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Abstract. In this work, we present a method for single-view reasoning
about 3D surfaces and their relationships. We propose the use of mid-
level constraints for 3D scene understanding in the form of convex and
concave edges and introduce a generic framework capable of incorporat-
ing these and other constraints. Our method takes a variety of cues and
uses them to infer a consistent interpretation of the scene. We demon-
strate improvements over the state-of-the art and produce interpretations
of the scene that link large planar surfaces.

1 Introduction

Over the last few years, advances in single-image 3D scene understanding have
been driven by two threads of research. The first thread asks the basic repre-
sentation question: What are the right primitives to extract local likelihoods of
surface orientation? From geometric context [12] to recent papers on data-driven
3D primitives [6], most approaches in this thread have focused on using large
amounts of labeled data to train appearance-based models for orientation likeli-
hoods. While there have been enormous performance gains, these approaches are
fundamentally limited by their local nature. The second thread that has pushed
the envelope of 3D understanding focuses on reasoning. These approaches stitch
together local likelihoods to create a global understanding of the scene. Some in-
clude conditional random field (CRF)-based smoothness reasoning [26], cuboidal
room layout [10] and volumetric representation of objects [8,22], 3D objects [35],
and groups of objects [1,40,41].

Most efforts in reasoning have used either local domain-agnostic constraints or
global domain-specific constraints. For instance, CRF-based approaches include
the constraint that regions with similar appearance should have similar orienta-
tion. These end up, however, enforcing little more than smoothness. This has led
to high-level top-down constraints given by domain-specific knowledge. For ex-
ample, most indoor approaches assume a Manhattan world in which the surface
normals lie on three principal directions [3]. Second only to the Manhattan-world
constraint is the cuboidal room constraint, in which the camera is assumed to be
inside a cube and inference becomes predicting the cube’s extent [10]. While this
has been enormously influential, the camera-inside-a-box representation leaves
the interior and most interesting parts of the scene, for instance furniture, un-
interpreted. Recent work has aimed at overcoming this by finding volumetric
primitives inside scenes, conventionally cuboids [8,22,36,31], and in simple scenes
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Surface Normals with Mid-level Constraints 
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Fig. 1. We propose the use of mid-level constraints from the line-labeling era and a
parametrization of indoor layout to “unfold” a 3D interpretation of the scene in the
form of large planar surfaces and the edges that join them. In contrast to local per-pixel
normals, we return a discrete parse of the scene in terms of surfaces and the edges
between them in the style of Kanade’s Origami World as well updated continuous
evidence integrating these constraints. Normal legend: blue → X; green → Y;
red → Z. Edge Legend: convex +; concave −. Figures best viewed in color.

such as the UIUC dataset of [10], cuboid representations have increased the ro-
bustness of 3D scene understanding. Nonetheless, cuboid-based object reasoning
is fundamentally limited by its input, local likelihoods, and it is not clear that
it generalizes well to highly cluttered scenes.

In this paper, we propose an alternate idea: while there have been great efforts
and progress in both low and high-level reasoning, one missing piece is mid-level
constraints. Reasoning is not a one-shot process, and it requires constraints at
different levels of granularity. For cluttered and realistic scenes, before we can go
to cuboids, we need to a way to piece together local evidence into large planar
surfaces and join them with edges. This work aims to address this problem.

These mid-level constraints linking together planes via convex and concave
edges have been extensively studied in the past. There is a vast line-labeling lit-
erature (e.g., classic works [2,14,34]); among these works, we are principally in-
spired by Kanade’s landmark Origami World paper [18], which reasoned directly
about surfaces as first-class objects and the edges between them. As systems,
line-labeling efforts failed due to weak low-level cues and a lack of probabilistic
reasoning techniques; however, they hold a great deal of valuable insight.

Inspired by these pioneering efforts, we introduce mid-level constraints based
on convex and concave edges and show how these edges help link multiple sur-
faces in a scene. Our contributions include: (a) a generic framework and novel
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Fig. 2. Overview of the proposed approach. (Left) We take a single image of an
indoor scene and produce a 3D interpretation in terms of surfaces and the edges that
join them. (Right) We accumulate evidence from inferred surface normal discontinuities
in the scene (convex blue, concave green), local surface normals, and room layout. (b)
We formulate the problem as assembling a coherent interpretation from a collection
of vanishing-point aligned grids. (c) This interpretation must respect observed edges
joining segments as well as constraints such as mutual exclusion and smoothness.

parametrization of superpixels that helps to incorporate likelihoods and con-
straints at all levels of reasoning; (b) the introduction of mid-level constraints
for 3D scene understanding as well as methods for finding evidence for them; (c)
a richer mid-level interpretation of scenes compared to local normal likelihoods
that can act as a stepping-stone for subsequent high-level volumetric reasoning.

2 Related Work

Determining the 3D layout of a scene has been a core computer vision prob-
lem since its inception, beginning with Robert’s ambitious 1965 “Blocks World”
thesis [28]. Early work such as [2,14] often assumed a simple model in which
the perceptual grouping problem was solved and there were no nuisance factors.
Thus, the 3D layout problem could be posed as constraint satisfaction over the
visible lines. These methods, however, failed to pan out in natural images because
the actual image formation process is much more noisy than was assumed.

After many decades without success, general 3D layout inference in relatively
unconstrained images began making remarkable progress [5,11,12,29] in the mid-
2000s, powered by the availability of training data. This sparked a renaissance
during which progress started being made on a variety of long-standing 3D
understanding problems. In the indoor world, a great deal of effort went into
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developing constrained models for the prediction of room layout [10] as well as
features [6,23,27] and effective methods for inference [4,22,31,32]. While these
high-level constraints have been enormously successful in constrained domains
(e.g., less cluttered scenes with visible floors such as the datasets of [10,38]), they
have not been successfully demonstrated on highly cluttered scenes such as the
NYU v2 Depth Dataset [33]. Indeed, on these scenes, it turns out to be difficult
even with depth to find a variety of simple primitives such as cuboids [16,17,39],
support surfaces [7], or segmentations [9]. We believe that one missing ingredient
is effective mid-level constraints, and in this work propose such constraints in the
form of line-labels. We emphasize that our goal is to complement prior high-level
constraints: we envision a system in which all of these cues cooperate to produce
an understanding of the scene at a number of levels of grouping in a hierarchical
but feedback manner. This work acts as a stepping stone towards this vision,
and introduces a framework for layout estimation that we demonstrate can easily
integrate constraints from a variety of levels.

Other work in single-image layout prediction has drawn inspiration from clas-
sic line-labeling approaches, but has focused on the task of finding occlusion
boundaries [13,15,24]. While important, occlusion boundaries only provide a
2.1D sketch (e.g., like [25]) and provide no information in a single image about
the surface orientation without their complementary normal discontinuity labels.
In this work, we focus on this other class of labels, namely convex and concave
edges. These have been applied in the context of stereo [37], but have largely
been ignored in the single-image layout community, apart from work on shape
recovery using hand-marked folds [19].

3 Overview

In this work, our goal is: given a single image, group pixels into planes, and infer
the orientations of these planes and the convex/concave nature of edges. Simi-
lar to previous indoor scene understanding approaches, we assume a Manhattan
world, which restricts the orientation of planes to three principal directions.
Generally, this constraint is implicitly encoded by first grouping pixels into re-
gions via appearance and then solving the surface normal problem as a 3-way
classification problem. Our key idea is to reformulate the problem and solve the
grouping and classification problem jointly by using top-down superpixels. Given
the estimated vanishing points, we determine three possible grids of superpixels
aligned with these vanishing points and the problem of classification becomes
finding the “active” grid cell at every pixel.

Inferring the active grid cells using image evidence is a severely undercon-
strained problem, like most single image 3D tasks. Therefore, we include a variety
of constraints based on (a) mutual exclusion; (b) appearance and smoothness;
(c) convex/concave edge likelihoods; and (d) global room layout. Some are en-
forced as a unary, while others, such as (c), are binary in nature. Our objective is
therefore a quadratic with mutual exclusion constraints. Additionally, the super-
pixel variables must be integer if one wants a single interpretation of each pixel
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Fig. 3. Parametrization of the method. (a) We sweep rays (dotted lines) from each
vanishing point, defining a pencil of lines. The intersection of two pencils of lines defines
a superpixel with normal (solid line) perpendicular to the normals of the generating
vanishing points. (b) We represent layout by activations of these superpixel grids. (c)
We show the likelihoods on each grid cell for the ground truth surface normals (d).

(1 corresponding to active, 0 to non-active). The resulting problem is thus NP-
hard in general. We propose to optimize both the integral and relaxed problems:
integral solutions are themselves rich inferences about the scene, but we believe
the relaxed solutions can act as inputs to higher-level reasoning processes.

We formalize our parametrization of the problem in Section 4 and discuss how
we combine all the available evidence into one model in Section 5. Finally, we
introduce an approach to finding surface normal discontinuities in Section 6.

4 Parametrization

The first step in our approach is estimating the vanishing points and creating
grid cells in 3 principal directions. These act as superpixels defined by geometry
rather than appearance. These grids are generated by sweeping rays from pairs of
vanishing points, as shown in Fig. 3. The orientation of cells in the grids is defined
by the normal orthogonal to the two generating vanishing points. Thus, a cell
not only defines a grouping but also an orientation. Therefore any interpretation
of the scene in terms of Manhattan-world surface normals that respects this grid
can be represented as a binary vector x encoding which grid cells are active.
To illustrate this, we show the likelihoods for the ground truth over grid cells
in Fig. 3 (c). This formulation generalizes many previous parametrization of
the 3D layout problem, for instance the parametrization proposed in [10,31].
As we demonstrate with our potentials, our parametrization enables the easy
arbitration between beliefs about layout encoded at every pixel such as [6,20]
and beliefs encoded parametrically, such as room layouts or cuboids [10,22,31].
Note that our grids overlap, but only one grid cell can be active at each pixel
location; we enforce this with a mutual exclusion constraint.
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5 Unfolding an Interpretation of the Scene

We now present how we combine our image evidence to find an interpretation
of the scene. We first explain how we obtain surface normal likelihoods and use
them as unaries to provide evidence for grid cells in Sec. 5.1. We then explain
how we can enforce pairwise constraints on these grid cells given edge evidence
in Sec. 5.2. Finally, we introduce a binary quadratic program that arbitrates
between these cues and constraints to produce a final interpretation of the scene
in Sec. 5.3.

5.1 Unary Potentials

The first kind of cue for finding whether grid cell i is active (xi = 1) or not
(xi = 0) is local evidence at the grid cell location. In this work, we use two
complementary cues based on techniques for inferring evidence of surface normals
and transform them into potentials that capture how much we should prefer xi
to take the value 1. Recall that every grid cell represents not only a grouping
but also an orientation, and therefore one can easily convert between likelihoods
for orientation at a location and likelihoods of each grid cell being activated.
Local evidence: A wide variety of approaches have been proposed for estimat-
ing local surface normal likelihoods from image evidence. We adopt the top-
performing approach for doing this, Data-driven 3D Primitives [6] (3DP), which
builds a bank of detectors that are associated with local surface configurations.
At test time, the method convolves the bank with the image at multiple scales
and transfers the associated local surface configuration to the test image wher-
ever each detector has a high response. We soft-assign each pixel to each grid,
producing a probability map of each orientation over the image. The local ev-
idence potential of a grid cell i φlocal(i) is the probability of its orientation
averaged over its support.
Global room-fitting evidence: Global room fitting constraints have been im-
portant and successful in the single image 3D understanding community. These
seek to model the room as a vanishing-point-aligned box. We run the room-
fitting method of Hedau et al. [10], which produces a ranked collection of 3D
cuboid room hypotheses, where each wall corresponds to one of our grids’ direc-
tions. At every pixel, we build a histogram of each direction, weighted by the
inverse of the rank of the room and suppressing pixels predicted as clutter. The
room-fitting evidence potential of a grid cell i φroom(i) is the frequency of its
orientation averaged over its support.

5.2 Binary Potentials

The second kind of cue for whether a cell i is active or not comes from consider-
ing it in conjunction with its neighbors. We use binary potentials characterizing
preferences for pairs of grid cells. These operate within the same grid (i.e., on
cells of the same orientation) and across grids (i.e., on cells with different orien-
tations). These allow us to probabilistically integrate mid-level constraints via
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Convex (+) Concave (-) 

Fig. 4. A subset of valid arrangements in the image plane of surfaces (colors) and
convex and concave edges (black) in our scene interpretation method with a gray
surface normal arrow for disambiguation

convex and concave edges. In this section, we describe our potential for achieving
this as well as a standard appearance smoothness potential.
Line-labeling: The presence of a convex or concave edge tells us not only that
a discontinuity may exist, but also what sorts of labels can occur on either side.
For instance, in Manhattan-world scenes, a convex edge at the top of a counter
tells us there is a horizontal surface above and a vertical surface below. Because
this edge constrains the labels of adjoining surfaces, it is more powerful than a
simple smoothness term, which would only permit a labeling change at the edge.

We therefore include a potential that combines inferred convex and concave
edges with a dictionary of surface configurations to reward interpretations of the
scene in terms of grid cell activations that match our assumptions and available
image evidence. We present a basic method for obtaining evidence of convexity
and concavity in Section 6, but our potential is agnostic to the source of evidence.

We build an explicit enumeration of arrangements in the image plane that sat-
isfy observing a scene formed by continuous Manhattan-world aligned polyhedra,
e.g., a concave edge joining two vertical surfaces with the rightwards facing sur-
face on the left. One half of the preferred arrangements is displayed in Fig. 4; the
other half is an analogous y-inverted set. Some scenes may not satisfy our as-
sumptions about the world and our image evidence may be wrong, and we there-
fore do not make hard decisions as in past line-labeling work [2,14,18], but instead
form a potential encouraging interpretations that agree with our beliefs. Specifi-
cally, given two grid cells with different orientations, we can determine what edge
we expect to see in our dictionary, and reward the mutual activation of the two
grid cells if we see that edge. We use the potential ψline(i, j) = exp(−βlinee2i,j)
where ei,j is the inferred probability of that edge from image evidence (i.e., mean
image evidence over the edge joining two superpixels). We compute this poten-
tial over adjacent pairs of grid cells (i.e., sharing a vanishing point ray) but with
different orientations. We compute this separately for convex and concave edges,
letting the learning procedure decide their weight.
Smoothness: Adjacent and similar looking parts of the scene should gener-
ally have similar labels. As is common in the segmentation literature, we use
a Potts-like model: we compute color histograms over LAB space (10 bins per
dimension) for grid cells i and j, yielding histograms hi and hj ; the potential
is ψsmooth(i, j) = exp(−d(hi, hj)2), where d is the χ2 distance. We compute the
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potential over adjacent grid cells with the same orientation, rewarding similarly
colored regions for having similar orientation.

5.3 Inference

We need to resolve possibly conflicting potentials and infer the best interpreta-
tion of the scene given the available evidence. Mathematically, we formulate this
as an optimization over a vector x ∈ {0, 1}n, where each xi represents whether
grid cell i is active and where x contains the grid cells from all grids.

Our unary potentials {ui} and binary potentials {Bj} are collated as a vector
c =

∑
k λkuk and matrix H =

∑
l αlBl respectively, where ci and Hi,j respec-

tively represent the costs of turning grid cell i on and the cost of turning both
grid cell i and j on. Since two active overlapping cells imply that their pixels have
two interpretations, we add a mutual-exclusion constraint. This is enforced on
cells i and j that are on different grids and have sufficient overlap (|∩|/|∪| ≥ 0.2
in all experiments). This can be formulated as a linear constraint xi + xj ≤ 1.
Finally, since our output is in the image plane and our cells are not all the same
size, we weight the unary potentials by their support size and binaries by the
minimum size of the cells involved.

Our final optimization is a binary quadratic program,

argmax
x∈{0,1}n

cTx+ xTHx s.t. Cx ≤ 1, (1)

where C stacks the mutual-exclusion linear constraints. Inference of this class
of problems is NP-hard; we obtain a solution with the Gurobi solver, which
first solves a continuous relaxation of Eqn. 1 and then performs a branch-and-
bound search to produce an integral solution. The relaxed solution also acts as
an updated belief about the scene, and may serve as a cue for the next layer
of scene reasoning. We learn trade-off parameters {λk}, {αl} by grid-search for
each of the five potentials on a reduced set of images in the training set.

6 Finding Convex and Concave Edges

Our method needs a source of convex and concave edges in a scene. In this
section, we describe a simple method for obtaining them. We produce surface
normal discontinuity maps from depth data and adapt the 3D Primitives ap-
proach [6] to transfer oriented surface normal discontinuities.

We begin by generating surface normal discontinuity labels for our method.
We sweep a half-disc at 8 orientations at 7 scales over the image to get cross-
disc normal angles at every pixel and orientation. These are noisy at each scale,
but the stable ones (i.e., low variance over all scales), tend to be high quality.
Example normal discontinuity labels are shown in Fig. 5.

Given this data, we use a simple transfer method to infer labels for a new scene
with a bank of 3D primitive detectors from [6]. Each detector is associated with
a set of bounding boxes corresponding to the locations on which the detector was
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Fig. 5. An illustration of our approach for finding surface normal discontinuities. At
training time, we automatically compute surface normal discontinuity maps (convex
blue, concave green, missing data gray). At test time, we run a bank of 3D primitive
detectors in the image; these detectors are trained to recognize a set of patches. We
transfer the convex and concave edge patches associated with each detector.

trained. In the original approach, the surface normals in these boxes were trans-
ferred to new images. Instead of transferring surface normals, we transfer the
normal discontinuity label, separating by type (convex/concave) and orientation
(8 orientations). Thus edge probabilities only accumulate if the detections agree
on both type and orientation. At every pixel, the empirical frequency of normal
discontinuity labels gives a probability of each edge type at each orientation.
This is complementary to the local evidence unary: at the corner of a room, for
instance, while a set of detectors may not agree on the specific surface normal
configuration, they might agree that there is a concave edge.

7 Experiments

Our output space is a richer interpretation of images compared to per-pixel
prediction of surface normals. Evaluating this output in terms of line labelings or
linkages of planes is not possible since there are no baseline approaches, ground-
truth labels, or established evaluation methodologies. We therefore evaluate one
of the outputs of our approach, surface normals, for which there exist approaches
and methodologies. We adopt the setup used by the state-of-the-art on this task
[6], and evaluate on the challenging and highly cluttered NYU v2 dataset [33].

7.1 Experimental Setup

Training and Testing: Past work on single image 3D using NYU v2 [6,21]
has reported results on a variety of train/test splits, complicating inter-method
comparisons. To avoid this, we report results on the training and testing splits
used by Silberman et al. [33] in their support prediction problem.

Quantitative Metrics: We quantitatively evaluate the surface normal aspect
of our approach. However, we strongly believe that the existing per-pixel quan-
titative metrics for this task are sometimes misleading. For instance, in Fig. 6,
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Input Ground 3DP 3DP Proposed Proposed
Image Truth non-MW MW Discrete Relaxed

Fig. 6. Selected results on the NYU Dataset comparing our approach to the state-of-
the-art, 3D Primitives. To help visualize alignment, we blend the predicted normals
with the image.

Fig. 7. Surface connection graphs of scenes automatically obtained from a single image.
Our method infers a parse of the scene in terms of large vanishing-point-aligned regions
and the edges between them (convex: +, concave: −).
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Table 1. Results on NYU v2 for per-pixel surface normal prediction. Our approach
improves over Manhattan-world methods in every evaluation metric.

Summary Stats. % Good Pixels
(Lower Better) (Higher Better)

Mean Median RMSE 11.25◦ 22.5◦ 30◦

Manhattan-world Techniques
Proposed 35.1 19.2 48.7 37.6 53.3 58.9
Fouhey et al. [6] 36.0 20.5 49.4 35.9 52.0 57.8
Hedau et al. [10] 40.0 23.5 44.1 34.2 49.3 54.4
Lee et al. [23] 43.3 36.3 54.6 25.1 40.4 46.1

non-Manhattan-world Techniques
Fouhey et al. [6] 34.2 30.0 41.4 18.6 38.6 49.9
Karsch et al. [20] 40.7 37.8 46.9 8.1 25.9 38.2
Hoiem et al. [12] 36.0 33.4 41.7 11.4 31.3 44.5
Saxena et al. [30] 48.0 43.1 57.0 10.7 27.0 36.3

row 1, our method does worse than [6] on mean and median error, even though it
conveys the cuboidal nature of the bed more precisely and segments it into three
faces. However, in the absence of other metrics, we still evaluate performance
on the metrics introduced in [6]: summary statistics (mean, median, root mean
square error) and percent-good-pixels metrics (the fraction of pixels with error
less than a threshold t). Note that each metric characterizes a different aspect
of performance, not all of which are equally desirable.

Baselines:Our primary point of comparison is 3DP [6], which is the state-of-the-
art and outperforms a diverse set of approaches. In particular, the informative
comparison to make is with the Manhattan-world version of 3DP: Manhattan-
world methods generally produce results that are nearly correct (correct vanish-
ing point) or off by 90◦ (incorrect one), which is implicitly rewarded by some
metrics (% Good Pixels) and penalized by others (mean, RMSE). This makes
comparisons with methods not making the assumption difficult to interpret.
Nonetheless, to give context, we also report results for the baseline approaches
of [6], including but separately presenting non-Manhattan-world ones.

Implementation Details: Vanishing points: We use the vanishing point de-
tector introduced in [10]. Grid cells: The grids used in this work are formed
by 32 and 64 rays from exterior and interior vanishing points. Implausible Grid
Cells: Some grid cells near vanishing points represent implausible surfaces (e.g.,
an enormous plane at just the right angle); we softly suppress these. Holes in
gridding: the grid cells will not all line up, leaving a small fraction of the scene
uninterpreted. We fill these with nearest-neighbor inpainting. Training our po-
tentials: Most potentials are learned from data, but we must use their test-time
behavior on the train set to learn our potential trade-offs. For the room-fitting
potential, we use 2× cross-validated output; for 3DP-based potentials, we sup-
press detections on the few images on which the detector was trained.



698 D.F. Fouhey, A. Gupta, and M. Hebert

−→ Decreasing Performance (Median Error (◦), % Pixels < 30◦) −→
Perf. 7.8◦ 70.7% 11.2◦ 61.3% 13.4◦ 57.7% 21.5◦ 52.0% 24.6◦ 45.7% 44.5◦ 38.2%
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Fig. 8. Results automatically sampled across the method’s performance range. Perfor-
mance reported as median error and % Pixels < 30◦. Results were sorted by mean rank
over all criteria and six results were automatically picked to evenly divide the list.

Input Ground Local + Room +Potts +Line
Image Truth Evidence Fitting Smoothing Labeling

Fig. 9. Qualitative analysis of the method components. Right-to-left: We start with
local, then global unaries, followed by smoothness then line-labeling binaries.

7.2 Results

Predicting Surface Normals: We show selected qualitative results in Fig. 6
that illustrate the contributions of our method, as well as an automatically
selected performance range in Fig. 8. Consider Fig. 6: our method can often
accurately capture object boundaries, especially in comparison with the normal-
snapping approach described in [6], which produces noticeable spotting or bend-
ing artifacts. Our top-down parametrization mitigates this issue by constraining
the space of interpretations, resulting in more plausible explanations. Our mid-
level constraints help with the recovery of hard-to-see surfaces, such as surfaces
on top of counters or beds (rows 1, 4) or sides of cabinets (row 6). These small
surfaces are frequently smoothed away by the Potts model, but are recovered
when our line labeling potentials are used.

We report quantitative results in Table 1. Our method outperforms the state-
of-the-art for Manhattan-world prediction in every metric. This is important
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Table 2. Component-wise analysis on NYU v2 [33]: we report results with parts of the
full system removed to analyze the contributions of each method to overall performance.

Mean Median RMSE 11.25◦ 22.5◦ 30◦

Unaries Only 36.0 19.9 49.6 36.8 52.4 58.0
Smoothness Only 35.4 19.7 48.9 37.4 53.0 58.5
Full Method 35.1 19.2 48.7 37.6 53.3 58.9

since each metric captures a different aspect of performance. It also does bet-
ter than the non-Manhattan-world methods in all metrics except the ones that
heavily penalize Manhattan-world techniques, mean and RMSE; nonetheless,
even on mean error, it is second place overall. Although our system outperforms
the state-of-the-art, we stress that per-pixel metrics must be considered carefully.

Qualitative Scene Parses: Our approach produces surface connection graphs
in the style of Kanade’s Origami World [18]. We decode plane relationships in an
interpretation via our edge dictionary illustrated in Fig. 4: given two adjoining
surfaces and their orientations, we decode their relation according to our scene
formation assumptions (contiguous Manhattan-world polyhedra). We then auto-
matically render qualitative parses of the scene as shown in Fig. 7. As this work
does not handle occlusion, failures in decoding relationships occur at configura-
tions that are impossible without occlusion (e.g., vertical-atop-other-vertical).

Ablative Analysis: We now describe experiments done to assess the contri-
butions of each component. We show an example in Fig. 9 that characterizes
qualitatively how each part tends to change the solution: an initial shape is
captured by the local evidence potential and is improved by the room fitting po-
tential. Smoothness potentials remove noise, but also remove small surfaces like
counters. The line-labeling potentials, however, can enable the better recovery
of the counter. We show quantitative results in Table 2: each step contributes;
our line-labeling potentials reduce the median error the most.

Confidence of Predictions: Accurately predicting scene layout in every single
pixel of every single image is, for now, not possible. Therefore, a crucial question
is: can a method identify when it is correct? This is important, for instance, as
a cue for subsequent reasoning or for human-in-the-loop systems.

We compute performance-vs-coverage curves across the dataset by sweeping
a threshold over per-pixel confidence for our approach and [6] in Fig. 10. Our
method’s confidence at a pixel is the normalized maximum value of overlapping
superpixel variables in the relaxed solution. Our method ranks its predictions
well: when going from 100% to 25% coverage, the median error drops by 7.3◦

and % Pixels < 11.25◦ increases by 11.7%. Thus the framework is capable of
identifying which of its predictions are most likely to be correct. Additionally,
the method out-performs [6] on all metrics, averaging along the curve and at all
operating points except the ultra-sparse regime.
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Fig. 10. Performance vs. coverage curves for the system and the next-best method,
3DP. Each plot quantifies accuracy in a metric against fraction of pixels predicted.

Input Ground Convex Concave 3DP Discrete
Image Truth Edges Edges Evidence Interpretation

Fig. 11. Failure modes and limitations: (Top) Local evidence can be misleading.
An edge is seen below the TV, and our method “folds” its interpretation accordingly.
(Bottom) We model only unary and binary relationships between cells; higher order
reasoning may allow the recognition of the top of the bed from its sides.

Failure Modes and Limitations: We report some failure modes and limita-
tions in Fig. 11. Our primary failure mode is noisy evidence from inputs. These
tend to correspond to mistaken but confident interpretations (e.g., the fold pre-
ferred by our model in the first row). Sometimes layouts inferred by our system
violate high-level constraints: in the second row, for instance, our interpreta-
tion is unlikely globally although it makes sense locally. By reasoning about the
proposed pieces, we can reject it without the surface on top necessary to make
it plausible. This is consistent with our vision of the 3D inference process: this
paper has argued that mid-level constraints are valuable, not that they are the
end of the scene interpretation story. Rather than solve all problems at once, we
must pass updated evidence to subsequent reasoning.
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