evaluation
is performed on a disjoint set of the classes. In this case the attribute embedding
is fixed to the existing mapping Φ = ΦA, and Eq. 7 reduces to:

min
W

λ

2
||W ||2 +R(W,ΦA), (8)

where λ is a trade-off parameter, which we set using cross-validation using a
hold-out set of images from the known train classes.

3.3 Efficient Maximization

The main computational challenge of our method is efficiently solving Eq. 1 and
Eq. 3 during training and evaluation. The number of possible segmentations in
an image grows exponentially with the size of an image. To solve this problem
efficiently we follow [26].

For each image, we start by extracting a set of superpixels S from an image,
typically using |S| ≈ 500. We then use a segment proposal algorithm, the off the
shelve CPMC-algorithm [10], to obtain a set of approximately 1, 000 segments
Z(x). Even so, the maximization in Eq. 1 and Eq. 3 over such a large set of
segments during training and evaluation remains expensive, especially for the
high-dimensional visual embeddings we are using.

Since the visual embeddings are based on a sum-pooling operator of local
image features, and since F (Eq. 2) is comprised of two linear components W
and φ, we have:

max
z∈Z(x)

F (z, y) = max
z∈Z(x)

∑
s∈S(z)

F (s, y) = max
z∈Z(x)

1

Lz

∑
s∈S(z)

θ(s)′Wφ(y), (9)

where S(z) correspond to the set of superpixels in segment z and Lz is the �2-
norm of the feature embedding of z. The decomposition over superpixels allows
for on-the-fly calculations of the feature embeddings for all segments. For a
given W and φ, the compatibility function F (s, y) can be precomputed, and the
maximization over segments boils down to just look-ups and summations.

At training time, the computational efficiency comes at the cost of higher
memory requirements, as we need to maintain the feature embeddings for all su-
perpixels per image. However, at test time both the computational and memory
complexity are very low.
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4 Experiments

4.1 Datasets and Experimental Setup

CUB-2011 Birds. We conduct our main experiments on the Caltech UCSD
Birds 2011 dataset [37], as it fulfills three requirements. First, this dataset con-
tains an extensive array of object categories that are visually difficult to dis-
tinguish. Second, the CUB-2011 dataset enjoys a detailed annotation of 312
human-understandable attributes, e.g., whether a bird has a striped wing or a
curved beak. Last, this dataset contains localization information in the form of
segmentation masks. For the CUB-2011 dataset we use the standard training
and test splits, without mirroring the training images. We use the provided seg-
mentations only during training, unless stated otherwise. To obtain a mapping
from attributes to classes we binarize the continuous attributes provided in the
dataset; attributes are considered relevant for a class if their confidence is above
the average confidence value of that attribute.

Butterflies. As a second dataset, we use a modification of the Leeds Butterfly
Dataset [38]. This is a fine-grained multi-class dataset containing images and
segmentation masks of ten butterfly species. We automatically transform the
provided textual descriptions into a set of 20 attributes, mostly describing the
color patterns of the butterflies, and automatically generate an attribute-to-class
mapping. We also obtain the ground truth bounding boxes by automatically
enclosing a bounding box around each segmentation mask. The dataset contains
620 images for training and 212 for testing.

a-Pascal++. As a third dataset, we use a modification of the a-Pascal [17]
dataset, which we coin a-Pascal++. Our dataset combines the 64 attributes an-
notated for the a-Pascal dataset with the segmentation masks from the VOC
Pascal Challenge [16]. Since the focus of our work is not segmentation infer-
ence, but segmentation-based classification, we select the images containing a
single object. This makes a-Pascal++ a multi-class dataset with 20 classes, 64
attributes and segmentation masks, we use 1,429 images for training and 203 for
testing. Note that the original a-Pascal dataset was used for describing attributes
given objects [17], the bounding box object locations were available both during
training and testing. In our work, we provide segmentation masks only at train
time, at test time the object-level attributes are inferred.

Visual features. For the visual representation we follow the Fisher vector frame-
work [29], computed on dense RGB-SIFT features [30] extracted every 2 pixels
and at multiple scales, and projected to 80 dimensions using PCA. We exper-
iment with different codebook sizes, and indicate the number of mixture com-
ponents k used with each experiment. For the full image representation we use
the Fisher vector with power-normalization and �2-normalization [29], while for
the segment representation we use the �2-normalized Fisher codemaps [26]. For
obtaining object segment proposals we use the off-the-shelf CPMC [10], which
we approximate with the superpixels from [4].
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Training. To train our models, we rely on stochastic gradient descent of the
objective functions Eq. 7 and Eq. 8. We validate the regularization parameters
and number of iterations on a subset of the train set, and re-train using these
parameters on the whole train set. All experiments using the full image embed-
ding are trained using the WSABIE/ALE objective, which equals to Eq. 7 and
Eq. 8, when the full image is the only segment of an image.

Evaluation. We use three measures for evaluation. First, we use the mean class
accuracy (MCA), where for each class the top-1 accuracy is computed and av-
eraged over all classes. Second, we use the mean class accuracy over correctly
segmented objects (MSO). MSO is computed similar to MCA, except that a pre-
diction is considered correct only if both the label is correct and the overlap of
the latent segment with the ground-truth segmentation meets the Pascal VOC
criterion. This criterion requires that the intersection over the union (IoU) of the
two segments is greater than 50%. In a similar vein, we use the average overlap
(AO) to evaluate the quality of the inferred latent segments, disregarding the
class label prediction.

4.2 Object-Level Attributes on Oracle Segments

In the first experiment we want to establish whether attributes on object seg-
ments are beneficial for object classification. To this end we design an oracle
experiment, where we compare a full image feature embedding to using an em-
bedding of visual features describing an oracle provided bounding box or seg-
ment. For all the three datasets, the oracle provides perfect object bounding
boxes and segmentation masks, both during training and testing. The obtained
accuracy on this experiment will not reflect reality, however it provides insight in
the effectiveness of our proposed object-level attributes. We compare the Fisher
vector embedding of the full image to the Fisher vector embedding of the oracle
bounding box/segment, which we train with the ALE framework [1]. We present
the aggregated results in Table 1.

As a preliminary, we note that our 40K Fisher vector (k=256) performs on
par with the 64K Fisher vector used in [1], where 20.5% MCA is reported when
evaluating ALE on the CUB-2011 Birds dataset. We observe that by using ora-
cle object segments we obtain up to an absolute 31.5% accuracy increase. This
improvement seems to be consistent over different datasets, each depicting dif-
ferent characteristics in the number of images, number of classes and visual
relatedness among the classes. It is interesting to note that the improvement
in accuracy is consistent across all categories (data not shown), and for various
numbers of mixture components. Using oracle segments is also consistently bet-
ter than using oracle bounding boxes, since bounding boxes inevitably include
some background which may not depict the objects and thus the attributes.
Having obtained evidence that extracting attributes on object-level helps, we
proceed with the latent segments.
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Table 1. Object-level attributes on oracle segments. We compare the perfor-
mance of ALE [1] using full image embeddings with oracle bounding box/segment em-
beddings. By using oracle object-level attributes the classification accuracy increases
substantially. Although these numbers are only theoretical, they serve as an upper
bound of the classification accuracy that we may obtain.

Dataset Codebook Entire image Oracle bbox Oracle segment

MCA MCA MCA

CUB-2011
k = 16 13.8 25.8 43.9

k = 256 21.4 36.4 52.9

Butterflies k = 16 83.8 96.9 99.1

a-Pascal++ k = 256 30.6 33.6 40.2

Table 2. Object-level attributes on latent segments. Object-level attributes op-
timized with our joint learning are up to around 4-21% more accurate than computing
attributes on the full images. Note that for a larger number of mixture components
accurate prediction also entails accurate segmentation.

Dataset Codebook Entire image Object-level attributes

MCA MCA MSO AO

CUB-2011
k = 16 13.8 35.2 29.9 60.5

k = 256 21.4 39.2 35.5 66.3

Butterflies k = 16 83.8 96.4 95.5 84.6

a-Pascal++ k = 256 30.6 35.0 24.7 48.2

4.3 Object-Level Attributes on Latent Segments

In the second experiment we evaluate the ability to infer the object segment
as a latent variable in the model and to classify the segmented objects using
attributes. During testing of a given image, our model is able to simultaneously
predict the most likely label for the object and its respective segmentation mask.

We present the aggregated results in Table 2. We observe that our joint learn-
ing returns highly accurate results, as we improve over the full image results of [1]
by around 4-21%. Note that the accuracy of the joint learning is reasonably close
to the accuracy when using oracle segments, indicating that the returned segmen-
tations are quite accurate. Moreover, we observe that for a larger codebook the
discrepancy between accurate prediction and accurate prediction with accurate
segmentation is smaller. Hence, a larger codebook is able to better suppress the
background signal, thus returning simultaneously both accurate classifications
and segmentations.
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Pred: Magnolia Warbler 
IoU: 0.78 

Brown Thrasher Brown Creeper Magnolia Warbler 

Pred: Brown Thrasher 
IoU: 0.25 

Pred: Horned Lark 
IoU: 0.81 

Pred: Heliconius Charitonius 
IoU: 0.93 

Junonia Coenia Vanessa Cardui Heliconius Charitonius 

Pred: Junonia Coenia 
IoU: 0.43 

Pred: Vanessa Atalanta 
IoU: 0.95 

Pred: Cat 
IoU: 0.74 

Boat Bicycle Cat 

Pred: Boat 
IoU: 0.28 

Pred: Motorbike 
IoU: 0.51 

Fig. 2. Example classification and segmentation results using object-level at-
tributes on latent segments. The segmentation masks are green-colored for correct
label prediction and red-colored for wrong label prediction. The purple-colored ones
indciate correct label predcition, but with low segmentation accuracy (IoU<0.5). It is
noteworthy that even if the objects are labeled incorrectly, the selected segmentation
masks are often very accurate.

In Fig. 2 we provide some illustrative examples of our classification and seg-
mentation results. We make three observations. First, the predicted segments
look in general of high quality. Second, even if the object segmentation does not
meet the Pascal criterion, it often contains sufficient class specific information,
for example the second column in Fig. 2. Third, even in the case when the pre-
dicted label is incorrect the segmentation is still focused on the object, see the
third column in Fig. 2.

In Fig. 3a we present a comparison of the individual class accuracies be-
tween two methods. We observe that learning object-level attributes on latent
segments brings a consistent improvement to almost all the classes. Last, we
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Fig. 3. Object-level attributes on latent segments. (a) Object-level attributes
are consistently better than learning attributes on the entire image for almost all the
classes. (b) The joint learning discovers segments that meet the PASCAL criterion for
about 91% of the correctly labeled images and for about 75% of the incorrectly labeled
images. Results computed on CUB-2011 with k=256.

illustrate in Fig. 3b the quality of segmentations for both the correctly and in-
correctly predicted objects. We observe that for the vast majority the quality
of segmentations is quite high. We discover segments that meet the PASCAL
criterion for about 91% of the correctly labelled images and for about 75% of
the incorrectly labelled images. Therefore, our joint learning allows for a precise
localization of objects.

Comparison with part-localized attributes. To compare our approach with a re-
cent part-localized attribute model, we also conduct an experiment on a subset
of CUB-2011: five categories consisting of different species of warblers. We follow
the same experimental protocol as [14]. Our model of learning object-level at-
tributes on latent segments scores 65.8% accuracy using a codebook of mixture
components k=16, using full image embedding scores 42.2%, while the localized
attribute model [14] reports ∼55%.

We conclude that the joint learning of object-level attributes with a segmen-
tation model leads to accurate attribute-based classification.

4.4 Object-Level Attributes for Zero-Shot

In the third experiment we take advantage of the fact that our object-level
attributes can be shared among classes. As a result, assuming that one is pro-
vided with an attribute-to-class mapping, one can perform zero-shot classifica-
tion, which allows for simultaneous classification and segmentation of the object
of interest. We experiment on the CUB-2011 dataset, using the same 150 train
classes and 50 test classes as in [1].

We present the numerical results in Table 3. We observe that our approach
improves the zero-shot classification accuracy, while returning the location of
objects that belong to classes we have not seen before. For fair comparison with
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Table 3. Object-level attributes for zero-shot classification on CUB-2011. For
fair comparison with the results of the supervised experiment, we report the accuracy
of the supervised model also for the 50 classes that we used for testing the zero-
shot model. The joint learning of attributes is able to not only improve the zero-shot
classification accuracy, but also return the location of objects that belong to previously
unseen classes.

Setting Codebook Entire image Object-level attributes

MCA MCA MSO AO

Supervised k = 16 27.1 51.5 43.0 61.8

Zero-shot k = 16 11.3 15.7 12.4 56.3

Pred: White Eyed Vireo 
Attri: has owl-like shape, brown 
eye, multi-colored tail, oil bill, 

rufous nape 
IoU: 0.83 

Northern Waterthrush Groove Billed Ani White Eyed Vireo 

Pred: Northern Waterthrush 
Attri: has orange eye, striped 
head, squared tail, spotted 

breast, buff throat 
IoU: 0.68 

Pred: Groove Billed Ani 
Attri: has solid back, solid belly, 

upland-ground-like shape, 
rounded tail, black wing 

IoU: 0.83 

Pred: Western Gull 
Attri: white back, white wing, 
white upperparts, duck-like 

shape, white under tail 
IoU: 0.46 

Belted Kingfisher Grasshopper Sparrow Western Gull 

Pred: Acadian Flycatcher 
Attri: has gray primary color, 

solid back, multi-colored breast, 
red leg, multi-colored belly 

IoU: 0.56 

Pred: Great Crested Flycatcher 
Attri: has striped wing, striped 

back, solid belly, grey leg, 
striped head 

IoU: 0.77 

Fig. 4. Example results using object-level attributes for zero-shot classifi-
cation and segmentation. Note that although we have not seen examples of these
classes, the label predictions and the segmentations are reasonable.

the results of the supervised experiment, we report the accuracy of the supervised
model also for the 50 classes that we used for evaluating the zero-shot model.

In Fig. 4 we present some visual examples of zero-shot classification and seg-
mentation, together with the highest scoring attributes for the respective images,
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found after computing the contribution of each attribute to the final classifica-
tion score of each respective image. Although at training time there were no
examples of the classes on which we test, we are able to obtain satisfactory clas-
sifications and segmentations. Interestingly, the most important attributes seem
relevant, even for the misclassified birds. For example, although a Grasshopper
Sparrow was wrongly labeled as a Great Crested Flycatcher, the most important
attributes fit to the image, namely the bird has a striped wing, a striped back
and a solid belly.

We conclude that object-level attributes also make sense for zero-shot.

5 Conclusions

In this paper we revisit attribute-based representations, approaching them from
the perspective of locality. To this end we have introduced object-level attributes,
which are trained on segmented images with attribute descriptions. At test time,
the object segmentation is treated as a latent variable, which is inferred. As part
of our first contribution, we make the observation that attributes usually refer to
visual properties of object classes not of an object instance, e.g., whether a bird
has a curved beak or an airplane has a jet engine. Using oracle object-level at-
tributes we have experimentally shown on three different datasets that, indeed,
localizing attributes leads to an impressive increase in accuracy. As a second
contribution, we have proposed a joint learning framework, learning attribute
embeddings while improving object segmentations using a max-margin ranking
objective. The experimental results show that our learning framework yields
classification accuracies which are two- to three-fold better in attribute-based
classification, compared to using full image features. Moreover, we can also re-
turn high quality segmentations. Finally, we have applied object-level attributes
to the task of zero-shot classification on the CUB-2011 bird dataset. In this
setting, we infer class predictions and segmentation masks from bird classes for
which no training data was available. The experimental results show that object-
level attributes, also in the zero-shot setting, improve accuracy significantly. We
therefore conclude that attributes make sense on segmented objects.
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