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Abstract. This paper introduces a new approach, called reverse train-
ing, to efficiently extend binary classifiers for the task of multi-class image
set classification. Unlike existing binary to multi-class extension strate-
gies, which require multiple binary classifiers, the proposed approach is
very efficient since it trains a single binary classifier to optimally discrim-
inate the class of the query image set from all others. For this purpose,
the classifier is trained with the images of the query set (labelled positive)
and a randomly sampled subset of the training data (labelled negative).
The trained classifier is then evaluated on rest of the training images. The
class of these images with their largest percentage classified as positive is
predicted as the class of the query image set. The confidence level of the
prediction is also computed and integrated into the proposed approach
to further enhance its robustness and accuracy. Extensive experiments
and comparisons with existing methods show that the proposed approach
achieves state of the art performance for face and object recognition on
a number of datasets.
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1 Introduction

Face or object recognition is traditionally treated as a single image based classi-
fication problem, that is, given a single query image, we are required to find its
best match in a gallery of images. However, in many real-world applications (e.g.
recognition from surveillance videos, multi-view camera networks and personal
albums), multiple images of a person or an object are readily available. Recog-
nition from these multiple images is studied under the framework of image set
classification. Classification from image sets (as opposed to single image based
classification) is more promising as it aims to effectively handle a wide range of
appearance variations, which are commonly present within images of the same
object in an image set. These variations can be caused by changing lighting con-
ditions, different view points, non-rigid deformations and occlusions [5, 12, 17].
For these reasons, image set classification has attained significant research at-
tention in recent years [3, 8, 9, 11, 14, 20, 25–27,29, 30].

Although image set classification provides a plentitude of data of the same
object under different variations, it simultaneously poses many challenges to
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make effective use of this data. The major focus of the existing image set classi-
fication methods has therefore been to find a suitable representation which can
effectively model the appearance variations within images of an image set. For
example, the methods in [10,14,19,25,27,28] use subspaces to model image sets,
and set representative exemplars (generated from affine hull/convex hull) are
used in [3,11] for image set representations. The mean of the set images is used
for set representation in [11, 18, 20] and image sets are represented as a point
on a manifold geometry in [8, 26]. The main motivation behind a single entity
representation of image sets (e.g. subspace, exemplar image, mean, a point on
the manifold) is to achieve compactness and computational efficiency. However,
these representations do not necessarily encode all of the information contained
in the images of the image set. In this paper, we take a different approach and
avoid representing an image set by a single entity. We retain the images of the
image set in their original form and instead design an efficient classification
framework to effectively deal with the plentitude of the data involved.

The proposed image set classification framework is built on well-developed
learning algorithms. Although, these algorithms are originally designed for clas-
sification from single images, they can be adapted for image set classification by
first individually classifying images of a query set and then devising an appropri-
ate voting strategy (see Sec 4.2). However, due to the plentitude of data involved
in the case of image set classification, a straight forward extension of these algo-
rithms from single image based to image set classification would be computation-
ally burdensome. Specifically, since most of the popular learning algorithms (e.g.
Support Vector Machines, AdaBoost, regression, logistic regression and decision
tree algorithms) are inherently binary classifiers, their extension to a multi-class
classification problem (such as image set classification) requires training of mul-
tiple binary classifiers. One-vs-one and one-vs-rest are the two most commonly

adapted strategies for this purpose. For a k-class classification problem, k(k−1)
2

and k binary classifiers are respectively trained for one-vs-one and one-vs-rest.
Although, one-vs-rest trains comparatively fewer classifiers, it requires images
from all classes to train each binary classifier. Adapting either of the well-known
one-vs-one or one-vs-rest strategies for image set classification would therefore
require a lot of computational effort, since either the number of images involved
is quite large or a fairly large number of binary classifiers has to be trained.

The framework proposed in this paper trains a very few number of binary
classifiers (mostly one or a maximum of five) on a very small fraction of images
for the task of multi-class image set classification. The framework (see block
diagram in Fig 1) first splits training images from all classes into two sets D1

and D2. The division is done such that D1 contains uniformly randomly sampled
images from all classes with the total number of images in D1 being equal to
the number of images of the query image set. Next, a linear binary classifier is
trained to optimally separate images of the query set from D1. Note that D1 has
some images which belong to the class of the query set. However, since these
images are very few in number, the classifier treats them as outliers. The trained
classifier therefore learns to discriminate the class of the query set from all other
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Fig. 1. Block diagram of the proposed method. Training data is divided into two sets
D1 and D2. D1 contains uniformly randomly sampled images from all classes such that
the size of D1 is the same as the size of the query image set Xq. A binary classifier
is trained, with images of Xq (labeled +1) and D1 (labeled −1). The classifier is then
tested on the images of D2. Knowing the class labels of images of D2 which are classified
+1, we formulate a histogram (see Eq. 1), which is then used to decide about the class
of Xq. See a toy example in Fig 2 for illustration.

classes. Next, the learned classifier is evaluated on the images of D2 (D2 contains
all training images except the ones in D1). The images of D2 which are classified
to belong to the images of the query set are of our interest. Knowing the original
class labels of these training images, we formulate a histogram which is then
used to decide about the class of the query set. A complete detailed description
of the proposed framework is presented in Sec 3 along with an illustration using
a toy example in Fig. 2.

The main strengths and contributions of this paper are as follows. 1) A new
concept is introduced to extend any binary classifier for multi-class image set
classification. Compared with the existing binary to multi-class strategies (e.g.
one-vs-one, one-vs-rest), the proposed approach is computationally very efficient.
It only requires training of a fixed number of binary classifiers (1 to 5 compared

with k or k(k−1)
2 ) using a small number of images. 2) Along with the predicted

class label of the query image set, the proposed method gives a confidence level
of its prediction. This information is very useful and can be used as an indication
of potential miss-classification. Knowing pre-hand about a query image set being
miss-classified makes it possible to use another binary classifier. The proposed
method can therefore accommodate the fusion of information from different types
of binary classifiers before declaring the final class label of the query image set.
3) The proposed method is easily scalable to new classes. Unlike many existing
image set classification methods, the computational complexity of the proposed
method is not affected much with the addition of new classes in the gallery (see
Sec. 4.2). Many of the existing methods would require retraining on the complete
dataset (when new classes are enrolled), whereas, the proposed method requires
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no additional training and can efficiently discriminate the query class from other
classes using a fixed number of binary classifiers.

2 Related Work

The major challenge addressed by the existing research on image set classifica-
tion has been to find a representation which can effectively model the appearance
variations within images of an image set. Two different approaches have been
adopted for this purpose. The first approach models the variations within images
of a set by a statistical distribution and uses a measure such as KL-divergence to
compare two sets. Methods based on this approach are called parametric model
based methods [2,22]. One major limitation of these methods is their reliance on
a very strong assumption about the existence of a statistical correlation between
image sets. The second approach for image set representation avoids such as-
sumptions. The methods based on this approach are called non-parametric model
based methods [3,8,9,11,14,20,23,25–27,29,30] and have shown to give a supe-
rior performance compared with the parametric model based methods. A brief
overview of the non-parametric model based methods is given below.

Subspaces have been very commonly used by the non-parametric methods
to represent image sets. Examples include image sets represented by linear
subspaces [14, 28], orthogonal subspaces [19] and a combination of linear sub-
spaces [25,27]. Principal angles are then used to compare subspaces. A drawback
of these methods is that they represent image sets of different sizes by a sub-
space of the same dimensions. These methods cannot therefore uniformly capture
the critical information from image sets with different set lengths. Specifically,
for sets with a larger number of images and diverse appearance variations, the
subspace-based methods cannot accommodate all the information contained in
the images. Image sets can also be represented by their geometric structures
i.e. affine hull or convex hull models. For example, Affine Hull Image Set Dis-
tance (AHISD) [3] and Sparse Approximated Nearest Points (SANP) [11] use
affine hull, whereas Convex Hull Image Set Distance (CHISD) [3] uses the con-
vex hull of the images to model an image set. The set-to-set distance is then
determined in terms of the Euclidean distance between the set representative
exemplars which are generated from the corresponding geometric structures. Al-
though these methods have shown to produce a promising performance, they
are prone to outliers and are computationally expensive (since they require a
direct one-one comparison of the query set with all sets in the gallery). Some of
the non-parametric model based methods represent an image set as a point on
a certain manifold geometry e.g. Grassmannian manifold [8, 25] and Lie group
of Riemannian manifold [26]. The mean of the set images is also used for image
set representation in [11, 18, 20].

In this paper, we argue that a single entity (e.g. a mean image, a subspace,
a point on a manifold, an exemplar generated from a geometric structure) for
image set representation can be sub-optimal, insufficient and could result in
the loss of information from the images of the set. For example, for image sets
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represented by a subspace, the amount of the retained information depends on
the selected dimensions of the subspace. In the case of image sets represented by
their mean images, the mean image could be visually very different from the rest
of the images in the set. For illustration purposes, consider taking the mean of
two face images from the right and left profile views. The mean image would be
blurred and contain two superimposed faces. Similarly, generating representative
exemplars from geometric structures could result in exemplars which are practi-
cally non-existent and are very different from the original images of the set. We
therefore take an altogether different approach which does not require any image
set representation. Instead the images are retained in their original form and a
novel classification concept is proposed which incorporates well-developed learn-
ing algorithms to optimally discriminate the class of the query image set from
all other classes. A detailed description of the proposed framework is presented
next.

3 Proposed Framework

Problem Description: For k classes of a training data, we are given k image
sets X1,X2, · · · Xk and their corresponding class labels yc ∈ [1, 2, · · ·k]. An image
set Xc = {x(t)|y(t) = c; t = 1, 2, · · ·Nc} contains all Nc training images x(t)

belonging to class c. Note that for training data with multiple image sets per
class, we combine images from all sets into a single set. During classification, we

are given a query image set Xq = {x(t)}Nq

t=1, and the task is to find the class label
yq of Xq.

3.1 Image Set Classification Algorithm

The proposed image set classification algorithm is summarized in Alg 1. The
details are presented below.

1. Images from all training sets are gathered into a single setD={X1,X2, · · · Xk}.
Next, D is divided into two sets: D1 and D2. Let D1c be a randomly sampled
subset of Xc with a set size ND1c , where ND1c =

Nq

k rounded to the near-
est integer, then the set D1 is formed by the union

⋃
c D1c, c = 1, 2, · · · k.

D2 is achieved by D2 = D \ D1. The class label information of images in
D1 and D2 is stored in sets yD1 = {y(t) ∈ [1, 2, · · · k], t = 1, 2, · · ·ND1} and
yD2 = {y(t) ∈ [1, 2, · · ·k], t = 1, 2, · · ·ND2} respectively.

2. Next, we train a binary classifier C1. Training is done on the images of Xq

and D1. All images in Xq are labeled +1 while the images in D1 are labeled
−1. Since images from all classes are present in D1, the classifier learns to
separate images of Xq from the images of other classes. Note that D1 does
have a small number of images from the same class as of Xq. However, since
these images are very few, the selected binary classifier (see Sec 3.2) treats
them as outliers and learns to discriminate the class of the query image set
from all other classes.
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3. The trained classifier C1 is then tested on the images of D2. The images in
D2 classified as +1 (same as images of Xq) are of interest. Let yD+

2
⊂ yD2

contain the class labels of images of D2 classified +1 by the classifier C1.
4. A normalized frequency histogram h of class labels in yD+

2
is computed. The

cth value of the histogram, hc, is given by the percentage of the images of
class c in D2 which are classified +1. Formally, hc is given by the ratio of
the number of images of D2 belonging to class c and classified as +1 to the
total number of images of D2 belonging to class c. This is given by,

hc =

∑

y(t)∈yD+
2

δc(y
(t))

∑

y(t)∈yD2

δc(y(t))
,where

δc(y
(t)) =

{
1, y(t) = c

0, otherwise.

(1)

5. A class in D2 with most of its images classified as +1 can be predicted as
the class of Xq. The class label yq of Xq is therefore given by,

yq = argmax
c

hc (2)

We can also get a confidence level d of our prediction of yq. This is defined
in terms of the difference between the maximum and the second maximum
values of the histogram h,

d = max
c∈{1···k}

hc − max
c∈{1···k}\yq

hc. (3)

We are more confident about our prediction if the predicted class is a ‘clear
winner’. In the case of closely competing classes, the confidence level of the
prediction will be low.

6. We declare the class label of Xq (as in Eq. 2) provided the confidence d is
greater than a certain threshold. The value of the threshold is determined
empirically by performing experiments on a cross validation set. Otherwise,
if the confidence level d is less than the threshold, steps 1-5 are repeated, for
different random samplings of images into D1 and D2. After every iteration,
a mean histogram h̄ is computed using the histogram of that iteration and
the previous iterations. The confidence level d is also computed after every
iteration using,

d = max
c∈{1···k}

h̄c − max
c∈{1···k}\yq

h̄c. (4)

Iterations are stopped if the confidence level d becomes greater than the
threshold or if a maximum of five iterations have already been done. Doing
more iterations enhances the robustness of the method (since different images
are selected into D1 and D2 for every iteration) but at the cost of increased
computational effort. Our experiments revealed that a maximum of five it-
erations is a good trade-off between the robustness and the computational
efficiency.
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Algorithm 1. The proposed Image Set Classification algorithm

Input: Training image sets X1,X2, · · · Xk; Query image set Xq; threshold
1: D ← {X1,X2, · · · Xk} � D: All training images
2: D1 ← ⋃

cD1c where D1c is a random subset of Xc

3: D2 ← D \ D1 � D divided into D1 and D2

4: C1 ← train(D1,Xq) � Xq labeled +1 and D1 labeled −1
5: lD2 ← test(C1,D2) � Test D2 on classifier C1

6: yD+
2
← lD2 , yD2 � labels of images of D2 classified +1

7: h← yD+
2
,yD2 � Normalized histogram, see Eq 1

8: d← h � Confidence level, see Eq. 3
9: if d > threshold then
10: yq ← argmaxc hc

11: else
12: repeat � Repeat for different random selections in D1 and D2

13: d, h̄← Repeat Steps 2-8
14: until d ≥ threshold or repeated 5 times
15: if d > th then
16: yq ← argmaxc h̄c

17: else
18: yq ← Repeat for another binary classifier C2

19: end if
20: end if
Output: Label yq of Xq

7. If the confidence level d (see Eq 4) is greater than the threshold, we declare
the class label of Xq as yq = argmaxc h̄c. Otherwise, if the confidence level
is lower than the threshold, declaring the class label would highly likely
result in miss-classification. We therefore seek the opinion of another binary
classifier C2. The procedure is repeated for a different binary classifier C2.
The decision about yq is then made based on the confidence levels of C1 and
C2. The prediction of the more confident classifier is considered as the final
decision. The description about the choice of the binary classifiers C1 and
C2 is given next.

3.2 The Choice of the Binary Classifiers

The proposed framework requires a binary classifier to distinguish between im-
ages of Xq and D1. The choice of the binary classifier should be such that it
should generalize well to unseen data while testing. Moreover, since the binary
classifier is being trained on images of Xq and D1 and some images in D1 have
the same class as of Xq, the binary classifier should treat these images as out-
liers. For these reasons, Support Vector Machine (SVM) with a linear Kernel is
deemed to be an appropriate choice. It is known to show excellent generalization
to unknown test data and can effectively handle outliers.

Two classifiers (C1 and C2) are used by the proposed framework. C1 is the
linear SVM with L2 regularization and L2 loss function, while C2 is the linear
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SVM with L1 regularization and L2 loss function [4]. Specifically, given a set of
training example-label pairs

(
x(t), y(t)

)
, y(t) ∈ {+1,−1}, C1 solves the following

optimization problem,

min
w

1

2
wTw + C

∑

t

(
max

(
0, 1− y(t)wTx(t)

))2

, (5)

while, C2 solves the following optimization problem,

min
w

|w|1 + C
∑

t

(
max

(
0, 1− y(t)wTx(t)

))2

. (6)

Here w is the coefficient vector to be learned and C > 0 is the penalty param-
eter used for regularization. After learning the SVM parameter w, classification
is performed based on the value of wTx(t). Note that the coefficient vector w
learned by the classifier C2 (trained for challenging examples) is sparse. Learning
a sparse w for C2 further enhances the generalization for the challenging cases.

3.3 Illustration with a Toy Example

The proposed image set classification algorithm is illustrated with the help of a
toy example in Fig 2. Let us consider a three class set classification problem in
which we are given three training sets X1, X2, X3 and a query set Xq. The data
points of the training sets and the query set are shown in Fig 2 (a). First, we
form D1 by randomly sampling points from X1, X2 and X3. Fig 2 (b) shows the
datapoints ofD1 and Xq. Next, a linear SVM is trained by labeling the datapoints
of Xq as +1 and D1 as −1. Note that SVM (Fig 2 (c)) ignores the miss-labeled
points (the points of X3 in D1) and treats them as outliers. Finally, we classify
the data points of D2 from the learned SVM boundary. Fig 2 (d) shows that
the SVM labels the points of X3 in D2 as +1. The proposed algorithm therefore
declares the class of X3 to be the class of Xq.

4 Experiments

We evaluate the performance of the proposed method for the task of image set
classification with applications to face and object recognition. For face recogni-
tion, we perform experiments on three video datasets (Honda/UCSD [15], CMU
Mobo [7], YouTube Celebrities [13]) and an RGB-D Kinect dataset (obtained
by combining three Kinect datasets). For object recognition, we use ETH-80
dataset [16]. Below, we first give a brief description of each of these datasets
followed by the adopted experimental configurations. We then present a perfor-
mance comparison of the proposed method with the baseline multi-class classi-
fication strategies (Sec. 4.2). Finally, in Sec. 4.3, we compare our method with
the existing state of the art image set classification methods.
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Fig. 2. Toy example to illustrate the proposed method. Consider a training data with
three classes and the task is to find the class of Xq (a). Data points from three training
image sets X1, X2, X3 and a query image set Xq are shown. (b) Data points from Xq

and D1 (uniformly randomly sampled from X1, X2 and X3) are shown. (c) The learnt
SVM boundary between Xq (labeled +1) and D1 (labeled −1). (d) The data points of
D2 w.r.t. the learnt SVM boundary. Since the points of X3 in D2 lie on the same side
of the boundry as the points of Xq, the proposed method declares Xq to be from X3.
Figure best seen in colour.

4.1 Evaluated Datasets and Experimental Settings

The Honda/UCSD Dataset [15] contains 59 video sequences (with 12 to 645
frames in each video) of 20 subjects. We use Viola and Jones face detection [24]
algorithm to extract faces from video frames. The extracted faces are then resized
to 20×20. For our experiments, we consider each video sequence as an image set
and follow the standard evaluation configuration provided in [15]. Specifically,
20 video sequences are used for training and the remaining 39 sequences are used
for testing. Three separate experiments are performed by considering all frames
of a video as an image set and limiting the total number of frames in an image
set to 50 and 100 (to evaluate the robustness for fewer images in a set). Each
Experiment is repeated 10 times for different random selections of training and
testing image sets.



Reverse Training: An Efficient Approach for Image Set Classification 793

The CMU Mobo (Motion of Body) dataset [7] contains a total of 96 video
sequences of 24 subjects walking on a treadmill. The faces from the videos are
extracted using [24] and resized to 40× 40. Similar to [11, 26], we consider each
video as an image set and use one set per subject for training and the remaining
sets for testing. To achieve a consistency, experiments are repeated ten times for
different training and testing sets.

YouTube Celebrities [13] dataset contains 1910 videos of 47 celebrities. The
dataset is collected from YouTube and the videos are acquired under real-life
scenarios. The faces in the dataset therefore exhibit a wide range of diversity and
appearance variations in the form of changing illumination conditions, different
head pose rotations and expression variations. Since the resolution of the face
images is very low, face detection by [24] fails for a significant number of frames
for this dataset. We therefore use tracking [21] to extract faces. Specifically,
knowing the location of the face window in the first frame (provided with the
dataset), we use the method of Ross et al. [21] to track the face region in the
subsequent frames. The extracted face region is then resized to 30×30. In order to
perform experiments, we treat the faces acquired from each video as an image set
and follow the five fold cross validation experimental setup similar to [11,25–27].
The complete dataset is divided into five equal folds with minimal overlap. Each
fold has nine image sets per subject, three of which are used for training and the
remaining six are used for testing.

Composite Kinect Dataset is achieved by combining three distinct Kinect
datasets: CurtinFaces [17], Biwi Kinect [5] and an in-house dataset acquired in
our laboratory. The number of subjects in each of these datasets is 52 (5000
RGB-D images), 20 (15,000 RGB-D images) and 48 (15000 RGB-D images)
respectively. The random forrest regression based classifier of [6] is used to detect
faces from the Kinect acquired images. The images in the composite dataset
have a large range of variations in the form of changing illumination conditions,
head pose rotations, expression deformations, sunglass disguise, and occlusions
by hand. For performance evaluation, we randomly divide RGB-D images of
each subject into five uniform folds. Considering each fold as an image set, we
select one set for training and the remaining sets for testing. The experiments
are repeated five times for different selections of training and testing sets.

ETH-80 Object Dataset contains images of eight object categories. These
include cars, cows, apples, dogs, cups, horses, pears and tomatoes. Each object
category is further divided into ten subcategories such as different brands of
cars or different breeds of dogs. Each subcategory contains images under 41
orientations. For our experiments, we use the 128× 128 cropped images [1] and
resize them to 32 × 32. We follow an experimental setup similar to [14, 25, 26].
Images of an object in a subcategory are considered as an image set. For each
object, five subcategories are randomly selected for training and the remaining
five are used for testing. 10 runs of experiments are performed for different
random selections of the training and testing sets.
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Table 1. Performance Comparison with the baseline methods

Methods Honda Mobo YouTube Kinect ETH

one-vs-one 92.1 ± 2.2 94.7± 2.0 67.7 ± 4.0 94.3 ± 3.5 96.2 ± 2.9
one-vs-rest 94.6 ± 1.9 96.7± 1.6 68.4 ± 4.2 94.6 ± 3.3 97.6 ± 1.5
This Paper 100.0± 0.0 97.8± 0.7 74.1± 3.5 98.1± 1.9 95.5± 2.0

Average identification rates of our method and two well-known multi-class clas-
sification strategies. The proposed method achieves good performance on all five
datasets. See Table 2 for a comparison of the computational complexity.

4.2 Comparison with the Baseline Methods

Linear SVM based one-vs-one and one-vs-rest multi-class classification strategies
are used as baseline methods for comparison. Note that these baseline methods
are suitable for classification from single images. For image set classification, we
first individually classify every image of the query image set and then use major-
ity voting to decide about the class of the query image set. Experimental results
in terms of average identification rates and standard deviations on all datasets
are presented in Table 1. The results presented for Honda/UCSD dataset are
only for full-lengths of videos considered as image sets. The results show that,
amongst the compared baseline multi-class classification strategies, one-vs-rest
performs slightly better than one-vs-one.

Table 2. Complexity Analysis

Method Total binary classifiers Images to train each classifier

One-vs-one k(k−1)
2

{1081} 2Nc {600}
One-vs-rest k {47}

k∑

c=1

Nc {14000}
This Paper 1− 5 2Nq {200}

The proposed method trains just few binary classifiers and the num-
ber of images used for training is very small. The typical parameters
values for YouTube Celebrities dataset are given in brackets.

Table 2 presents a comparison of the computational complexity in terms of
the required number of binary classifiers and the number of images used to

train each of these classifiers. One-vs-one trains k(k−1)
2 binary classifiers and uses

images from two classes to train each classifier. Although the number of classifiers

trained for one-vs-rest are comparatively less (k compared with k(k−1)
2 ), the

number of images used to train each binary classifier is quite large (all images of
the dataset are used). In comparison, our proposed method trains a few binary
classifier (a maximum of five for the challenging cases) and the number of images
used for training is also small.
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Table 3. Performance Comparison on Honda/UCSD dataset

MSM DCC MMD MDA AHISD CHISD

All 88.2± 3.8 92.5 ± 2.2 92.0 ± 2.2 94.3± 3.3 91.2 ± 1.7 93.6± 1.6
100 85.6± 4.3 89.2 ± 2.4 85.5 ± 2.1 91.7± 1.6 90.7 ± 3.2 91.0± 1.7

50 83.0± 1.7 82.0 ± 3.3 83.1 ± 4.4 85.6± 5.8 89.8 ± 2.1 90.5± 2.0

SANP CDL MSSRC SSDML RNP This Paper

All 95.1± 3.0 98.9 ± 1.3 97.9± 2.6 86.4 ± 3.6 95.9 ± 2.1 100.0± 0.0
100 94.1± 3.2 96.2 ± 1.2 96.9± 1.3 84.3 ± 2.2 92.3 ± 3.2 99.7± 0.8
50 91.9± 2.7 93.9 ± 2.2 94.3± 1.4 83.4 ± 1.7 90.2 ± 3.2 99.4± 1.1

Average identification rates and standard deviations of different methods on
Honda/UCSD dataset. The experiments are performed by considering all frames
of the video as an image set as well as limiting the set length to 100 and 50
frames. The results show that the proposed method not only achieves the best
performance but also maintains a consistency in its performance for reduced set
lengths.

4.3 Comparison with Existing Image Set Classification Methods

We present a comparison of our method with a number of recently proposed state
of the art image set classification methods. The compared methods include Mu-
tual Subspace Method [28], Discriminant Canonical Correlation Analysis (DCC)
[14], Manifold-to-Manifold Distance (MMD) [27], Manifold Discriminant Analy-
sis (MDA) [25], the Linear version of the Affine Hull-based Image Set Distance
(AHISD) [3], the Convex Hull-based Image Set Distance (CHISD) [3], Sparse
Approximated Nearest Points (SANP) [11], Covariance Discriminative Learning
(CDL) [26], Mean Sequence Sparse Representation Classification (MSSRC) [20],
Set to Set Distance Metric Learning (SSDML) [30] and Regularized Nearest
Points (RNP) [29]. We use the implementations provided by the respective au-
thors for all methods except CDL. We carefully implemented CDL since it is
not publicly available. The parameters for all methods are optimized for best
performance.

The experimental results in terms of the average identification rates along with
standard deviations of different methods on Honda/UCSD dataset are presented
in Table 3. The proposed method achieves perfect classification for all frames of
the video sequence considered as an image set. Once the total number of images
in the set is reduced to 100 and 50, the average identification rates archived by
the method are 99.7% and 99.4% respectively. This suggests the robustness of
the method w.r.t. the number of images in the set and its suitability for real-life
scenarios with a limited availability of images in the set.

The average identification rates and standard deviations for different methods
on CMU/Mobo, YouTube Celebrities, Kinect and ETH datasets are summarized
in Table 4. The results suggest that the proposed method outperforms most of
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Table 4. Performance on CMU/Mobo, YouTube, Kinect and ETH-80 datasets

Methods Mobo YouTube Kinect ETH

MSM FG’98 [28] 96.8 ± 2.0 50.2 ± 3.6 89.3 ± 4.1 75.5 ± 4.8
DCC TPAMI’07 [14] 88.8 ± 2.4 51.4 ± 5.0 92.5 ± 2.0 91.7 ± 3.7
MMD CVPR’08 [27] 92.5 ± 2.9 54.0 ± 3.7 93.9 ± 2.2 77.5 ± 5.0
MDA CVPR’09 [25] 80.9± 12.3 55.1 ± 4.5 93.4 ± 3.6 77.2 ± 5.5
AHISD CVPR’10 [3] 92.9 ± 2.1 61.5 ± 5.6 91.6 ± 2.2 78.7 ± 5.3
CHISD CVPR’10 [3] 96.5 ± 1.2 60.4 ± 5.9 92.7 ± 1.9 79.5 ± 5.3
SANP TPAMI’12 [11] 97.6 ± 0.9 65.6 ± 5.6 93.8 ± 3.1 77.7 ± 7.3
CDL CVPR’12 [26] 90.0 ± 4.4 56.4 ± 5.3 94.5 ± 1.0 77.7 ± 4.2
RNP FG’13 [29] 96.1 ± 1.4 65.8 ± 5.4 96.2 ± 2.5 81.0 ± 3.2
MSSRC CVPR’13 [20] 97.5 ± 0.9 59.4 ± 5.7 95.5 ± 2.3 90.5 ± 3.1
SSDML ICCV’13 [30] 95.1 ± 2.2 66.2 ± 5.2 86.9 ± 3.4 81.0 ± 6.6
This Paper 97.8± 0.7 74.1± 3.5 98.1± 1.9 95.5± 2.0

Experimental performance of different methods in terms of average identifi-
cation rates and standard deviations on CMU/Mobo, YouTube Celebrities,
Kinect and ETH-80 datasets. The proposed method achieves the best perfor-
mance on all four datasets. Especially, the performance improvement is more
significant for YouTube and ETH-80 datasets.

Table 5. Timing Comparison on YouTube Celebrities dataset

Method MSM DCC MMD MDA AHISD CHISD SANP CDL MSSRC SSDML RNP Ours

Train N/A 27.9 N/A 7.2 N/A N/A N/A 549.6 N/A 389.3 N/A N/A
Test 1.1 0.2 68.1 0.1 3.1 5.3 22.4 7.2 54.2 18.5 0.5 6.5

Time in seconds required for offline training and online testing of one image set on YouTube
Celebrities dataset. ‘N/A’ means that the method does not perform any offline training.

the existing methods on all datasets. The difference in the performance is more
significant for YouTube Celebrities dataset which is the most challenging dataset
since the videos have been acquired in real-life scenarios and the resolution of
the face images is very low due to the high compression.

Timing Comparison: Table 5 lists the times (in seconds) for different methods
using the respective Matlab implementations on a core i7 machine. Specifically,
the time required for offline training and the time needed to test one image
set on YouTube Celebrities dataset are provided. The reported time for our
method is for five iterations of steps 1-5 of our algorithm (see Sec. 3.1). It should
be noted that many of the existing methods [3, 11, 20, 28, 29] as well as our
method are online. Online methods do not perform any offline training and can
easily adapt to newly added and previously unseen training data. However, one
major limitation of our method and the existing online methods is that all the
computation is done at run-time and comparatively more memory storage is
required.
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4.4 Analysis and Discussions

The state of the art performance of the proposed method is attributed to the fact
that unlike existing methods, it does not resort to a single entity representation
(such as a subspace, the mean of set images or an exemplar image) for all images
of the set. Any potential loss of information is therefore avoided by retaining the
images of the set in their original form. Moreover, well-developed classification
algorithms are efficiently incorporated within the proposed framework to opti-
mally discriminate the class of the query image set from the remaining classes.
Furthermore, since the proposed method provides a confidence level for its pre-
diction, classification decisions from multiple classifiers can be fused to enhance
the overall performance of the method.

A visual inspection of the challenging YouTube Celebrities dataset revealed
that many of the miss-classified query image sets had face images with a head
pose (such as profile views) which is otherwise not very commonly present in the
training images of the dataset. For such cases, only those images in D2 which
have the same pose as that of images of Xq (irrespective of their classes) are
classified as +1. In our future work, we plan to develop a method to estimate
the pose of the face images. The pose information will then be used to sample
images into D1 and D2. For example, if most of the images of Xq are in right
profile views, our sampling of the training images into D1 and D2 will be such
that only the images with the right profile views will be considered. This will
help to overcome the bias in the classification due to head pose.

5 Conclusion

This paper introduced a new concept which is embedded in a framework to
extend the well known binary classifiers for multi-class image set classification.
Compared with the popular one-vs-one and one-vs-rest binary to multi-class
strategies, the proposed approach is very efficient as it trains a fixed number
of binary classifiers (one to five) and uses very few images for training. The
proposed method has been evaluated for the task of video based face recogni-
tion on Honda/UCSD, CMU/Mobo & YouTube Celebrities datasets, RGB-D
face recognition from a Kinect dataset and object recognition from ETH-80
dataset. The experimental results and a comparison with the existing meth-
ods show that the proposed method consistently achieves the state of the art
performance.
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