
Shape from Light Field Meets Robust PCA�

Stefan Heber1 and Thomas Pock1,2

1 Institute for Computer Graphics and Vision
Graz University of Technology

2 Safety & Security Department
AIT Austrian Institute of Technology

Abstract. In this paper we propose a new type of matching term for
multi-view stereo reconstruction. Our model is based on the assumption,
that if one warps the images of the various views to a common warping
center and considers each warped image as one row in a matrix, then
this matrix will have low rank. This also implies, that we assume a cer-
tain amount of overlap between the views after the warping has been
performed. Such an assumption is obviously met in the case of light field
data, which motivated us to demonstrate the proposed model for this
type of data. Our final model is a large scale convex optimization prob-
lem, where the low rank minimization is relaxed via the nuclear norm.
We present qualitative and quantitative experiments, where the proposed
model achieves excellent results.
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1 Introduction

One of the most studied problems in Computer Vision (CV) is stereo. Given two
or more images, taken from a static scene, but from different viewpoints, stereo
algorithms try to find points in the different images, that correspond to the same
scene point. Therefore the problem is also denoted as the correspondence prob-
lem. One distinguishes between local (cf . [30]) and global methods (e.g. [4]).
In both cases one has to define a matching term, that measures the similarity
between two image positions. In the case of two-frame stereo this matching term
measures how well positions in the reference view match certain positions in
the warped view. In the general case of multi-view stereo [25,12,31], proposed
methods usually only match the different warped views with a predefined refer-
ence view. By increasing the number of matchings, i.e. also among the warped
views, one could increase the robustness to various problems, which disturb the
matching. Such problems can depend on the scene itself, like e.g. due to depth
discontinuities, specularity, reflections, etc., but could also represent problems
of the used image capturing device e.g. pixel errors, sensor noise, etc.. In order
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Fig. 1. (a) and (b) show two closeup views of the raw image data captured with a
plenoptic 1.0 camera. One can clearly see the effect of the micro-lens array, where each
micro-lens splits incoming light into rays of different directions. Each of those light
rays then hits the behind placed sensor at a slightly different location. (c) shows a
sketch of the parametrization used in the RPCA light field model (cf . (10)). (d) is a
visualization of the so-called two plane parametrization of the light field.

to fully exploit the potential of increasing the stability and the accuracy of the
reconstruction an algorithm must be able to perform an all vs. all matching. In-
spired by low rank models like robust Principal Component Analysis (RPCA) [7],
the proposed method tackles this problem by introducing a novel matching term,
which globally measures how well the different views can we warped to a com-
mon warping center. Hence, this global matching term defines a measure on the
complete set of warped images, and we will see that this can also be interpreted
as an all vs. all matching between the involved views. To the best of our knowl-
edge such a stereo-model with a global matching term has not been proposed
before.

One extreme case of a multi-view system is light field imaging, where a large
amount of highly overlapping views are available. One way to capture a light
field is by using a so-called plenoptic camera, where the different views are noise
and highly aliased. We will show in the experiment section that the proposed
method performs especially well for this type of data.

In what follows, we will first give a brief introduction to light field imaging in
Section 1.1, followed by a short overview of RPCA [7] in Section 1.2.

1.1 Light Fields

Computer Vision traditionally focuses about extracting information out of im-
ages captured with traditional cameras. Nowadays there exist a variation of
unconventional cameras, that do not capture traditional images. Among those
devices are for instance cameras with coded apertures [20,35], multi-view sys-
tems [40], or plenoptic cameras [1,24,23]. All of those cameras have in common,
that each point at the sensor sums over a set of light rays, where the optic de-
fines the mapping between light rays and the sensor position. Hence, one can
distinguish between different image capturing devices by analyzing the combi-
nation of light rays, that hit certain points at the sensor. The so-called light
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field [21] is a representation of all light rays, that hit the sensor plane from dif-
ferent directions. Thus, the light field can be seen as a common denominator
across different types of cameras. In a pinhole camera for instance each sensor
records one light ray. The sensor in a conventional camera records the integral
of light rays over the lens aperture. A plenoptic camera seeks to capture the
complete light field, i.e. it tries to record all light rays hitting certain points at
the sensor separately. An image captured with a plenoptic camera can be con-
sidered as not static, i.e. that the image can be modified after is has been taken,
w.r.t. viewpoint, focus and depth of field. Capturing the different light rays per
sensor position is achieved by placing a microlens-array in front of the sensor of
a traditional camera (cf . Figure 1(a) and 1(b)). Note, that a plenoptic camera
can not capture the complete light field, it can only capture a light field with
a certain directional and spatial resolution. The directional resolution depends
on the number of pixels which capture the image of one microlens, and the spa-
tial resolution depends on the overall size of the sensor. The basic concept of a
plenoptic camera was first proposed by Lippmann [22] in 1908 and has then been
developed and improved [11,13,15], but plenoptic cameras became feasible not
until recent years [24,23,28]. The reason is simple due to the fact, that adequate
high quality microlens arrays, and high resolution sensors, were not available till
recent years.

Mathematically, a light field L̂ is a 4D function, which is usually parametrized
via the so called two plane parametrization (cf . Figure 1(d))

L̂ : Ω ×Π → IR, (p, q) �→ L̂(p, q) (1)

where p := (x, y)T denotes a point in the image plane Ω ⊂ IR2 and q :=
(ξ, η)T denotes a points in the lens plane Π ⊂ IR2. There are different ways to
visualize the 4D light field. One way is to fix two coordinates and vary over the
remaining two. The most useful representations are epipolar and sub-aperture
images. An epipolar image is obtained by fixing one spatial coordinate of p
and one directional coordinat of q. A sub-aperture image is an images where the
directional component q is kept constant, and one varies over all spatial positions
p. Sub-aperture images can also be seen as images extracted out of the light field
with slightly different viewpoints, but parallel to a common image plane. Such
images clearly show the connection between light fields and multi-view stereo
systems, and thus this representation will be used in the proposed model.

Light fields have been used for various image processing applications, such as
digital refocusing [18,23], extending the depth of field [23], image super-resolution
[3,37], and depth estimation [36,16,32]. In the case of depth estimation, the
method proposed by Wanner et al . [36] makes use of the epipolar representation
of the light field, where they additionally enforce global visibility constraints.
Heber et al . [16] proposed a method, which uses the sub-aperture representation
of the light field, where all views are matched against the center view. Finally,
Tao et al . [32] suggested a method, that combines the defocus and correspon-
dence depth cues.
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1.2 Robust Principal Component Analysis

In many practical situation it is well justified to assume that the given data lies
approximately on a low dimensional linear subspace [14,10,2,33]. This means, if
data points are stacked as column or row vectors of a matrix M , then M should
have low rank. This leads to the following model

M = L0 + E0 , (2)

where L0 is assumed to have low rank and E0 is a perturbation matrix represent-
ing the noise. This property has been exploited by classical Principal Component
Analysis (PCA) [14,17,19], which solves the following minimization problem

minimize
L,E

‖E‖F (3)

subject to rank(L) � r

M = L+ E

where ‖.‖F denotes the Frobenius norm. In problem (3) it is assumed that the
entries in E are independent and identically distributed (iid) according to an
isotropic Gaussian distribution. In this case PCA provides an optimal estimate
to L0. Also note, that problem (3) can be solved exactly using the singular value
decomposition (SVD) of M .

PCA is used extensively for data analysis and dimension reduction, but it may
fail in general if the assumptions about the perturbation matrix E are not met,
i.e. that a few corrupted entries in M , which significantly deviate from the true
solution, can lead to an estimate L, that is far away from L0. Thus, PCA is only
effective against small Gaussian noise, but it is highly sensitive to even sparse
errors of high magnitude. Such errors are quite common in many applications
due to corrupted data, sensor failures, etc. Also note, that the rank r of M needs
to be known a priori, which is usually not the case in real-world applications.

An algorithm that efficiently extract the principal components of such data
even in the presence of large errors was proposed by Candès et al . [7]. They
assume the rank of L to be unknown, and hence formulate a matrix rank min-
imization problem, where they want to find the lowest rank that generates M
when added with unknown sparse outliers. More specifically, they consider the
following combinatorial optimization problem

minimize
L,E

rank(L) + μ‖E‖0 subject to M = L+ E , (4)

where ‖.‖0 denotes the number of non zero entries (�0 norm). Problem (4) is NP
hard, and hence can not be solved efficiently. Thus they relax the problem by
using the nuclear norm and the �1 norm to encourage low rankness and sparsity,
respectively. Note, that the �1 norm is the largest convex function below ‖.‖0,
and the nuclear norm, denoted as ‖.‖∗, is the largest convex function below the
rank function. The nuclear norm of a matrix X ∈ IRn1×n2 is defined as

‖X‖∗ =
n∑

i=1

σi(X) with n := min{n1, n2} , (5)
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where σ1(X) � σ2(X) � . . . � σn(X) � 0 are the singular values of X . By
considering the definition of the nuclear norm one sees, that this norm can be
interpreted as the �1 norm of the vector of singular values of X i.e. the �1 norm
of the spectrum. This also shows the close relation to compressed sensing.

By using these relaxations, the problem of separating the low rank component
from a sparse component can be cast into a convex problem, denoted as Principal
Component Pursuit (PCP) problem

minimize
L,E

‖L‖∗ + μ‖E‖1 subject to M = L+ E . (6)

Also note, that problem (6) can be recast as a semidefinite program (SDP).
The method termed Robust Principal Component Analysis (RPCA) performs
well in practice and provides the low rank solution, even if up to a third of the
observations are grossly corrupted.

Inspired by the RPCA [7], we formulate a holistic matching term for a multi-
view stereo model, where we warp images in a way to minimize the rank of the
set of warped images. The proposed model assumes that the different images
provide a certain amount of overlap, which is particularly true for light field
data. Thus, we will demonstrate it on this type of data, but the proposed model
is not limited to the light field setting.

It is worth mentioning, that similar ideas have been used by Yigang Peng et
al . [26] to calculate misalignments of a set of images. However, their method
is limited to one global domain transformation, i.e. the misalignments between
images are modeled as transformations from a finite dimensional group, that has
a parametric representation (e.g. the similarity group SE(2)× IR+, the 2D affine
group Aff(2), or the planar homography group GL(3)).

Contribution

The contribution of this paper is threefold. First, we propose a novel variational
multi-view stereo model based on low rank minimization, where the main contri-
bution relies in the theoretical novelty of the RPCA matching term, which can
be interpreted as an all vs. all matching term. Second, we present an extension
of the proposed model to simultaneous image super-resolution on all low rank
components. Third, we show how to apply the model to the light field setting,
yielding the RPCA light field model. We then provide a simple optimization
scheme, which is describe in detail in Section 3. Final we also present qualitative
and quantitative experiments on synthetic and real-world data in Section 4.

2 RPCA Matching

In this section we describe the proposed model, which includes the novel RPCA
matching term. The main idea of the model is to globally measure how well a set
of warped images is aligned, i.e. our model warps images of different viewpoints
to a predefined warping center in a way, such that the set of warped images
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can be split up into a low rank component and into an sparse component. In
mathematical terms the combinatorial problem, which we want to solve can be
formulated as follows

minimize
L,S,u

μ rank(L) + λ‖S‖0 +R(u) (7)

subject to I(u) = L+ S

where λ, μ > 0 are modeling parameters, and R(u) denotes a convex regular-
ization term on the disparity variables u. Moreover, I(u) ∈ IRM×mn denotes the
set of M warped images of size m × n, where each row of I(u) represents one
image. The main idea of the proposed model is to estimate a piecewise smooth
disparity map, that allows to warp the input images in such a way, that the set
of warped images I(u) can be split up into a low rank component L and into a
sparse outlier component S. Unfortunately, with the �0 minimization on S and
on the spectrum of L the problem is NP-hard. Note, that the rank of L equals
the �0 norm of the spectrum of L.

Now we follow RPCA [7] and consider a convex relaxation of the above prob-
lem, i.e. we will relax the sparsity assumption of S with the �1 norm, and we
will model the low rank constraint of L with the nuclear norm. This leads to the
following problem

minimize
u,L,S

μ‖L‖∗ + λ‖S‖1 +R(u) (8)

subject to I(u) = L+ S

By eliminating the constraint we then obtain

minimize
u,L

μ‖L‖∗ + λ‖L− I(u)‖1 +R(u) . (9)

Compared to models with a pointwise or local data fidelity term, this model now
globally measures how well the warped images match with each other, i.e. all
views are considered equivalently important, or in other words this can be seen
as an all vs. all matching. Moreover it adjusts the warped views to cope with
sparse outliers which are present due to e.g. occlusion, specularity, or pixel errors.
Also note that we do not define the matching between different views explicitly.
The proposed model uses an implicit all vs. all matching via the nuclear norm.
Problem (9) can also be interpreted as stereo reconstruction with simultaneously
denoising the warped images. So it can be seen as solving jointly the stereo and
denoising problem. In order to obtain a convex model we will use first order
Taylor approximations to linearize the warped images in a final step.

2.1 Application to Light Field Imaging

In the case of light field data, we will warp so-called sub-aperture images to
a predefined warping center, e.g. the center view of the light field. Assuming
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an ideal plenoptic 1.0 camera and using a similar notation as in [16], the sub-
aperture images are defined as follows (cf . Figure 1(c))

Ĩi(ũ) :=
(
L̂
(
p− ũ(p)

ϕi

R
,ϕi

))

p∈Ω̂
, with 1 � i � M, (10)

where M denotes the number of different sub-aperture images, ϕi is the direc-
tional offset of the ith sub-aperture image, Ω̂ := {(x, y)T ∈ IN2

0 |x < n, y < m}
is the discrete image grid, and ũ : Ω̂ → IR is the disparity between the warping
center and images with a predefined directional offset distance R. By reshaping
the images Ĩi(ũ) as row vectors, one can define the matrix I(u) ∈ IRM×mn, where
each row represents one sup-aperture image as defined in (10). For this purpose
we define a vectorization operator vec(.), which transforms an image in matrix
representation to a column vector in row major representation, i.e. that the ith

row of I(u) in problem (9) is now equivalent to vec(Ĩi(ũ))
T.

In order to obtain a convex model we have to linearize the warped images.
Therefore, we use a first order Taylor approximation for each sub-aperture image
at the position ũ0

L̂
(
p− ũ0(p)

ϕi

R
,ϕi

)
+ (ũ(p)− ũ0(p))

‖ϕi‖
R

∇− ϕi
‖ϕi‖

L̂
(
p− ũ0(p)

ϕi

R
,ϕi

)
, (11)

where ∇v denotes the directional derivatives with direction [v,0]. To simplify
notation we define Ãi and B̃i ∈ IRm×n similar as in [16]

Ãi :=

(‖ϕi‖
R

∇− ϕi
‖ϕi‖

L
(
p− ũ0(p)

ϕi

R
,ϕi

))

p∈Ω̂

, (12)

B̃i :=
(
L
(
p− ũ0(p)

ϕi

R
,ϕi

))

p∈Ω̂
. (13)

Now we set bi = vec(B̃i) and Ai = diag(vec(Ãi)), which allows to rewrite prob-
lem (9) as the following convex optimization problem

minimize
u,L

μ‖L‖∗ + λ
M∑

i=1

‖lTi − bi − Ai(u − u0)‖1 +R(u) , (14)

where li denotes the ith row of L, u = vec(ũ) and u0 = vec(ũ0). To obtain a
reliable solution we use the well justified assumption, that the disparity map u
should be piecewise smooth. We model this assumption by defining R(u) to be
the Total Generalized Variation (TGV) [5], which is a generalization of the well
known Total Variation (TV). To be more specific, TGV of second order (TGV2)
will be our choice for the regularization term. Note, that TGV2 favors piecewise
linear solutions, whereas e.g. TV favors piecewise constant solutions. This means
that the regularization term can be defined as follows

R(u) := min
w

α1‖∇u− w‖M + α0‖∇w‖M , (15)

where ‖.‖M denotes a Radon norm for vector-valued and matrix-valued Radon
measures, and α0, α1 > 0 are weighting parameters. Also note, that ∇ and ∇
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Algorithm 1. Primal-Dual Algorithm for the RPCA Light Field Depth Model

Require: Choose σ > 0 and τ > 0, s.t. τσ = 1. Set Σ−1
pu , Σ−1

pw , T−1
u , and T−1

w as
explained in the text, n = 0, and the rest arbitrary.

while n < iter do

// Dual step
pn+1
u ← P{‖.‖∞�1}

(
pnu + σΣ−1

pu α1 (∇ūn − w̄n)
)

pn+1
w ← P{‖.‖∞�1}

(
pnw + σΣ−1

pwα0 (∇w̄n)
)

for 1 � i � M do
pn+1
i ← P{‖.‖∞�1}

(
pni + σ

2
λ
(
DB(l̄ni )

T − bi − Ai(ū
n − u0)

))

end for

// Primal step
un+1 ← un − τ T−1

u

(
α1∇Tpn+1

u − λ
∑

i Aip
n+1
i

)

wn+1 ← wn − τ T−1
w

(
α0∇Tpn+1

w − α1p
n+1
u

)

for 1 � i � M do
ln+1
i ← lni − τ

λ2 λB
TDTpn+1

i

end for
Ln+1 ← (id+ τμ

λ2 ∂G)−1
(
Ln+1

)

ūn+1 ← 2un+1 − un

w̄n+1 ← 2wn+1 −wn

L̄n+1 ← 2Ln+1 − Ln

// Iterate
n← n+ 1

end while

denote finite difference operators, where the first one calculates the finite differ-
ences in x and y direction, and the second one is defined as ∇ := diag(∇,∇).

We further extend problem (14) to simultaneous super-resolution on all low
rank sub-aperture images lTi . Following the work by Unger et al . [34] we in-
troduce linear operators for downsampling and blurring, denoted as D and B,
respectively.

minimize
u,L

μ‖L‖∗ + λ

M∑

i=1

‖DBlTi − bi −Ai(u− u0)‖1 +R(u) , (16)

where the low rank component L is now computed at a higher resolution.

3 Optimization

In this section we describe how to optimize the proposed RPCA light field
model (16). We start with reformulating the problem into a saddle-point
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formulation. Therefore we introduce the dual variables pu, pw, and pi (1 �
i � M) and obtain the following formulation

min
u,w,L

max
‖pu‖∞ � 1
‖pw‖∞ � 1
‖pi‖∞ � 1

{
μ ‖L‖∗ + λ

M∑

i=1

〈
DBlTi − bi −Ai(u− u0), pi

〉
+ (17)

α1〈∇u− w, pu〉+ α0 〈∇w, pw〉
}
,

where 〈., .〉 denotes the standard inner product. This problem can be further
rewritten into the following standard form

min
x̂∈X

max
ŷ∈Y

〈Kx̂, ŷ〉+G(x̂)− F ∗(ŷ) , (18)

with

K =

⎡

⎢⎢⎢⎢⎢⎣

α1∇ −α1 id 0 . . . 0
0 α0∇ 0 . . . 0

−λA1 0 λDB . . . 0
...

...
. . .

−λAM 0 0 λDB

⎤

⎥⎥⎥⎥⎥⎦
, x̂ =

⎡

⎢⎢⎢⎢⎢⎣

u
w
lT1
...
lTM

⎤

⎥⎥⎥⎥⎥⎦
, ŷ =

⎡

⎢⎢⎢⎢⎢⎣

pu
pw
p1
...

pM

⎤

⎥⎥⎥⎥⎥⎦
, (19)

where id denotes the identity operator. Furthermore, G(x̂) = μ‖L‖∗ and F ∗(ŷ)
contains the remaining terms in (17). Also note that G(x̂) only operates on
the variable L, thus we will redefine it to consider only those variables, i.e.
G(L) = ‖L‖∗. A problem of the form (18) can then be solved using the first-order
primal dual algorithm proposed by Chambolle et al . [9]. Furthermore, we also use
positive-definite preconditioning matrices Σ and T to improve the convergence
speed of the algorithm as proposed by Pock et al . [29]. Here T represents a diag-
onal matrix of the same size as K, where each diagonal element represents the
squared �2 norm of the corresponding column of K. Σ is calculated in a similar
way, but now each diagonal element represents the �0 norm of the corresponding
row in K. The final update scheme is shown in Algorithm 1, where Σpu and Σpw

represent blockdiagonal matrices of Σ that correspond to the dual variables pu
and pw, respectively. Likewise Tu and Tw represent the according blockdiagonal
matrices of T for u and w, respectively. Further, P{‖.‖∞�1} denotes the reprojec-
tion operator, w.r.t. the �∞ norm denoted as ‖.‖∞, and (id+τ∂G)−1(L) is the
proximity operator of the function G(L), which can be calculated by minimizing
the following problem.

(id+τ∂G)−1(L) = argmin
X

(
‖X‖∗ + 1

2τ
‖X − L‖2F

)
(20)

Problem (20) can be solved using spectral soft thresholding. In order to do so
we first calculate the singular value decomposition (SVD) of L, i.e.

L = UΣ̃V T, with Σ̃ = diag
(
σ1(L), . . . , σrank(L)(L)

)
, (21)
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and then apply the soft thresholding operation on each singular value, which
yields

(id+τ∂G)−1(L) = U diag
(
(σ1(L)− τ)+ , . . . ,

(
σrank(L)(L)− τ

)
+

)
V T , (22)

where (x)+ := max{0, x}.
This concludes the optimization scheme, which solves problem (14). In a final

step, we embed Algorithm 1 into a coarse to fine warping scheme [6], which is
necessary because of the linearization involved in (11). Moreover, it is also worth
to mention, that one can use a structure texture decomposition [39] on the input
images to cope with illumination changes.

4 Experimental Results

In this section we will evaluate the proposed algorithm on synthetic and real
world scenes. For the synthetic evaluation we use the Light Field Benchmark
Dataset (LFBD) [38]. This dataset contains synthetically generated light fields,
where each light field is represented by 81 sub-aperture images arranged on a
regular 9× 9 grid. The light fields are rendered using Blender1, and the dataset
additionally provides a ground truth depth for each sub-aperture image.

We also present a qualitative real world evaluation for light fields from the
Stanford Light Field Archive. The light fields in this dataset are captured using
a multi-camera array [40] and contain 289 views on a 17× 17 grid. Moreover, we
also present some qualitative real-world results for light fields captured with the
consumer Lytro camera2. The Lytro camera captures light fields with a spatial
resolution of 380× 330 microlenses and a directional resolution of 10× 10 pixels
per microlens.

4.1 Synthetic Evaluation

We start with the synthetic evaluation. Here we compare our approach to the
work by Heber et al . [16]. They proposed a variational model with a pointwise
�1 data term combined with an image driven TGV regularization term (ITGV),
i.e. the prior is connected with the image content via an anisotropic diffusion
tensor. Moreover, their model selects a predefined reference view (in this case
this is the center view) and matches all the other views against the reference
view. Thus, contrary to the proposed model, it only uses a subset of all possible
matching combinations between the different views, and the views are also not
equal important, i.e. the model encodes basically a one vs. all matching.

For the experiments we define the warping center to be the center view of
the light field and we extract sub-aperture images with a predefined baseline
to the warping center. More precisely, we set ϕ1 = 0 (center view), and define
the vectors ϕi for 2 � i � 9 in (10) such that they all have the same length R,

1 http://www.blender.org/
2 https://www.lytro.com/

http://www.blender.org/
https://www.lytro.com/
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Fig. 2. Qualitative and quantitative results for the buddha scene of the Light Field
Benchmark Dataset (LFBD). The figure shows the center view of the light field, followed
by the color coded depth maps and error maps for the method proposed by Heber et
al . [16] as well as for the proposed method. The error maps show in green (red) the
pixels with a relative depth error of less (more) than 0.2%. Note that the proposed
method is much more accurate, especially at occlusion boundaries, due to the robust
all vs. all matching term.

and such that their directions are evenly distributed. Also note, that we use the
same baseline R as in [16], which results in the same experimental setting as in
[16], and thus allows to draw a comparison. Also note, that we do not use the
extension for super-resoluation in this case, i.e. D = B = id.

Figure 2 shows an example depth map result for the method proposed in [16]
and for the proposed RPCA light field model. By considering the closeup views
of the depth map results, one sees that the proposed method achieves a higher
accuracy, especially at occlusion boundaries. Figure 2 also presents a compar-
isons in terms of the relative depth error. We highlighted the regions with a
relative depth error larger (smaller) than 0.2% in red (green). Note, that an
evaluation based on a smaller relative depth error than 0.2% is not meaningful
on this daterset, due to the fact that the depth discretization of the provided
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Table 1. Quantitative results for the Light Field Benchmark Dataset (LFBD). The
table shows the percentage of pixels with a relative depth error of more than 0.2% for
the different synthetic scenes. Note, that the results for the method proposed in [16]
are taken from the according paper. The results for the method proposed by Wanner et
al . [36] are obtained by running the accompanying source-code.

buddha buddha2 mona papillon stillLife horses medieval

Wanner et al . [36] 7.28 26.55 15.08 16.64 4.50 16.44 24.33
Heber et al . [16] 8.37 15.05 12.90 8.79 6.33 16.83 11.09
proposed model 5.03 11.52 12.75 8.00 4.20 11.78 11.09

ground truth is too low. We again observe that the proposed method is more
robust to certain outliers, e.g. due to occlusion or specularity. In the case of the
buddha scene shown in Figure 2 the proposed model provides a solution, where
only 5.03% of the pixels have a relative depth error larger than 0.2%, whereas
the one vs. all data-fidelity term used in the method by Heber et al . [16] creates
a solution with a significantly larger error region of 8.37%. A similar behavior
can be observed for the other scenes in the dataset, as can be seen in Table 1.
Furthermore, Table 1 also shows results for the method proposed by Wanner et
al . [36], which calculates a globally consistent depth labeling. Note that this
comparison might not be very fair, because the results by Wanner et al . are
obtained by performing a complete grid-search to find the best parameter set-
tings, whereas the other methods are only hand-tuned. However, the results show
that the method proposed in [16] already outperforms the method by Wanner et
al . [36] on several scenes by quite a bit. Finally, the proposed model outperforms
both competitors on the complete dataset, but the better performance comes at
the price of a higher computational time of several minutes. It is also worth
to mention, that the method proposed by Tao et al . [32] fails on this dataset
completely, as also reported in their paper.

Super-resolution

Next we present super-resolution results for the extended RPCA light field
model (16). We define the downsampling operator D and the blurring operator
B as proposed by Unger et al . [34]. Figure 3 shows closeup views of the obtained
upsampling results for two scenes of the LFBD. Here we used 21 sub-aperture
images for the reconstruction, where the low rank components of the warped
sub-aperture images have been magnified by a factor of three. By considering
the super-resolved results shown in Figure 3 one recognizes a clear increase in
sharpness.

4.2 Real World Experiments

Now we continue with the real-world evaluation. Figure 4 present a qualitative
comparison to the method proposed by Wanner et al . [36]. Here we use a light
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Fig. 3. Qualitative results of the extended version of the RPCA light field model (cf .
(16)) for the buddha2 and stillLife scene of the Light Field Benchmark Dataset (LFBD).
The figure shows closeup views of the nearest neighbor interpolated center view, as well
as closeup views of one super-resolved low rank component, where the super-resolved
results provide increased sharpness.
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center view Wanner et al . [36] proposed model

Fig. 4. Qualitative comparison for a light field from the Stanford Light Field Archive.
The figure shows from left to right, the center view of the light field, the results for
the method proposed by Wanner et al . [36] (image is taken from their paper) and the
result for the proposed RPCA light field model.
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Fig. 5. Qualitative results, for light fields captured with a Lytro camera. The figure
shows color coded disparity maps as well as the according center views of the light
field.

field from the Stanford Light Field Archive as input for our algorithm, where
we extract 17 sub-aperture images with evenly spread directional offsets ϕi (1 �
i � 17). Also note, that the scene is quite challenging, due to reflective and
specular surface. By comparing the results one sees that the proposed method
allows to create a solution with significantly more details and fewer outliers, by
approximately the same amount of regularization. The reason is on one side the
continuous formulation of the proposed model, and on the other side the robust
implicit all vs. all matching term.

In Figure 5 we also present results for light fields captured with the Lytro
camera. Therefore, we extract 17 sub-aperture images from the raw images cap-
tured with such a camera. Note, that these sub-aperture images have a quite low
resolution of 380× 330, and include a significant amount of noise and outliers.
Nevertheless, the proposed method is capable to create piecewise smooth depth
maps, with clear depth discontinuities. Also note, that the proposed method per-
forms particularly well in this case, due to the implicit denoising of the warped
views.

5 Conclusion

In this paper we proposed a global matching term for a multi-view stereo model,
which has not been considered before for this task. We formulated our model to
perform a low rank minimization on the stack of warped images, which can also
be interpreted as an all vs. all matching between the images in the stack. We
showed how to relax the according combinatorial problem to a convex optimiza-
tion problem, by using a nuclear norm and �1 norm relaxation. The proposed
variational model assumes a certain amount of overlap in the warped views. Thus
we tested it on light field data, where this assumption is obviously fulfilled. We
also want to point out, that the proposed RPCA matching term is not limited
to the light field setting. In general such a matching term is well suited for all
kind of problems with highly redundant input data.

Finally we want to mention, that the proposed model can still be further
refined by performing additionally iterative �1 reweighting. Such a refinement
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procedure can be applied on the �1 term in problem (14) [8], as well as on the
nuclear norm [27], to further increase the accuracy especially at depth disconti-
nuities. Implementing and evaluating such a refinement is left as future work.
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