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Abstract. Space-time detection of human activities in videos can significantly
enhance visual search. To handle such tasks, while solely using low-level fea-
tures has been found somewhat insufficient for complex datasets; mid-level fea-
tures (like body parts) that are normally considered, are not robustly accounted
for their inaccuracy. Moreover, the activity detection mechanisms do not con-
structively utilize the importance and trustworthiness of the features.

This paper addresses these problems and introduces a unified formulation for
robustly detecting activities in videos. Our first contribution is the formulation
of the detection task as an undirected node- and edge-weighted graphical struc-
ture called Part Bricolage (PB), where the node weights represent the type of
features along with their importance, and edge weights incorporate the probabil-
ity of the features belonging to a known activity class, while also accounting for
the trustworthiness of the features connecting the edge. Prize-Collecting-Steiner-
Tree (PCST) problem [19] is solved for such a graph that gives the best connected
subgraph comprising the activity of interest. Our second contribution is a novel
technique for robust body part estimation, which uses two types of state-of-the-art
pose detectors, and resolves the plausible detection ambiguities with pre-trained
classifiers that predict the trustworthiness of the pose detectors. Our third con-
tribution is the proposal of fusing the low-level descriptors with the mid-level
ones, while maintaining the spatial structure between the features.

For a quantitative evaluation of the detection power of PB, we run PB on
Hollywood and MSR-Actions datasets and outperform the state-of-the-art by a
significant margin for various detection paradigms.
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1 Introduction

Recognition/classification of human activities in videos attempts to understand the
movements of the human body using computer vision and machine learning techniques,
and classify them in an already seen activity category/class. The evaluation of recogni-
tion procedures is generally done on the datasets where the videos are spatio-temporally
cropped to the volume of activity. On the other hand, the activity detection task requires
the correct classification of an activity along with its spatio-temporal localization. For
practical applications, the detection task is more viable, and most activity detection
techniques have employed an exhaustive sliding-window search methodology for this
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purpose. However, the sliding-window search based detection procedures are compu-
tationally very expensive. The recent work of [5] introduced a graph-based detection
procedure which is computationally efficient, and can be made to incorporate various
types of recognition procedures.

To handle recognition tasks, standalone low-level features like Histogram of Ori-
ented Gradients (HoG) [7], Histogram of Optical Flows (HoF) [17] etc., although con-
ventionally quite successful, have been lately found somewhat insufficient for complex
datasets like Hollywood2 [23]. To improve performance, researchers have tried to build
mid-level representations from these low-level features. With mid-level features, the
recognition is based on the assumption that the pose detection/body part estimation is
quite accurate, which limits the final accuracy. In cases where some flow information
is used to do better estimation of poses, the possible conflicts owing to multiple and
confusing body part detections are not resolved, resulting in the recognition of very
limited types of activities. Similar problems have also proved to be an impediment to
the accuracy of the state-of-the-art detection procedures.

Inspired by the work of [5], we formulate the activity detection as a graph problem,
but introduce more generality in what the graph can represent. To show its significance,
we propose novel techniques for extracting mid-level features in videos and fusing them
with low-level descriptors. These techniques solve some of the major shortcomings of
the state-of-the-art activity classification methods, and thus can also be used for the
same under an appropriate binding framework.

1.1 Related Work and Problems

This subsection discusses the activity recognition/classification and detection
approaches that have been adopted in recent times in the literature, highlighting their
positive aspects along with the associated shortcomings. We delineate the low-level
and mid-level feature representation based methods for activity classification, and also
mention the major fallacies in the generality of the state-of-the-art activity detection
frameworks1. Finally, we highlight our major contributions.

Low-Level Descriptors for Activity Classification: The most studied approaches thus
far for activity recognition are based on the usage of low-level features with bag-of-
words models. Introduced by [16], sparse space-time interest points and subsequent
methods, such as local ternary patterns [41], joint sparse representations [12], dense
interest points [37,30], better motion cues [14] and discriminative class-specific fea-
tures [15], typically compute a bag-of-words representation out of local features and
use them for classification. The work of [35] uses densely rather than sparsely sampled
trajectories for better performance, and [36] builds upon this work to incorporate more
types of low-level features while also accounting for camera motion. Fusing many low-
level features with flow information can be looked upon as extracting abstract mid-level
representations. [13] forms a mid-level representation using spatio-temporal patches

1 Although this paper does not target the activity classification problem in isolation from the
detection problem, we review the activity classification methods in order to convince the reader
with the novelty of our proposed techniques of extracting mid-level features in videos with pre-
trained classifiers that predict the trustworthiness of the part detectors, and fusing the low-level
descriptors with the mid-level ones while maintaining the spatial structure between them.
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consisting of object detections and low-level features. Their method is targeted more
towards context based representation and less towards robustly modelling complex hu-
man movements. Some authors [26] have tried to somewhat extend the bag-of-words
concept to form a high-level descriptor from a large number of small action detectors.
The work of [44] follows a two-layered structured approach for activity classification,
where the first layer encodes low-level features, and the second layer extracts mid-level
representations called Actons from the first layer. Authors in [20] use a top-down ap-
proach where the top layer consists of coarse body parts, and the lower layers contain
hierarchically segmented body portions. Their method however, uses low-level features
for body-part estimation and hierarchical segmentation, and thus lacks robustness which
limits their use for complex datasets.

Most of these methods are predominantly global recognition methods and are not
well-suited for use in the recognition of complex activities; however, methods like
[12,30,36,44] that have performed relatively well on complex datasets have indirectly
built coarse mid-level representations from low-level features.

k-1 k k+1

Fig. 1. This is the graphical structure of our Part Bricolage (PB) model discussed in Section 2.1.
The figure shows all the possible connections between the nodes of three consecutive frames k−1,
k, k+1 of a video. The green connections are highlighted to emphasize how a node is connected
to its neighbours in the same frame; while the yellow connections indicate the connections of a
node in frame k to the nodes in the next frame. The red lines show the connections to the node
in frame k from nodes in frame k − 1. The solution to the PCST problem over this graph finds
an optimal subgraph that consist nodes and connections, representing the activity of interest. Best
Viewed in Color.

Poses for Activity Classification: The work of [24] was one of the first to do recog-
nition of basic activities by body part estimation. Many state-of-the-art pose estimation
systems use action-specific priors to simplify the pose estimation problem [6,18,32];
while others use pose information for classifying actions [21,28,33,38]. Approaches
using pose information for labelling activities mostly consider image datasets and de-
pend on key-pose matching, while the methods using action specific priors for pose re-
finement typically require additional action labels. The key-pose matching techniques
generally prove robust for very discriminative sequences and fail for complex datasets
Apart from the requirement of additional training data, the technique of pose refinement
from action labels suffers from the inability to account for occlusions. The work of [40]
has tried to couple the two approaches, but the coupling is targeted more towards better
3D pose estimation for basic activities using flow information. The method does not
tend to consider the ambiguities/conflicts that occur in real movie videos. The work of
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[43] has proposed a 3D kinematics descriptor called the Moving Pose, but their method
requires depth information for training and inference.

Some recent works for pose-based activity recognition have tried to use flow infor-
mation with state-of-the-art pose detectors like poselets [2], flexible mixture of parts
(FMP) [39] and stretchable models [27]. The work of [25] attempts to find key frames
based on poselet detections for activity recognition. However, they do not consider the
fact that poselets for complex videos can be conflicting and it is generally difficult to
know the correct poselet based only on the probability scores2. As a result, they show
very marginal improvements, even for datasets with basic interactive activities. Also,
they expect the entire video dataset to be manually annotated with poselet bounding
boxes, which is a serious limitation for video sequences. The work of [11] interleaves
flow and pose information to cater to the inherent inaccuracy of the body part detec-
tors. However, they do so only for lower arms, and their work is targeted more towards
background-foreground segmentation in videos. Researchers in [34] estimate the body
parts on a spatial and temporal basis using pose and flow information. However, their
method tries to refine joints-based pose representations using motion fields, which is
only robust for very simple actions like gestures, where joints can be estimated to a
reasonable accuracy. Consequently, the method does not generalize to complex actions.

Activity Detection Methods: Template-based activity recognition methods attempt to
do recognition by detection and therefore, can also be considered as activity detectors.
The methods of [26,9,31,22] are the popular methods in this class. However, such meth-
ods do not form generic activity detection frameworks, since they are strictly tied to the
underlying recognition procedures, and do not aim to do precise detection.

The work of [5] is the most recent approach that shows state-of-the-art results explic-
itly for activity detection. It considers the problem of precisely segmenting the spatio-
temporal volumes of the desired activity by a max-weighted connected subgraph search
(MWCS) methodology. Their approach is computationally efficient as compared to
sliding-window search methods. However, they formulate the problem as a node-only-
weighted graph, which limits the incorporation of the importance and trustworthiness
of features, thereby lacking global generality.

We present a unified approach for activity detection, which addresses some of the
key issues mentioned above. Our major contributions are as follows:

1. We formulate the task of detecting activities in unconstrained videos as an undirected node-
and edge-weighted graphical structure called Part Bricolage (PB), where the node weights
represent the type of features along with their importance, and edge weights incorporate the
probability of the features belonging to a known activity class, while also accounting for the
trustworthiness of the features connecting the edge. Prize-Collecting-Steiner-Tree (PCST)
problem [19] is solved for such a graph that gives the best connected subgraph comprising
the activity of interest. Fig 1 provides an intuition of the graphical formulation.

2 In the pose estimation systems such as poselets [2] and flexible mixture of parts (FMP) [39],
although the probabilities of detections are also estimated alongside, they can only be trusted
when the probabilities are high enough (say greater than 0.5). For lower probabilities (say less
than 0.5), simply sorting them does not help to rank detections according to their degree of
correctness. For complex videos, generally, a lot of detections are with low probabilities and
thus, ambiguity resolving procedures demand an exploration.
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2. We propose a novel technique for robust body part estimation, which uses two types of state-
of-the-art pose detectors, and resolves the plausible detection ambiguities with pre-trained
classifiers that predict the trustworthiness of the pose detectors.

3. We propose the fusion of low-level descriptors with the mid-level ones, while maintaining
the spatial structure between them. This helps to better model the motion relationships in a
video, specially when the detected mid-level features are sparse.

2 Approach

This section describes our Part Bricolage (PB) model, giving the necessary details and
highlighting its various advantages. We first explain the complete formulation of our
graphical structure, while also mentioning our technique of fusing mid-level features
with the low-level ones (without compromising the spatial structure between them) for
better motion representation. We then present our novel technique of robustly estimating
the human body parts.

2.1 The Graphical Structure

Let us consider a video with K frames with each frame indexed as k (k = 1, . . . ,K).
Let each frame in the video have Nk points (pixels to which features are associated)
regularly spaced over the entire spatial region. As we shall later describe in the sub-
sequent subsections, these points provide necessary information about the video. For
consistency across frames , we make Nk = N , i.e. the number of points in each frame
as same3. For such a video, we form a undirected graphical structure G = (V,E, c, d)
with node values d : V → R≥0, edge costs c : E → R≥0 and connections such that
each node in a frame k is connected to its eight neighbouring points in frame k and
nine neighbouring points in frame k + 1 (Fig 1). A node can possibly consist of mul-
tiple points; however, under a generic formulation, we consider each point as a node.
Considering multiple points in a node reduces the granularity for doing detection.

We intend that for such a graph, the weights of the nodes should reflect the types of
features that the nodes contain along with their importance, and the edge connections
should contain the weights that indicate the cost of transiting from one node to another.
If such a graph has to yield an activity of interest, then the edge costs should be more
between the nodes that do not form a part of the targeted activity, and also between
the nodes that represent the presence of features (related to human motion) with lower
confidence levels. Where the two nodes which are connected together represent features
relevant to the activity of interest and also with high confidence levels, the cost of tran-
sition between them should be less, indicating that the optimal subgraph that we wish
to find out should contain such connected nodes.

Graph Optimization: We first describe the graph optimization problem that we in-
tend to solve for localizing the activity of interest. Specifically, we find the solution

3 For all our experiments, we take N equal to one-tenth the number of pixels in a frame. This
choice is mostly empirical, and suffices when the activity of interest occupies most of the spa-
tial region. For cases where the spatial occupation of the activities is less, N can be increased.
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of a Prize-Collecting-Steiner-Tree (PCST) problem, which for an undirected, con-
nected, node- and edge-weighted graph, finds the optimal subgraph maximizing the
node weights and minimizing the edge costs. Given the way we define the node weights
and the edge costs (as intuitively explained at the start of this subsection), solution to
the PCST problem suffices for the activity detection task.

DEFINITION 1: (Max-Weighted-Connected-Subgraph (MWCS) Problem) - Given a
connected, undirected, node-only-weighted graph Z = (VZ , EZ , w) with weights
w : VZ → R, find a connected subgraph T = (VT , ET ) of Z, VT ⊆ VZ , ET ⊆ EZ ,
that maximizes the score w(T ) =

∑
v∈VT

w(v).

DEFINITION 2: (Prize-Collecting-Steiner-Tree (PCST) Problem) - Given a connected,
undirected, node- and edge-weighted graph G = (VG, EG, c, d) with node values d :
VG → R≥0, edge costs c : EG → R≥0, the (PCST) Problem [19] attempts to find a
connected subgraph T = (VT , ET ) of G, VT ⊆ VG, ET ⊆ EG, that maximizes

q(T ) =
∑

v∈VT

d(v)−
∑

e∈ET

c(e) (1)

We use the light-weight Heinz library provided by the authors of [8], which solves
a Max-Weighted-Connected-Subgraph (MWCS) problem. Given a PCST problem over
graph G ,we first convert it to a MWCS problem over an augmented graph Z , and then
solve that using the Heinz library. We now show that such a conversion is theoretically
feasible, and causes no alteration in the final solution.

PROCESS 1 - (Converting G = (VG, EG, c, d) to Z = (VZ , EZ , w)) - For every edge
e ∈ EG connecting nodes u, v ∈ VG with edge cost c(e) and node profits d(u) and d(v),
form two edges (u, a) and (a, v) in EZ by using an auxiliary node a ∈ VZ , where u and
v contain the same profits as in G (w(u) = d(u), w(v) = d(v)), and w(a) = −c(e).

The equivalence of G and Z easily follows from Definitions 1 & 2. Now, with the
augmented graph Z , one must make sure that the optimal subgraph found by solving
the MWCS problem overZ always contains the nodes u, v for an auxiliary node a, since
the initial graph G never contained any a nodes. We thus state the following theorem:

THEOREM 1 - Given G = (VG, EG, c, d) with node values d : VG → R≥0, edge costs
c : EG → R≥0, the vertex-weighted graph Z obtained by Process 1, when solved for
the MWCS problem (Definition 1) can never contain a single-connected auxiliary node
a ∈ VZ .

PROOF - For the graph Z = (VZ , EZ , w) with weights w : VZ → R, let the optimal
Max-Weighted-Connected-Subgraph be T = (VT , ET ) of Z, VT ⊆ VZ , ET ⊆ EZ . Let
S ⊆ VZ be a set of vertices, such that ∀ s ∈ S, s is directly connected to h ∈ VT . Let
Sk′ ; k′ = 1, . . . ,K ′ represent all possible subsets of S. Then, since T is the optimal
subgraph, ∀ k′ = 1, . . . ,K ′
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∑

h∈VT

w(h) >
∑

h∈VT

w(h) +
∑

s∈Sk′

w(s) (2)

⇒ w(s) < w(h) (3)

Since, w(a) is negative (Process 1), and weights of vertices u, v connected to a are
positive (Definition 2),

w(a) < w(u), w(a) < w(v) (4)

Thus, if a ∈ VT , neither of u or v can belong to Sk′ for any k′, since that would
contradict Equ (3) with Equ (4). But, if a ∈ VT is singly connected, atleast one of Sk′

should have either u or v. Hence, a ∈ VT cannot be singly connected. This proves
Theorem 1. Note that in the above proof, we avoid the equality sign, assuming that
the weights on vertices and edges of G are never zero. This is a valid assumption,
since zero-weighted nodes and edges can always be deleted from the graph without
affecting the cost of the optimal subgraph. It is important to note that for finding a
solution to a PCST problem, all the node and the edge weights should be non-negative,
i.e. d : V → R≥0 and c : E → R≥0.

From the above mathematical analysis, it is easy to see that one can convert the graph
Z = (VZ , EZ , w) to G = (VG, EG, c, d) by assigning the negative of the minimum of
the node weights of Z as the cost to all the edges in G, and adding the same to all
the node weights of Z and assigning to G; provided that there is at least one node in
Z with a negative weight. Then, solving PCST problem over G will be equivalent to
solving the MWCS problem over Z . Thus, the two problems are related. However, if
one formulates the activity detection task as a solution to the MWCS problem, it limits
the design since all edge weights are same. In contrast, formulation of the detection task
as a solution to the PCST problem offers flexible design choices.

Defining Node Weights: As stated earlier, we intend to represent mid-level (such as
body parts) as well as low-level features (like optical flow [1]) by the nodes in the
graph. We consider six body parts in a human - torso, head, two legs and two hands.
Let b1 refer to the bounding box of a head, b2 that of a torso, b3 and b4 of two legs,
and b5 and b6 of two legs. For a video frame, given human body-part detections, each
point (node) on the frame can belong to one of bi; i = 1, . . . , 6 or can be seen as not
belonging to any of bi (for nodes outside the human body parts). We define the weight
of a node v ∈ V of the graph G as follows:

d(v) =
{
0.20i ∀ v ⊂ bi, i = 1, 2 ; 0.60 ∀ v ⊂ bi, i = 3, 4 ; 0.80 ∀ v ⊂ bi, i = 5, 6

}
(5)

If a point indicates a reasonable amount of flow field, but does not belong to any bi,
it is assigned a weight of 0.5, else the point gets a weight of 0.01, indicating that it is
not associated to any features under consideration. The node weights considered here
define the importance of the features being considered. Note that for the nodes lying in-
side the bounding boxes of human body parts, we assign different weights based on the
type of the body part that they represent. Since the human motions are more prominent
due to legs and hands as compared to the head and torso, the nodes representing legs
and hands are assigned higher weights. Since mid-level representations like poses are
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more robust than mere flow information, the nodes representing only the flow informa-
tion are assigned the middle weight, indicating that such information is less important
than the detection of the limbs, but more than the detection of torsos and heads. In
case a node happens to lie inside the bounding boxes of two features (due to partially
overlapping bounding boxes), the node is made to represent the body part that would
assign it a higher weight. For each node in the graph, let the probability of its occur-
rence be denoted by p(v). For nodes not containing any of the body parts or the flow
field, p(v) = 0.01. For the nodes containing the flow field, p(v) = 1, and for the nodes
belonging to the body parts, p(v) is assigned according to the trustworthiness of their
detection as outlined in section 2.2.

Note above that we provide the flexibility of the body parts being represented in con-
junction with the flow field. This maintains the spatial structure between the body parts
and the flow information. Such a fusion offers us an advantage when the detections of
the body parts are sparse. For instance, consider a case where the legs could not be
detected within a frame, but the torsos and the head were detected. For a walking activ-
ity, the nodes representing the legs in the frame will be associated with a motion field,
which when represented in a graphical structure naturally encodes motion relationships.

Before we discuss how the edge costs in our graphical structure are defined, we
explain the training procedure. For videos in the training set, once the node weights are
defined, we form a histogram over the entire video, one for each feature type (6 body
parts and flow information). For each feature type, the bins represent the 6 body parts
and 10 orientations of the flow descriptor, and the frequency of each bin indicates how
many times the feature has occurred around a 50-frame temporal span of a node. Given
the training videos and the associated activity class labels, binary linear-SVM classifiers
using [4] are learnt for each each feature type. Thus, given a feature in the test set, once
can predict whether the feature belongs to a known activity class or not, along with
the degree of its presence. Note that during training, the probabilities of occurrences of
the features and the edge costs are not considered. This is because, training is done on
clean datasets with a pre-specified activity volume, and hence there lies no need to run
a graph optimization problem. For test videos, the edge costs need to be incorporated
according to the statistics of the training set and also the trustworthiness of the detected
features.

Defining Edge Costs: The edge cost in the graph needs to be defined such that the cost
is high if one is transiting to a node that represents a feature with lesser importance or
lesser confidence level or the one which does not belong to an activity of interest. For
an edge connecting any two nodes v1 and v2, if either of the nodes represent a feature
that does not belong to any known activity class, the edge cost is assigned the maximum
value of 1. In all other cases, the edge cost is defined as follows:

c(e(v1,v2)) = min(0.01, (|p(v1)− p(v2)|)× (j(v1) + j(v2))/2) (6)

where p(v1), p(v2) are the probabilities of occurrences of the features at nodes v1 and v2
respectively, and j(v1), j(v2) indicate the degrees to which the features at nodes v1 and
v2 belong to a known activity class. A higher value of j(v) indicates lesser presence of
the feature in an activity class. All values are normalized so that the edge cost is always
between 0 and 1. This is to prevent biasing in the graph.



594 S. Shankar, V. Badrinarayanan, and R. Cipolla

Given a test video, once the node weights and the edge costs are assigned over the
graph, we also store the activity class to which each node belongs. In case, the feature at
a node does not belong to any known activity class, no information is stored. The PCST
solution is computed over the graph, and the optimal subgraph is found representing the
spatio-temporal localization of the activity. A histogram is computed over all nodes of
this optimal subgraph, which indicates the number of nodes belonging to each known
activity class. The class that exhibits the maximum frequency in the histogram is as-
signed to the test video.

2.2 Estimation of Human Body Parts

For a video with K frames, we start by running two state-of-the-art body part detectors,
viz. poselets [2] and the flexible mixture of parts (FMP) [39], for frames separated
by 0.25 sec in time duration. This is because, normally within this duration, poses in
an activity do not change significantly enough that they cannot be tracked with the
flow information. This condition mostly suffices for sports videos as well. Choosing a
sparse set of frames for pose detection not only reduces the computational complexity,
but also relaxes the requirement of a highly accurate pose detector. Let there be m =
1, . . . ,M ;M < K frames for which we run body part detectors.

Learning Classifiers: The FMP and poselet detections are not accurate for all types of
poses. Although, they both return a probability score that indicates the accuracy of the
detection, we observe that for lower probability scores, the detections cannot be ranked
according to the degree of their accuracy by simply sorting these scores. We therefore,
try to learn classifiers for both the poselets and FMP, which can indicate the trust in the
detection scores. For this, we form an image dataset consisting of images from PASCAL
VOC 2007 [10] and INRIA and Buffy image datasets considered in [39]. This dataset
consists of around 1100 images with full body poses, partial body poses, multiple and
overlapping poses, and null poses.

For FMP annotation, we run FMPs on each of the images of our image dataset, note
the returned probability scores and the body-part detections, and manually annotate
whether (a) the detection was fully accurate (all 6 body parts were correct) - category
C1, (b) the detection was correct for head and torso, but was erroneous for some/all
limbs - category C2 and (c) the detection was not acceptable (no more than 1 out of 6
body parts were correct) - category C3. We have thus three categories and the associated
probability scores. Using this, we learn linear-SVM classifiers [3] using the LIBSVM
library [4], which given a probability score categorizes the FMP detection. Note that
for detections with FMP, we utilize the code provided by the authors of [39], and use
their pre-trained model. The accuracy of the classifiers of these classes is evaluated by
doing 50 random initializations of training and test data set (with a 50% train/test split).
We always achieved the classification accuracy of around 90% for the test dataset. This
shows that the classifiers that we have learnt from manual annotation can be trusted4.

4 Note that we learn classifiers by annotating a dataset of images, and not the video datasets
under consideration. These classifiers are learnt once and need not be changed depending on
the video dataset used for evaluation.
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Fig. 2. First Row - (Left Column) The figure shows the torso and human body detections using
our adaptive threshold with the poselets, without which no parts were detected. (Right Column)
The figure shows some accurate FMP detections (belonging to the class C1). Second Row -
(Left Column) The figure shows FMP detections for the class C2 where the head and torsos can
be trusted, but not the limbs. (Right Column) The figure shows some FMP detections belonging to
the class C3. In such a case, the FMP detections cannot be trusted at all. As a result, our algorithm
then depends solely on the torso and head detections from the poselets. Third Row - The figure
shows the torso and human body detections using poselets, where the FMP detections belonged to
the class C3. Fourth Row - The figures show multiple torso and head detections using poselets.
Using the approach specified in Algorithm 1, the correct torso detections were found out. Best
Viewed in Color.

Poselets have a major advantage of predicting the viewpoints of body parts as com-
pared to FMPs. However, since we do not model viewpoints in our framework, and
the number of masks associated with the limbs in the poselets are comparatively much
lesser than those of torso and head; we use poselet estimations only for the torso and
full human body detection. For poselets, we perform detections using the code provided
by [2]. We observe that the detection threshold (the probability score above which the
torso detections and human detections are considered valid) set in the code of [2] many
a times misses some key torso/poselet detections. Thus, we make the detection thresh-
old for poselets adaptive in nature, i.e. we consider all poselet firings until atleast two
torsos are detected in an image. The threshold can also be adapted so as to make more
than a minimum of two torso detections, but we choose only two, since we do not
have collective activities in our video datasets. We then note the returned probability
scores for various torso and human body firings with poselets, note their regions of
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Algorithm 1: Choosing Appropriate Body Parts

foreach frame m discover the best part detections using learnt classifiers for FMP do
(a) Initialize all nodes v with weights d(v) = 0.01 (from Eqn (5)) and probability of occurrence

p(v) = 0.01. Initially none of the nodes belong to any body part.

(b) Run FMP and identify the category C of detection.

if (C == C1) correct detection then
(c) Include the FMP detected parts for the frame.
(d) Assign the probability of 1 to the nodes contained inside each detected part. else if

(C == C2) limbs may be missing but torso and head can be trusted then
(e) Include the detected torso and the head for the frame.
(f) Assign probability of 1 to the respective nodes.
(g) Include the detected limbs for the frame.
(h) Assign probability of 0.5 to the respective nodes. else

C = C3 & FMP detection cannot be trusted

(i) Discard the FMP detections.

end

foreach frame m detect torsos and human bodies using poselets do

(j) Run Poselets and note the torso and human body detections
if multiple torsos are contained inside a human body box then

(k) Associate the human body box to the torso having the highest detection score.

end

if a single torso is contained inside multiple human body boxes then
(l) Associate the torso to the human body box to which it is most symmetrical.

end

One now establishes one-to-one mapping between a torso and a human body detection

foreach torso-human body pair do
(m) Estimate the head part of the body.

end

foreach torso-head pair do
(n) Check if the torso and head have a significant overlap with any of FMP detections
if significant overlap occurs then

(o) Discard the torso and head detections and continue with the FMP ones. else
(p) Consider the torso and the head detection.
(q) Assign probability of 1 to the respective nodes.

end

end

Apply Algorithm 2

detections, and manually annotate the images into the following two categories: cate-
goryC4 - where torso detections (with poselets) are not correct, and categoryC5 - where
torso detections (with poselets) are correct. We observe that segregating the torso and
human body detections with poselets based on such probability scores in not feasible,
since there are generally many good detections even with very low probabilities. Thus,
no classifiers are learnt for the same. However, a higher probability score generally indi-
cates a more confident detection. Also, a torso that is more symmetrically placed within
the human body generally indicates a better detection.
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After running the poselets and FMPs on a given video, we get many part detec-
tions along with their probabilities of occurrences for each of the M frames. We se-
lect the most appropriate parts amongst them using Algorithm 1, for which we reuse
the learnt classifiers (mentioned above). For predicting the spatial position of the body
parts between mth and (m + 1)th frames, we utilize the flow information (see Algo-
rithm 2). We reiterate that for any frame where part detections are included according
to Algorithm 1, the overlapping of the bounding boxes of the parts is not a problem,
since a node is always assigned to the bounding box of the part that gives it the max-
imum weight (as discussed in Section 2.1 - Defining Node Weights). See Fig 2 for
getting a pictorial representation of ideas presented in this sub-section and Algorithms
1 and 2.

Algorithm 2: Estimate body parts for the frames between m and m+ 1

m and m+ 1 do not represent adjacent frames, but those for which detection is done one after the other

foreach frames (m, m+ 1) do
foreach bounding box of the body part detected in m do

Track the body part of frame m in m+ 1

(T1) For the bounding box of a body part in m, bm ∈ bi, find the flow field using optical
flow [1] between frames m and m+ 1. Let Y (bm) refer to the type of body part that bm
contains (torso, hands, etc.). Use flow field to estimate the bounding box of that body part
in frame m+ 1 as bm+1. Let pbm refer to the probability of occurrence of Y (bm), and
pbm+1

to that of Y (bm+1). Initialize pbm+1
= pbm .

(T2) If frame m+ 1 contains body parts of type Y (bm), find the spatial locations of all
such parts. If any such body part with bounding box bp and probability of occurrence pp is
in a close neighbourhood (typically one-tenth of the size of the frame) of bm+1, then
bm+1 = bp and pbm+1

= pp. In case of multiple parts near the neighbourhood of
bm+1, the closest one is considered.

(T3) Let H1 be the color histogram of the part in bm and H2 for that in bm + 1.
Compute the mass in the difference between H1 and H2 and divide it by the the mass in
H1, to give rcH . This value gives the change in appearance of the part.

Estimate the position and probability of the occurrence of that part for the frames in between

(T4) Penalize pbm+1
for the difference in appearance. So, pbm+1

:= pbm+1
(1 − rcH )

(T5) For a frame n in between m and m+1, bn is found by linearly interpolating bm and
bm+1. Similarly, pbn is found by linearly interpolating pbm and pbm+1

.

end

end

3 Results and Discussion

This section presents the results obtained with our Part Bricolage model for the task
of activity detection. Note that for activity detection, the task is to predict the spatio-
temporal bound of an activity along with the class label.
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Table 1. Activity Detection Results with Part Bricolage (PB): Mean Overlap Accuracy for
temporal detection on Hollywood (AP = AnswerPhone, GC = GetOutCar, HS = HandShake)
dataset; and temporal and spatio-temporal detection (using full-person ground truth) on MSR-
Actions dataset. It can be seen that the full PB outperforms the state-of-the-art procedures by a
significant margin for all detection paradigms. The results deteriorate significantly for the Holly-
wood dataset if we do not use poselet detections. This is because the Hollywood dataset contains
many partial body poses, where FMPs do not work well. Also, when the flow information is not
fused with the mid-level body part detections, the accuracy gets affected, thereby justifying our
design choice. Best Viewed in Color.

Hollywood (Temporal) MSR (Temporal) MSR (Spatio-Temporal)

AP GC HS Hug Kiss SitDown SitUp StandUp Box Clap Wave Box Clap Wave

ST-SubVol [42] 0.29 0.22 0.33 0.44 0.42 0.28 0.20 0.30 0.07 0.06 0.26 0.045 0.017 0.101

MWCS [5] 0.39 0.29 0.41 0.52 0.49 0.37 0.38 0.37 0.09 0.17 0.29 0.047 0.063 0.112

PB (Ours) - Poselets 0.21 0.18 0.31 0.29 0.29 0.27 0.24 0.31 0.19 0.25 0.39 0.131 0.114 0.201

PB (Ours) - Flow 0.35 0.29 0.41 0.42 0.39 0.35 0.32 0.36 0.11 0.18 0.31 0.066 0.078 0.165

PB (Ours) Full 0.45 0.36 0.49 0.56 0.50 0.46 0.41 0.46 0.21 0.26 0.43 0.147 0.127 0.235

We use the uncropped Hollywood [17]5 and the MSR-Actions [42] datasets for the
evaluation of our PB model for activity detection purposes. The Hollywood dataset can
be considered as a subset of Hollywood2 dataset, and contains around 470 videos having
8 action classes, viz. AnswerPhone, GetOutCar, HandShake, HugPerson, Kiss, SitDown,
SitUp, StandUp. For detection on Hollywood dataset, we train with the cropped clips,
and test with the uncropped videos. The train/test split is around 50% and the videos are
chosen as specified in [17]. The MSR-Actions dataset is quite different from the Holly-
wood dataset, since the test sequences normally contain multiple actions with people fre-
quently crossing each other and changing their position over time. Thus, MSR-Actions
dataset presents a very good validation benchmark for the activities with dynamic occlu-
sions. The dataset contains 16 videos having 3 action classes, viz. Boxing, Hand Clap-
ping, Hand Waving. Since the KTH dataset [29] also contains these three action classes,
we train using the KTH videos and test on all the sequences of the MSR-Actions dataset.
This is a standard norm for activity detection as recommended by [42,5].

Our Part Bricolage model is specifically targeted for activity detection. Although the
idea of robust body part estimations, and fusing of low-level and mid-level features in
a graph can be utilized for activity classification as well, a seemingly different binding
framework may be more suited. The graphical structure based binding framework that
we have adopted in this paper is best suited for the problem of activity detection. To
evaluate PB for detection, we thus choose datasets which contain some real movie ac-
tivities (like in Hollywood) or simple activities with a lot of dynamic occlusions (like
in MSR-Actions dataset), where detection task is challenging. Also, the state-of-the-art
activity classification procedures cannot be directly incorporated in either of our PCST-
type framework or MWCS-framework [5], since those procedures neither possess an
inherent quantization of their descriptors, nor any notion of trustworthiness of features.

5 Hollywood dataset contains both the noisy uncropped versions of the video sequences which
contain about 40% extraneous frames, as well as the clean or cropped versions of the se-
quences, which have been trimmed temporally to the action of interest.
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We present temporal detection results on the Hollywood dataset, and the temporal and
spatio-temporal detection results on the MSR-Actions dataset. Note that since the ac-
tivities in Hollywood dataset are spatially trimmed, only temporal detection is required.
Table 1 presents all the detection results. We use the mean overlap accuracy as the eval-
uation metric, following [42,5]. For both temporal or full spatio-temporal detection, this
metric computes the intersection of the predicted detection region with the ground truth,
divided by the union.

Table 1 presents the detection results with our PB model, while also showing some
intermediate results in order to justify our design choices. It is clear that PB model out-
performs the state-of-the-art procedures by a significant margin on both the datasets,
for the temporal as well as the spatio-temporal detection paradigm. It can be seen that
results without the incorporation of the part detections from poselets deteriorate sig-
nificantly for the Hollywood dataset, unlike the MSR-Actions dataset. This is under-
standable since the MSR-Actions dataset generally contains full body poses for which
FMP part detections are quite accurate. This is not the case for the Hollywood dataset,
where one finds lesser number of full body poses, and FMP part detections mostly fail.
It can also be seen that the results without the incorporation of any flow information
(low-level feature) shows deterioration for both the datasets. This clearly establishes
the advantage of our proposal of fusing the mid-level features like body parts with the
low-level features like optical flow within the graph structure. The lack of flow informa-
tion affects the detection accuracy for the videos, where the mid-level representations
are sparse, or complete body poses cannot be estimated with acceptable trustworthiness
and the missing part show some movement. Also, in the cases where there are a lot of
dynamic occlusions, flow information helps to separate the activity of interest.

It is noteworthy that comparisons in Table 1 are made after making the temporal and
spatial granularity of our PB model to 5 frames (instead of one frame) as done in [5].
We consider a block of 25 points (5 points per frame for 5 frames) as a node here. This
is consistent with our discussion in Section 2.1 where we mentioned that a node can
possibly contain many points to decrease the granularity.

4 Conclusions and Future Work

We have introduced a unified formulation for robustly detecting activities in videos.
Central to our formulation is an undirected node- and edge-weighted graphical struc-
ture called Part Bricolage (PB), where the node weights represent the type of features
along with their importance, and edge weights incorporate the probability of the fea-
tures belonging to a known activity class, while also accounting for the trustworthiness
of the features connecting the edge. Prize-Collecting-Steiner-Tree (PCST) problem [19]
is solved for such a graph that gives the best connected subgraph comprising the activ-
ity of interest. We have introduced a novel technique for robust body part estimation,
which uses two types of state-of-the-art pose detectors, and resolves the plausible de-
tection ambiguities with pre-trained classifiers that predict the trustworthiness of the
pose detectors. We have also proposed the fusion of low-level descriptors with the mid-
level ones, while maintaining the spatial structure between them. Quantitative results
establish the advantages of our various design choices, and show that our PB model
outperforms the state-of-the-art detection procedures by a significant margin.
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PB model can be extended to have a human-detector-initiated graph partitioning
which can cater to simultaneous activities. Also, the distinction between left and right
limbs can be made explicit. Better parametric models can also be incorporated, and node
and edge weights of the graph can be associated with probabilistic graphical frame-
works to detect collective, highly contextual as well as subtle human motions.
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(Centrum Wiskunde & Informatica) Life Sciences Group at Amsterdam, Netherlands
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