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Abstract. This paper proposes a novel Affine Subspace Representation (ASR)
descriptor to deal with affine distortions induced by viewpoint changes. Un-
like the traditional local descriptors such as SIFT, ASR inherently encodes local
information of multi-view patches, making it robust to affine distortions while
maintaining a high discriminative ability. To this end, PCA is used to represent
affine-warped patches as PCA-patch vectors for its compactness and efficiency.
Then according to the subspace assumption, which implies that the PCA-patch
vectors of various affine-warped patches of the same keypoint can be represented
by a low-dimensional linear subspace, the ASR descriptor is obtained by using a
simple subspace-to-point mapping. Such a linear subspace representation could
accurately capture the underlying information of a keypoint (local structure) un-
der multiple views without sacrificing its distinctiveness. To accelerate the com-
putation of ASR descriptor, a fast approximate algorithm is proposed by moving
the most computational part (i.e., warp patch under various affine transforma-
tions) to an offline training stage. Experimental results show that ASR is not only
better than the state-of-the-art descriptors under various image transformations,
but also performs well without a dedicated affine invariant detector when dealing
with viewpoint changes.

1 Introduction

Establishing visual correspondences is a core problem in computer vision. A common
approach is to detect keypoints in different images and construct keypoints’ local de-
scriptors for matching. The challenge lies in representing keypoints with discriminative
descriptors, which are also invariant to photometric and geometric transformations.

Numerous methods have been proposed in the literature to tackle such problems in
a certain degree. The scale invariance is often achieved by estimating the character-
istic scales of keypoints. The pioneer work is done by Lindeberg [11], who proposes
a systematic methodology for automatic scale selection by detecting the keypoints in
multi-scale representations. Local extremas over scales of different combinations of γ-
normalized derivatives indicate the presence of characteristic local structures. Lowe [13]
extends the idea of Lindeberg by selecting scale invariant keypoints in Difference-of-
Gaussian (DoG) scale space. Other alternatives are SURF [4], BRISK [10], Harris-
Laplacian and Hessian-Laplacian [16]. Since these methods are not designed for affine
invariance, their performances drop quickly under significant viewpoint changes. To
deal with the distortion induced by viewpoint changes, some researchers propose to
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detect regions covariant to the affine transformations. Popular methods include Harris-
Affine [16], Hessian-Affine [15], MSER [14], EBR and IBR [21]. They estimate the
shapes of elliptical regions and normalize the local neighborhoods into circular regions
to achieve affine invariance. Since the estimation of elliptical regions are not accurate,
ASIFT [19] proposes to simulate all image views under the full affine space and match
the SIFT features extracted in all these simulated views to establish correspondences.
It improves the matching performance at the cost of a huge computational complexity.

This paper aims to tackle the affine distortion by developing a novel Affine Subspace
Representation (ASR) descriptor, which effectively models the inherent information of
a local patch among multi-views. Thus it can be combined with any detector to match
images with viewpoint changes, while traditional methods usually rely on an affine-
invariant detector, such as Harris-Affine + SIFT. Rather than estimating the local affine
transformation, the main innovation of this paper lies in directly building descriptor
by exploring the local patch information under multiple views. Firstly, PCA (Principle
Component Analysis) is applied to all the warped patches of a keypoint under various
viewpoints to obtain a set of patch representations. These representations are referred
to as PCA-patch vectors in this paper. Secondly, each set of PCA-patch vectors is rep-
resented by a low-dimensional linear subspace under the assumption that PCA-patch
vectors computed from various affine-warped patches of the same keypoint span a lin-
ear subspace. Finally, the proposed Affine Subspace Representation (ASR) descriptor is
obtained by using a subspace-to-point mapping. Such a linear subspace representation
could efficiently capture the underlying local information of a keypoint under multiple
views, making it capable of dealing with affine distortions. The workflow our method is
summarized in Fig. 1, each step of which will be elaborated in Section 3. To speedup the
computation, a fast approximate algorithm is proposed by removing most of its compu-
tational cost to an offline learning stage (the details will be introduced in Section 3.3).
This is the second contribution of this paper. Experimental evaluations on image match-
ing with various transformations have demonstrated that the proposed descriptors can
achieve state-of-the-art performance. Moreover, when dealing with images with view-
point changes, ASR performs rather well without a dedicated affine detector, validating
the effectiveness of the proposed method.

Fig. 1. The workflow of constructing ASR descriptor

The rest of this paper is organized as follows: Section 2 gives an overview of related
works. The construction of the proposed ASR descriptor as well as its fast computation
algorithm are elaborated in Section 3. Some details in implementation is given in Sec-
tion 4. Experimental evaluations are reported in Section 5 and finally we conclude the
paper in Section 6.
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2 Related Work

Lindeberg and Garding [12] presented a methodology for reducing affine shape distor-
tion. The suggested approach is to adapt the shape of smoothing kernel to the local im-
age structure by measuring the second moment matrix. They also developep a method
for extracting blob-like affine features with an iterative estimation of local structures.
Based on the work of Lindeberg, Baumberg [3] adapted the local shapes of keypoints at
fixed scales and locations , while Mikolajczyk and Schmid [16] iteratively estimated the
affine shape as well as the location and scale. Tuytelaars and Van Gool [21] proposed
two affine invariant detectors. The geometry-based method detects Harris corners and
extracts edges close to such keypoints. Several functions are then chosen to determine
a parallelogram spanned by the nearby two edges of the keypoint. The intensity-based
method extracts local extremas in intensity as anchor points. An intensity function along
rays emanating from these anchor points is used to select points where this function
reaches an extremum. All these selected points are linked to enclose an affine covariant
region which is further replaced by an ellipse having the same shape moments up to the
second moments. Matas et al. [14] developed an efficient affine invariant detector based
on the concept of extremal regions. The proposed maximally stable extremal regions
are produced by a watershed algorithm and their boundaries are used to fit elliptical
regions.

Since the accuracy of affine shape estimation is not guaranteed, Morel and Yu [19]
presented a new framework for affine invariant image matching named ASIFT. They
simulated all possible affine distortion caused by the change of camera optical axis ori-
entation from a frontal position, and extract SIFT features on all these simulated views.
The SIFT features on all simulated views are matched to find correspondences. Since
ASIFT has to compute SIFT on lots of simulated views and make use of an exhaus-
tive search on all possible views, it suffers a huge computational complexity. Although
a similar view simulation method of ASIFT is used in our method, here it is for a to-
tally different purpose: warping local patch of a keypoint under multiple views to extract
PCA-patch vectors for keypoint description. Therefore, our method does not suffer from
the huge computational burden as in ASIFT. Hintersoisser et al. [9] proposed two learn-
ing based methods to deal with full perspective transformation. The first method trains
a Fern classifier [20] with patches seen under different viewing conditions in order to
deal with perspective variations, while the second one uses a simple nearest neighbors
classifier on a set of “mean patches”that encodes the average of the keypoints appear-
ance over a limited set of poses. However, an important limitation of these two methods
is that they can not scale well with the size of keypoints database. Moreover, they both
need a fronto-parallel view for training and the camera internal parameters for comput-
ing the camera pose relative to the keypoint.

The most related work to this paper is SLS [8], which describes each pixel as a set of
SIFT descriptors extracted at multiple scales. Our work extends SLS to deal with affine
variations. Moreover, we propose to use PCA-patch vector as a compact intermediate
representation of the warped patch instead of SIFT. The main advantages are two-folds:
(a) fast, because PCA-patch vector is fast to compute while computing SIFT is much
slower; (b) since computing PCA vector is a linear operation, it leads to the proposed
fast algorithm.
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3 Our Approach

3.1 Multiple View Computation

As the projective transformation induced by camera motion around a smooth surface
can be locally approximated by an affine transformation, we locally model the apparent
deformations arising from the camera motions by affine transformations. In order to
deal with affine distortions, we propose to integrate local patch information under vari-
ous affine transformations for feature description rather than estimating the local affine
transformation (e.g., [21,16]).

Since we employ scale-invariant detector to select keypoints, we first extract a lo-
cal patch at the given scale around each keypoint and then resize it to a uniform size
of sl × sl. To deal with linear illumination changes, the local patch is usually normal-
ized to have zero mean and unit variance. Here we skip this step since the subsequent
computation of linear subspace is invariant to linear illumination changes.

The local patch is aligned by the local dominant orientation to achieve invariance
to in-plane rotation. In order to efficiently estimate such orientations, we sample some
pattern points in the local patch similar to BRISK [10]. The dominant orientation is then
estimated by the average gradient direction of all the sampling points:

g = (1/np

np∑

i=1

gx(pi), 1/np

np∑

i=1

gy(pi)), (1)

where np is the number of sampling points, g is the average gradients, gx(pi) and
gy(pi) are the x-directional and y-directional gradients of ith sampling point pi respec-
tively. Since there are only a few sample points, e.g., np = 60 in our experiments, the
orientation can be estimated very fast.

Let L be the aligned reference patch around a keypoint at a given scale, the warped
patch under an affine transformation A is computed by:

LA = w(L,A), (2)

where w(·, A) is the warping function using transformation A. To avoid the case that
some parts of the warped patch may not visible in the reference patch, we take the
reference patch a little larger in practice. Hence, Eq. (2) can be re-written as:

LA = p(w(L,A)), (3)

where p(·) is a function that extracts a small central region from the input matrix.
To encode the local information of each LA, we propose to use a simple PCA based

representation for its compactness and efficiency. By using PCA, the local patch is
projected into the eigenspace and the largest nd principal component coordinates are
taken to represent the patch, i.e., the PCA-patch vector. Mathematically, the PCA-patch
vector dA for LA can be computed as :

dA = Pd
T vec(LA) = f(LA), (4)
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wherePd is the learned PCA projection matrix, vec(·) denotes vectorization of a matrix,
and f(·) = Pd

T vec(·). By substituting Eq. (3), Eq. (4) can be rewritten as:

dA = f(p(w(L,A))). (5)

The idea of using PCA for feature description is not novel, e.g., PCA-SIFT descriptor
in [24] and GLOH descriptor in [17]. Here we only use such a technique to effectively
generate a set of compact vectors as the intermediate representations. Further represen-
tation of the keypoint will be explored based on these intermediate representations.

3.2 Subspace Representation

Suppose there are m parameterized affine transformations to warp a local patch, we
can get a PCA-patch vector set D = {dAm} for a keypoint by the above approach.
Inspired by Hassner et al.[8] who dealt with scale invariant matching by using a linear
subspace representation of SIFT descriptors extracted on multiple scales, we proposed
to construct a subspace model to represent the PCA-patch vectors extracted on multiple
views.

The key observation is that the PCA-patch vectors extracted under various affine
transformations of a same keypoint approximately lie on a low-dimensional linear sub-
space. To show this point, we conducted statistical analysis on the reconstruction loss
rates1 of PCA-patch vectors for about 20,000 keypoints detected from images randomly
downloaded from the Internet. For each keypoint, its PCA-patch vector set is computed
and used to estimate a subspace by PCA. Then the reconstruction loss rates of each set
by using different numbers of subspace basis are recorded. Finally, the loss rates of all
PCA-patch vector sets are averaged. Fig. 2 shows how the averaged loss rate is changed
with different subspace dimensions. It can be observed that a subspace of 8 dimensions
is enough to approximate the 24 dimensional PCA-patch vector set with 90% informa-
tion kept in average. Therefore, we choose to use a ns-dimensional linear subspace to
represent D. Mathematically,

[dA1 , · · · ,dAm ] ≈ [d̂1, · · · , d̂ns ]

⎡

⎢⎣
b11, · · · , b1m

...
. . .

...
bns1, · · · , bnsm

⎤

⎥⎦ , (6)

where d̂1, · · · , d̂ns are basis vectors spanning the subspace and bij are the coordinates
in the subspace. By simulating enough affine transformations, the basis d̂1, · · · , d̂ns

can be estimated by PCA.
Let Dk and Dk′ be the PCA-patch vector sets of keypoints k and k′ respectively, the

distance between Dk and Dk′ can be measured by the distance between corresponding
subspaces Dk and Dk′ . As shown in [5], all the common distances between two sub-
spaces are defined based on the principal angles. In our approach, we use the Projection
Frobenius Norm defined as:

dist(Dk,Dk′) = ‖sinψ‖2 =
1√
2

∥∥∥D̂kD̂
T
k − D̂k′D̂T

k′

∥∥∥
F
, (7)

1 It is defined as the rate between reconstruction error and the original data, while the recon-
struction error is the squared distance between the original data and its reconstruction by PCA.
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where sinψ is a vector of sines of the principal angles between subspaces Dk and Dk′ ,
D̂k and D̂k′ are matrixes whose columns are basis vectors of subspaces Dk and Dk′

respectively.
To obtain a descriptor representation of the subspace, similar to [8] we employ the

subspace-to-point mapping proposed by Basri et al. [2]. Let D̂ be the matrix composed
of orthogonal basis of subspace D, the proposed ASR descriptor can be obtained by
mapping the projection matrix Q = D̂D̂T into vectors. Since Q is symmetric, the map-
ping h(Q) can be defined as rearranging the entries of Q into a vector by taking the
upper triangular portion of Q, with the diagonal entries scaled by 1/

√
2. Mathemati-

cally, the ASR descriptor q is

q = h(Q) = (
q11√
2
, q12, · · · , q1nd

,
q22√
2
, q23, · · · , qndnd√

2
), (8)

where qij are elements of Q, and nd is the dimension of the PCA-patch vector. Thus
the dimension of q is nd ∗ (nd + 1)/2.

By such mapping, it is worth noting that the Projection Frobenius Norm distance
between subspaces Dk and Dk′ is equal to the Euclidean distance between the corre-
sponding ASR descriptors qk and qk′ :

dist(Dk,Dk′) = ‖qk − qk′‖2. (9)

It is worth noting that ASR is inherently invariant to linear illumination changes.
Suppose D = {dAm} is the set of PCA-patch vectors for a keypoint, while D′ =
{dAm

′} is its corresponding set after linear illumination changes. For each element in
D, dAm = a× dAm

′ + b where a and b parameterize the linear illumination changes.
Let cov(D) and cov(D′) be their covariant matrixes, it is easy to verify that cov(D) =
a2 × cov(D′). Therefore, they have the same eigenvectors. Since it is the eigenvectors
used for ASR construction, the obtained ASR for D and D′ will be identical.

3.3 Fast Computation

Due to the high computational burden of warping patches, it would be very inefficient
to compute a set of PCA-patch vectors extracted under various affine transformations
by utilizing Eq. (5) directly.

In [9], Hinterstoisser et al. proposed a method to speed up the computation of warped
patches under different camera poses based on the linearity of warping function. We
found that their method could be easily extended to speed up the computation of any
linear descriptor of the warped patches. According to this observation, we develop a fast
computation method of dA at the cost of a little accuracy degradation in this section.

Similar to [9], we firstly approximate L by its principal components as:

L ≈ L+

nl∑

i=1

aiLi, (10)

where nl is the number of principal components,Li and ai are the principal components
and the projection coordinates respectively.
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Fig. 2. Averaged loss rate as a function of the
subspace dimension. The patch size is 21×21
and the dimension of PCA-patch vector is 24.

Fig. 3. Geometric interpretation of the decom-
position in Eq. (15). See text for details.

Then, by substituting Eq. (10) into Eq. (5) , it yields:

dA ≈ f(p(w(L+

nl∑

i=1

aiLi, A))). (11)

Note that the warping function w(·, A) is essentially a permutation of the pixel in-
tensities between the reference patch and the warped patch. It implies that w(·, A) is
actually a linear transformation. Since p(·) and f(·) are also linear functions, Eq. (11)
can be re-written as:

dA ≈ f(p(w(L,A))) +

nl∑

i=1

aif(p(w(Li, A))) = dA +

nl∑

i=1

aidi,A, (12)

where

dA = f(p(w(L,A)))

di,A = f(p(w(Li, A)))
. (13)

Fig. 4 illustrates the workflow of such a fast approximated algorithm.
Although the computation of dA and di,A is still time consuming, it can be previ-

ously done in an offline learning stage. At run time, we simply compute the projection
coordinates a = (a1, · · · , anl

)T of the reference patch L by

a = Pl
T vec(L), (14)

where Pl is the learned projection matrix consisting of Li. Then, dA can be computed
by a linear combination of di,A and dA.

Obviously, this approach combines the patch warping and representation into one
step, and moves most of the computational cost to the offline learning stage. Compared
to the naive way in Eq. (5), it significantly reduces the running time. We refer to ASR
descriptor computed by such a fast approximate algorithm as ASR-fast descriptor, while
the original one is referred to as ASR-naive descriptor.
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Fig. 4. Fast computation strategy for constructing ASR descriptor

4 Notes on Implementation

4.1 Parameterization of Affine Transformation

As shown in [19], any 2D affine transformation A with strictly positive determinant
which is not a similarity has a unique decomposition:

A = λR(α)T (t)R(β) = λ

[
cosα − sinα
sinα cosα

] [
t 0
0 1

] [
cosβ − sinβ
sinβ cosβ

]
, (15)

where λ > 0, R is a rotation matrix, α ∈ [0, π), β ∈ [0, 2π), T is a diagonal matrix
with t > 1.

Fig. 3 gives a geometric interpretation of this decomposition: u is the object plane, u′

is the image plane,α (longitude) and θ = arccos 1/t (latitude) are the camera viewpoint
angles, β is the camera in-plane rotation, and λ is the zoom parameter. The projective
transformation from image plane u′ to object plane u can be approximated by the affine
transformation in Eq. (15).

Since the scale parameter λ can be estimated by scale-invariant detectors and the
in-plane rotation β can be aligned by local dominant orientation, we only sample the
longitude angle α and the tilt t.

For α, the sampling range is [0, π) as indicated by the decomposition in Eq. (15).
The sampling step Δα = αk+1 − αk is determined by considering the overlap be-
tween the corresponding ellipses of adjacent samplings. More specifically, for an affine
transformation At,α with tilt t and longitude α, the corresponding ellipse is et,α =
AT

t,αAt,α. Let ε(et,α, et,α+Δα) denotes the overlap rate between et,α and et,α+Δα, it
can be proved that ε(et,α, et,α+Δα) is a decreasing function of Δα when t > 1 ∧
Δα ∈ [0, π/2). We can choose the sampling step Δα as the max value that satisfies
ε(et,α, et,α+Δα) > To where To is a threshold that controls the minimal overlap rate
required for the corresponding ellipses of adjacent samplings. The larger To is, the more
α will be sampled.
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For t, the sampling range is set to [1, 4] to make the latitude angle θ = arccos 1/t

range from 0◦ to 75◦. Thus, the sampling step Δt = tk+1/tk is 4
1

nt−1 where nt is the
sampling number of t.

Setting these sampling values is not a delicate matter. To show this point, we have
investigated the influence of different sampling strategies for α and t on image pair of
’trees 1-2’ of the Oxford dataset [1]. Fig. 5(a) shows the performance of ASR-naive
by varying nt (3, 5, 7 and 9) when To = 0.8. It can be seen that nt = 5, nt = 7
and nt = 9 are comparable and they are better than nt = 3. Therefore, we choose
nt = 5 since it leads to the least number of affine transformations. Under the choice
of nt = 5, we also test its performance on various To (0.6, 0.7, 0.8 and 0.9) and the
result is shown in Fig. 5(b). Although To = 0.9 performs the best, we choose To = 0.8
to make a compromise between accuracy and sparsity (complexity). According to the
above sampling strategy, we totally have 44 simulated affine transformations. Note that
the performance is robust to these values in a wide range. Similar observations can be
obtained in other test image pairs.

4.2 Offline Training

From Section 3, it can be found there are three cases in which PCA is utilized:

(1) PCA is used for raw image patch representation to obtain a PCA-patch vector for
each affine-warped image patches.

(2) PCA is used to find subspace basis of a set of PCA-patch vectors for constructing
ASR descriptor.

(3) PCA is used to find principal components to approximate a local image patch L for
fast computation (c.f. Eq. (10).

In cases of (1) and (3), several linear projections is required. More specifically, nd prin-
cipal projections are used for PCA-patch vector computation and nl principal compo-
nents are used to approximate a local image patch. These PCA projections are learned
in an offline training stage. In this stage, the PCA projection matrix Pd in Eq. (4), di,A

and dA in Eq. (13) are computed by using about 2M patches detected on 17125 train-
ing images provided by PASCAL VOC 2012. Thus the training images are significantly
different from those used for performance evaluation in Section 5.

5 Experiments

In this section, we conduct experiments to show the effectiveness of the proposed
method. Firstly, we study the potential impact of different parameter settings on the per-
formance of the proposed method. Then, we test on the widely used Oxford dataset [1]
to show its superiority to the state-of-the-art local descriptors. With the image pairs un-
der viewpoint changes in this dataset, we also demonstrate that it is capable of dealing
with affine distortion without an affine invariant detector, and is better than the tradi-
tional method, e.g., building SIFT descriptor on Harris Affine region. To further show
its performance in dealing with affine distortion, we conduct experiments on a larger
dataset (Caltech 3D Object Dataset [18]), containing a large amount of images of dif-
ferent 3D objects captured from different viewpoints. The detailed results are reported
in the following subsections.
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5.1 Parameters Selection

In addition to To and nt for sampling affine transformations, our method has several
other parameters listed in Table1. We have investigated the effect of different parameter
settings on image pair of ’trees 1-2’ in the Oxford dataset [1]. We simply tried sev-
eral combinations of these parameters and compared the matching performance among
them. The result is shown in Fig. 6. Fig. 6(a) is obtained by computing ASR-naive
under different nd (16, 24 and 32) and ns (4, 8 and 12). It is found that the configura-
tion of (nd = 32, ns = 8) obtains the best result. For a trade off between the perfor-
mance and descriptor dimension, we choose (nd = 24, ns = 8), leading to ASR with
24 ∗ (24+1)/2 = 300 dimensions. Under the choice of (nd = 24, ns = 8), we investi-
gate the fast approximate algorithm by computing ASR-fast under different nl (64, 96,
128 and 160). Fig. 6(b) shows that nl = 160 obtains the best result. A typical setting of
all parameters is given in Table 1 and kept unchanged in the subsequent experiments.

Table 1. Parameters in ASR descriptor and their typical settings

parameter description typical value
np pattern number for dominant orientation estimation 60
nl number of orthogonal basis for approximating local patch 160
sl size of local patch 21
nd dimension of the PCA-patch vector 24
ns dimension of the subspace that PCA-patch vector set D lies on 8

5.2 Evaluation on Oxford Dataset

To show the superiority of our method, we conduct evaluations on this benchmark
dataset based on the standard protocol [17], using the nearest neighbor distance ratio
(NNDR) matching strategy. For comparison, the proposed method is compared with
SIFT [13] and DAISY [23] descriptors, which are the most popular ones representing
the state-of-the-art. The results of other popular descriptors (SURF, ORB, BRISK etc.)
are not reported as they are inferior to that of DAISY. In this experiment, keypoints are
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Fig. 7. Experimental results for different image transformations on DoG keypoints: (a)-(b) image
blur, (c)-(d) rotation and scale change, (e)-(h) viewpoint change, (i)-(j) illumination change and
(k)-(l) JPEG compression.

detected by DoG [13] which is the most representative and widely used scale invariant
detector. Due to space limit, only the results of two image pairs (the 1st vs. the 2nd and
the 1st vs. the 4th) for each image sequence are shown, which represent small and large
image transformations respectively.

As shown in Fig. 7, it is clear that ASR-fast performs comparable to ASR-naive in
all cases except ’graf 1-4’ (Fig. 7(f)). This demonstrates the fact that the proposed fast
computation strategy in Eq. (12) can well approximate the naive computation of PCA-
patch vector set. The performance degradation in ’graf 1-4’ can be explained by the
difference in patch alignment. Since ASR-fast does not generate the warped patches
directly, it simply aligns the reference patch before computing the PCA-patch vector
set. This strategy could be unreliable under large image distortions since all the PCA-
patch vectors extracted under various affine transformations depend on the orientation
estimated on reference patch. ASR-naive avoids this by computing the dominant ori-
entation on each warped patch and aligning it separately. In other words, the inferior
performance of ASR-fast is because that the PCA-patch vector (i.e., the intermediate
representation) relies on robust orientation estimation, but does not imply that ASR-
fast is not suitable for viewpoint changes. Therefore, if we can use an inherent rotation
invariant intermediate representation (such as the one in similar spirit to the intensity
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(b) graf 1-4
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Fig. 8. Experimental results on image sequences containing viewpoint changes

order based methods [6,7,22]), ASR-fast is expected to be as good as ASR-naive. We
would leave this for our future work.

According to Fig. 7, both ASR-naive and ASR-fast are consistently better than SIFT
in all cases and outperform DAISY in most cases. The superior performance of the pro-
posed method can be attributed to the effective use of local information under various
affine transformation. For all cases of viewpoint changes especially in ’graf 1-4’, ASR-
naive outperforms all competitors by a large margin, which demonstrates its ability of
dealing with affine distortions.

To further show ASR’s ability in dealing with affine distortions without a dedi-
cated affine detector, we use image pairs containing viewpoint changes to compare
ASR with traditional methods, i.e., build local descriptor on top of affine invariant re-
gions. In this experiment, Harris-Affine (HarAff) is used for interest region detection
and SIFT/DAISY descriptors are constructed on these interest regions. For a fair com-
parison, ASR is build on top of Harris-Laplace (HarLap) detector since Harris-Affine
regions are build up on Harris-Laplace regions by an additional affine adaptive proce-
dure. Therefore, such a comparison ensures a fair evaluation for two types of affine
invariant image matching methods, i.e., one based on affine invariant detectors, while
the other based on affine robust descriptors.

The results are shown in Fig. 8. To show the affine adaptive procedure is necessary
for dealing with affine distortions if the used descriptor does not account for this as-
pect, the results of HarLap:SIFT and HarLap:DAISY are also supplied. It is clear that
HarAff:SIFT (HarAff:DAISY) is better than HarLap:SIFT (HarAff:DAISY). By using
the same detector, HarLap:ASR-naive significantly outperforms HarLap:SIFT and Har-
Lap:DAISY. It is also comparable to HarAff:DAISY and HarAff:SIFT in ’graf 1-4’, and
even better than them in all other cases. This demonstrate that by considering affine dis-
tortions in feature description stage, ASR is capable of matching images with viewpoint
changes without a dedicated affine invariant detector. The failure of HarLap:ASR-fast
is due to the unreliable orientation estimation as explained before.

Another excellent method to deal with affine invariant image matching problem is
ASIFT. However, ASIFT can not be directly compared to the proposed method. This
is because that ASIFT is an image matching framework while the propose method is a
feature descriptor. Therefore, in order to give the reader a picture of how our method
performs in image matching compared to ASIFT, we use ASR descriptor combined with
DoG detector for image matching and the NNDR threshold is set to 0.8. The matching
results are compared to those obtained by ASIFT when the matching threshold equals to
0.8. ASIFT is downloaded from the authors’ website. The average matching precisions
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of all the image pairs in this dataset are 64.4%, 80.8% and 75.6% for ASIFT, ASR-
naive, and ASR-fast respectively. Accordingly, the average matching times of these
methods are 382.2s, 14.5s and 8.3s when tested on the ’wall’ sequence. We also note
that the average matches are several hundreds when using ASR while they are one
magnitude more when using ASIFT. Detailed matching results can be found in the
supplemental material.

5.3 Evaluation on 3D Object Dataset

To obtain a more thoroughly study of dealing with affine distortions, we have also eval-
uated our method on the 3D object dataset [18], which has lots of images of 100 3D
objects captured under various viewpoints. We use the same evaluation protocol as [18].
The ROC curves are obtained by varying the threshold Tapp on the quality of the ap-
pearance match , while the stability curves are obtained at fixed false alarm rate of
1.5 ∗ 10−6.

As previous experimental setting, we use Harris-Laplace (HarLap) detector to pro-
duce scale invariant regions and then compute ASR descriptors for matching. For com-
parison, the corresponding Harris-Affine (HarAff) detector is used to produce affine
invariant regions and SIFT/DAISY descriptors are computed based on them.

Fig. 9 shows the results averaged on all objects in the dataset when the viewing
angle is varied from 5o to 45o. It can be observed that HarLap:ASR-naive performs
best, and HarLap:ASR-fast is comparable to HarAff:SIFT and HarAff:DAISY. This
further demonstrates that the subspace representation of PCA-patch vectors extracted
under various affine transformations is capable of dealing with affine distortion.
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Fig. 9. Performance of different methods for 3D Object Dataset

5.4 Timing Result

In this section, we conduct time test on a desktop with an Intel Core2 Quad 2.83GHz
CPU. We first test the time cost for each components of ASR, and the detailed results
are given in Table 2. It can be found that most of construction time in ASR is spent on
patch warping. It is worthy to note that by using the fast approximate algorithm, ASR-
fast does not compute the warped patch directly and so largely reduce its time by about
75%. For comparison, we also report the time costs for SIFT and DAISY. Note that
these timing results are averaged over 100 runs, each of which computes about 1000
descriptors on image ’wall 1’. It is clear that ASR-fast is faster than SIFT and DAISY,
while ASR-naive is slower than SIFT but still comparable to DAISY.
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Table 2. Timing costs for constructing different descriptors

ASR-naive ASR-fast SIFT DAISY
patch warping[ms] 2.98 0.00 - -

patch representation[ms] 0.71 0.64 - -
subspace representation[ms] 0.49 0.49 - -

total time[ms] 4.18 1.13 2.09 3.8

6 Conclusion

In this paper, we have proposed the Affine Subspace Representation (ASR) descriptor.
The novelty lies in three aspects: 1) dealing with affine distortion by integrating local
information under multiple views, which avoids the inaccurate affine shape estimation,
2) a fast approximate algorithm for efficiently computing the PCA-patch vector of each
warped patch, and 3) the subspace representation of PCA-patch vectors extracted under
various affine transformations of the same keypoint.

Different from existing methods, ASR effectively exploits the local information of
a keypoint by integrating the PCA-patch vectors of all warped patches. The use of
multiple views’ information makes it is capable of dealing with affine distortions to
a certain degree while maintaining high distinctiveness. What is more, to speedup the
computation, a fast approximate algorithm is proposed at a little cost of performance
degradation. Extensive experimental evaluations have demonstrated the effectiveness of
the proposed method.
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