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Abstract. This paper focuses on a training-based method to recon-
struct a scene’s spectral reflectance from a single RGB image captured by
a camera with known spectral response. In particular, we explore a new
strategy to use training images to model the mapping between camera-
specific RGB values and scene reflectance spectra. Our method is based
on a radial basis function network that leverages RGB white-balancing
to normalize the scene illumination to recover the scene reflectance. We
show that our method provides the best result against three state-of-art
methods, especially when the tested illumination is not included in the
training stage. In addition, we also show an effective approach to recover
the spectral illumination from the reconstructed spectral reflectance and
RGB image. As a part of this work, we present a newly captured, publicly
available, data set of hyperspectral images that are useful for addressing
problems pertaining to spectral imaging, analysis and processing.

1 Introduction

A scene visible to the human eye is composed of the scene’s spectral reflectance
and the scene spectral illumination which spans visible wavelengths. Commodity
cameras use filters on their sensors to convert the incoming light spectra into
three color channels (denoted as Red, Green, and Blue). While only three color
channels are needed to reproduce the perceptual quality of the scene, the projec-
tive nature of the imaging process results in a loss of the spectral information.

Directly capturing spectral information from specialized hyperspectral cam-
eras remains costly. The goal of this work is to reconstruct a scene’s spectral
properties, i.e. scene reflection and illumination, from a single RGB image (see
Figure 1). This is done by learning a mapping between spectral responses and
their corresponding RGB values for a given make and model of a camera.

Prior work in this area follow a similar training-based approach, but attempt
to find a mapping using RGB images where the effects of different illumination
are included in the learning process. This makes these approaches sensitive to
input images captured under illuminations which were not present in the training
data.

Contribution. We introduce a new strategy that learns a non-linear mapping
based on a radial basis function network between the training-data and RGB im-
ages. Our approach uses a white-balance step to provide an approximate normal-
ization of the illumination in the RGB images to improve the learned mapping
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Fig. 1. Our approach takes in an input RGB image and then estimates both the spec-
tral reflectance and the overall spectral illumination based on pre-computed training
dataset

between the RGB images and spectral reflectances. This white-balance step also
helps in making our approach robust to input images captured under illumina-
tions not in our training data. Moreover, we propose a technique to estimate the
illumination given our estimated spectral reflectance. Our experimental results
demonstrate our approach is superior to prior methods. An additional contri-
bution of our work is a publicly available spectral image dataset of dozens of
real-world scenes taken under a number of illuminations.

2 Related Work

The need to reconstruct the spectral properties of scene reflectance (and illumi-
nation) from a three channel device or a standard color space (such as CIE-XYZ)
was recognized as early as 1980s [14,15,20,21,24]. Several works targeted the re-
construction of the spectral properties of standard color samples such as the
Munsell Book of Colors [2,8,10,11,15,20,24], OSA UCS [11], Swedish Natural
Color System [11], and Pantone dataset [17]. Additionally, [15] considered the
spectral reflectances of natural objects also.

Virtually all methods rely on the use of training-data to learn a mapping
between RGB images and the corresponding spectra. For many years, a linear
model was considered sufficient for this problem. It was determined using statisti-
cal analysis on standard color samples that a few (typically 3-10) basis functions
are sufficient to represent the spectral reflectances [15,20,24,32]. Further, in gen-
eral, basis functions were assumed to be continuous and band limited [20,24].
Most methods considered either PCA bases [2,3,11,15,17,20,30] or the Karhunen-
Loeve transformation [8,10,24,25,28,32] (also called matrix R approach) which
were typically pre-learnt using a few hundred to a little more than thousand
spectral samples. Interestingly, [11] consider two types of PCA bases - one with
least squares fit and another with assumption that the tristimulus function of
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the sensor and the illumination are known. The latter approach is more accurate
although it is restricted in application since illumination is generally unknown.

An interesting statistical approach was used in [22] where the bases were
chosen not to minimize the error in spectral reflectance representation alone,
but to minimize the error in predicting the sensor response as well such that the
spectral response function of the sensor plays a role in determining the suitable
bases. In the work of Abed et al. [1], a tessellation of the scatter RGB points and
their reflectance spectra of a standard color chart (for a given illumination) was
used as a nearest-neighbor look-up table. Then, in the general case of a scene in
the same illumination, the reflectance of the nodes of the polytope that encloses
the scene’s RGB point are used to interpolate the reflectance at that point.

Recently, the need of non-linear mappings was recognized [4,26,29], though
such a requirement was indicated earlier in [22]. Further, it was recognized by
some researchers that while PCA itself may be insufficient for accurate recon-
struction of spectral reflectance, splitting the color space into overlapping sub-
spaces of 10 different hues [3,30] and low-chromaticity sub-space [30] and then
using PCA on each subspace performs better. Similarly, Agahian et al. [2] pro-
posed to put weighted coefficients for each spectral reflectance in the dataset
before computing PCA. Some works [9,11] highlight that illumination has a di-
rect and important role in the ability to reconstruct the spectral reflectances.
Using Bayesian decision theory, Brainard and Freeman [5] reconstructed both
spectral reflectance and illumination information for color constancy. Lenz et al.
[18] statistically approximated the logarithm of the reflectance spectra of Mun-
sell and NCS color chips instead of the usual reflectance spectra themselves.
Further they computed approximate distribution of the illuminant and showed
its utility for color constancy.

In our work, we consider a novel non-linear mapping strategy for modeling
the mapping between camera-specific RGB values and scene reflectance spectra.
Specifically, we use a radial basis function network for modeling the mapping.
Our model for spectral reflectances is made illumination independent by using
RGB white-balancing to normalize the scene illumination before reconstructing
the spectral reflectance.

The remainder of this paper is organized as follows: Sections 3 and 4 present
our approaches for spectral reflectance and illumination reconstruction, respec-
tively; Section 5 presents the details of our spectral image dataset; Section 6
describes reconstruction results using three commercial cameras; Section 7 con-
cludes the paper.

3 Scene Reflectance Reconstruction

As discussed in previous section, most of the methods for reconstructing re-
flectance are not clear how to deal with different illuminations. For example,
consider we have two different spectral reflectances R1(λ) and R2(λ) illumi-
nated by two different spectral illuminations L1(λ) and L2(λ) respectively. It
is possible that under a certain observer Cc(λ) (where c = r, g, b), these two
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spectral reflectances share the same RGB values as described in Eq. 1. This
metamer problem can be expressed as:

∫
λ

L1(λ)R1(λ)Cc(λ) dλ =

∫
λ

L2(λ)R2(λ)Cc(λ) dλ. (1)

From the above equation, we see it is difficult to determine whether the re-
flectance is R1(λ) or R2(λ) when information about illumination is not avail-
able. Therefore, one mapping for all illuminations can not handle this case. One
straightforward solution is to build a mapping for each illumination. This ap-
proach will be the best in terms of reconstruction accuracy. However, it requires
not only a huge effort to calibrate mappings over all illuminations but also known
illumination of a new scene for reconstructing its reflectance. This approach is
impractical for most applications.

In our approach, the illumination in the RGB is normalized before it is used
for learning. The RGB images have been corrected using conventional white-
balancing method. The details are discussed in Section 3.2. The following are
four assumptions made in our approach:

– The mapping is specific to the camera and one mapping for a camera can
be used for any spectral reflectance.

– The color matching functions of the camera are known.
– The scene is illuminated by a uniform illumination.
– The white balancing algorithm gives good performance for images taken

under a variety of illuminations.

3.1 Pre-requisites

In this paper, we do not use RGB images taken directly from the camera. In-
stead, we synthesize RGB images from hyperspectral images using known cam-
era’s sensitivity functions. Computing the RGB images in this manner gives us
two main advantages. Firstly, it removes the need to create a dataset of the
images captured using the chosen camera for the same scenes as captured by
the spectral camera. This method can be used for any commercial camera so
far as its sensitivity functions are known. Note however that it is possible to
use a given camera, however, care will be needed to ensure spatial scene corre-
spondence between the RGB image and spectral image. This will likely limit the
training data to planar scenes for accurate correspondence.

Color Matching Functions. The color matching functions are generally mea-
sured using sophisticated instruments. However, recent methods were proposed
to reconstruct the color matching functions using standard colorcharts and illu-
minations satisfying certain practical requirements (for more details, see [16,27]).
Alternatively, existing datasets such as [31] can be used if the chosen camera is a
part of these datasets. Irrespective of the method used, measurement/estimation
of the color matching functions is a one time process and the color matching
functions can be stored for further use.
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Fig. 2. This figure shows how to obtain scene reflectance and spectral illumination
using a hyperspectral camera. First, a spectral image is captured from the real scene.
Then, a calibration white tile is used to measure the illumination spectrum. Finally,
the scene reflectance is obtained by dividing the spectral image by the illumination
spectrum.

Illuminations. To obtain the illumination spectrum, we use a calibration white
tile supplied with the spectral camera to capture a spectral image of the white
tile illuminated by the light source (see Figure 2). We represent the spectral
image captured using white tile as SW (λ, x), where λ is the wavelength, x is
the pixel index, W denotes the white tile, and S denotes the spectral intensity
captured using the spectral camera. The spectral illumination L(λ) is computed
as the average of the spectral information at all the pixels as follows:

L(λ) =
1

N

N∑
x=1

SW (λ, x) (2)

where N is the total number of pixels.

Spectral Reflectances. After obtaining the spectral illumination, the spectral
reflectance R(λ, x) corresponding to each pixel in the spectral image S(λ, x) can
be computed directly as follows:

R(λ, x) = S(λ, x)/L(λ) (3)

3.2 Training Stage

As discussed in the previous section, most existing methods consider comput-
ing mappings between RGB images under different illuminations and their re-
flectances (see Figure 3-(A)). While our approach considers a mapping between
RGB images under canonical illumination (using white-balancing) and their re-
flectances. The training process for our model is shown in Figure 3-(B). Our ap-
proach has three steps: synthesizing the RGB image, white-balancing the RGB
image, and computing the mapping.
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Fig. 3. This figure shows the training process for reflectance reconstruction for previous
approaches and our approach. (A) shows that previous approaches consider the map-
ping f of RGB image to spectral reflectances. (B) shows that our approach considers
the mapping f of RGB white-balanced image to the spectral reflectances.

Firstly, synthesized the RGB images corresponding to scenes and illuminations
in spectral images can be formed by using the intrinsic image model as:

Ic(x) =

∫
λ

L(λ)R(λ, x)Cc(λ) dλ (4)

where L(λ) is the illumination spectrum, R(λ, x) is the scene reflectance for
the pixel x, Cc(λ) is the color matching function for the cth color channel, and
c = r, g, b is the color channel.

After forming the RGB image Ic(x), we obtain a white balanced image Îc(x)
as follows:

Îc(x) = diag

(
1

tr
,
1

tg
,
1

tb

)
Ic(x) (5)

where t = [tr, tg, tb] is the white balancing vector obtained by a chosen white
balancing algorithm. For the white-balancing step, we have used shades of grey
(SoG) method [12] that uses the Minkowsky norm of order 5. We note that
several other methods are known for white balancing [7,13]. Here, we have
chosen SoG for its simplicity, low computational requirement and proven efficacy
over various datasets1.

Next, a mapping f is learnt between the white balanced RGB images Îc(x)
and their spectral reflectances. Because we cannot guarantee the uniformity of
the spectral and RGB samples, we use scatter point interpolation based on a
radial basis function (RBF) network for mapping. RBF network is a popular

1 http:/www.colorconstancy.com/

http:/www.colorconstancy.com/
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interpolation method in multidimensional space. It is used to implement a map-
ping f : R3 → R

P according to

f(x) = w0 +

M∑
i=1

wiφ(‖x− ci‖) (6)

where x ∈ R
3 is the RGB input value, f(x) ∈ R

P is the spectral reflectance
value in P-dimensional space, φ(.) is the radial basis function, ‖.‖ denotes the
Euclidean distance, wi (0 ≤ i ≤ M) are the weights, ci ∈ R

3 (1 ≤ i ≤ M) are
the RBF centers, M is the number of center. The RBF centers ci are chosen
by the orthogonal least squares method. The weights wi are determined using
linear least squares method. For more information see [6].

To control the number of centers M for the RBF network model against over-
fitting, we use repeated random sub-sampling validation to do cross-validation.
Specifically, we randomly split the data into two sets: a training set and a vali-
dation set. The RBF network model is fitted by the training set and its gener-
alization ability is assessed by the validation set. We ran this procedure several
times on our data and found that the number of centers M which gave the best
result for validation set was within 45− 50.

3.3 Reconstruction Stage

Once the training is performed, the mapping can be saved and used offline for
spectral reflectance reconstruction. To reconstruct spectral reflectance for a new
RGB image, this image must be white-balanced to transform the image to the
normalized illumination space Îrgb(x). The learned mapping f is used to map
the white-balanced image to the spectral reflectance image as in Eq. 7.

R(λ, x) = f(Îrgb(x)) (7)

4 Spectral Illumination Reconstruction

In theory, the spectral illumination L(λ) can be solved from Eq. 4 when given
the spectral reflectance R(λ, x) (estimated in Section 3.3), camera sensitivity
functions Cc(λ) (given) and RGB values Ic(x) (input). This equation can be
written into product of matrices as follows:

Irgb = Cdiag(L)R (8)

where Irgb is a matrix of 3×N , C is a matrix of 3×P , L is a vector of P × 1, R
is a matrix of P ×N , P is the number of spectral bands, and N is the number
of pixels.

To solve the vector L, Eq. 8 needs to be rewritten as follows:

I = TL (9)
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where I = [Ir, Ig, Ib]
� is a vector of 3N × 1, T = [diag(Cr)R,

diag(Cg)R, diag(Cb)R]� is a matrix of 3N × P .
This means that the spectral illumination L(λ) can be solved in a linear

least squares manner. However, in practice the noise in Ic(x) and the inaccuracy
in estimation of R(x, λ) impedes the reconstruction of L(λ). As a result, it is
necessary to include additional non-negative and smoothness constraints into the
optimization function before solving L(λ) as Eq. 10. This step is similar with
work proposed by Park et al. [23] and can be expressed as follows:

L = argminL

(
||TL− I||22 + α ||WL||22

)
s.t L ≥ 0

(10)

where ‖.‖2 denotes l2-norm, the term α is a weight for the smoothness constraint,
and W is the first-derivative matrix defined as follows:

W =

∣∣∣∣∣∣∣∣

0 0 . . . 0 0
1 −1 . . . 0 0

. . .
0 0 . . . 1 −1

∣∣∣∣∣∣∣∣
(11)

We additionally use PCA basis functions to allow L(λ) to fall in a definite
subspace. Therefore, spectral illumination L(λ) can be described as

L(λ) =

M∑
i=1

aiBi(λ) (12)

where Bi(λ) are the basis functions, ai are the corresponding coefficients, and
M is the number of basis functions. Eq. 12 can be rewritten into product of
matrices as follows:

L = Ba

where a = [ai]
M
i=1 is the vector of the coefficients, and B = [Bi]

M
i=1 is the matrix

of the basis functions.
Thus, the optimization function in Eq. 10 becomes:

a = argmina

(
||TBa− I||22 + α ||WBa||22

)
s.t Ba ≥ 0

(13)

Eq. 13 is a convex optimization and the global solution can be easily obtained.
To make it more robust against noise from T and I (as discussed above), the
optimization step in Eq. 13 should be run several times, and for each time, noise
samples are removed from T and I. To determine them, the spectral illumination
L is estimated and the error for each pixel is computed as in Eq. 14 at each time.

ε(x) = ‖Cdiag(L)R(x)− Irgb(x)‖2 (14)

where x is the pixel in the image. The noise samples are determined by comparing
with standard deviation. Then T and I are updated by removing these noise
samples for the next run.
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Fig. 4. This figure shows some hyperspectral images from our dataset. For visual-
ization, these hyperspectral images are rendered to RGB images by using sensitivity
functions of Canon 1D Mark III. There are a total of 64 spectral images and their
corresponding illumination spectra in our dataset.

5 Dataset of Hyperspectral Images

Our dataset contains spectral images and illumination spectra taken using
Specim’s PFD-CL-65-V10E (400 nm to 1000 nm) spectral camera2. We have
used an OLE23 fore lens (400 nm to 1000 nm), also from Specim. For light
sources, we have considered natural sunlight and shade conditions. Additionally,
we considered artificial wideband lights using metal halide lamps of different
color temperatures - 2500 K, 3000 K, 3500 K, 4300K, 6500K and a commer-
cial off-the-shelf LED E400 light. For the natural light sources, we have taken
outdoor images of natural objects (plants, human beings, etc.) as well as man
made objects. Further, a few images of buildings at very large focal length were
also taken. The images corresponding to the other light sources have manmade
objects as their scene content. For each spectral image, a total of 31 bands were
used for imaging (400 nm to 700 nm at a spacing of about 10 nm). Figure 4
shows some samples from our dataset.

There are a total of 64 spectral images and their corresponding illumination
spectra. We use 24 images with color charts as the test images for the reconstruc-
tion stage. This is because explicit ground truth of their spectral reflectances are
available and thus the accuracy of reconstruction can be better assessed. These
images are referred to as the test images. We have used the remaining 40 images
as training images.

2 http://www.specim.fi/index.php/products/industrial/spectral-cameras/

vis-vnir/

http://www.specim.fi/index.php/products/industrial/spectral-cameras/vis-vnir/
http://www.specim.fi/index.php/products/industrial/spectral-cameras/vis-vnir/
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In addition, we also used the dataset of illumination spectra from Barnard’s
website3. This dataset consists of 11 different spectral illuminations. We used
these spectral illumination to synthetically generate more hyperspectral images
from spectral reflectance captured by our hyperspectral camera. These hyper-
spectral images were used to test performance of all methods.

6 Experimental Results

In order to compare the different methods and verify their accuracy, we consider
three cameras: Canon 1D Mark III, Canon 600D, and Nikon D40, whose color
matching functions are available in the dataset of [31]. We first trained all meth-
ods from samples from our training images. Because the total number of pixels
from 40 training images is too large and most of them are similar together, we
sub-sampled each training image by using k-means clustering [19] and collected
around 16,000 spectral reflectances from all the images for the training step.
For the PCA method, three principal components are computed from this set
of spectral reflectances. For weighted PCA proposed by Agahian et al. [2] and
Delaunay interpolation proposed by Abed et al. [1], all 16,000 pairs of spectral
reflectances and their corresponding RGB values are stored. Matlab code and
spectral datasets used in this paper will be available online4.

To verify the quantitative performance for the spectral reflectance reconstruc-
tion, we use two types of measurements: the goodness-of-fit coefficient (GFC) as
in Eq. 15 to measure the similarity, and root mean square error (RMSE) as in
Eq. 16 to measure the error.

sR =
1

N

∑
x

|∑
λ

R (λ, x) R̂ (λ, x)|
√∑

λ

[R (λ, x)]2
√∑

λ

[R̂ (λ, x)]2
(15)

εR =

√√√√
∑
x
‖R (λ, x) − R̂ (λ, x)‖22

N
(16)

whereR (x, λ) and R̂ (x, λ) are the actual and reconstructed spectral reflectances,
N are the number of pixels in the image, and ‖.‖2 is l2-norm.

We compare our method against other three methods: traditional PCA,
Agahian et al. [2], and Abed et al. [1] method. Firstly, the RGB test images
for reconstruction are formed using the intrinsic image model in Eq. 4. We re-
construct reflectances of 24 images (size of 1312 × 1924). The average time to
reconstruct the whole image required by the four methods are presented in Ta-
ble 1. We also test our method without using white-balance step to analyze the
contribution of each steps in our framework.

3 http://www.cs.sfu.ca/~colour/data/colour constancy synthetic test data/

index.html
4 http://www.comp.nus.edu.sg/~whitebal/spectral_reconstruction/index.html

http://www.cs.sfu.ca/~colour/data/colour_constancy_synthetic_test_data/index.html
http://www.cs.sfu.ca/~colour/data/colour_constancy_synthetic_test_data/index.html
http://www.comp.nus.edu.sg/~whitebal/spectral_reconstruction/index.html
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In order to investigate the impact of illumination on the reconstruction per-
formance, we test all the five methods on two test conditions. The first test
condition considers images taken under illuminations that were present in the
training images also. Table 2 shows the similarity and error measurement re-
spectively under illumination present in training data. The second test condition
considers images taken under illuminations that were not present in the training
images. Table 3 shows the similarity and error measurement respectively under
illumination not present in training data. The results show that our method
provides the best result for spectral reflectance reconstruction in terms of both
similarity and error for both test conditions. It is clear that white-balance step
is important especially when the illumination is not present in training data.
Moreover, RBF has better performance than other technique and much more
compact than Delaunay interpolation and weighted PCA.

Table 1. This table shows the average time for each method to reconstruct spectral
reflectances from a whole image of size 1312 × 1924

Methods PCA Agahian [2] Abed [1] Our

Time (s) 1.14 144.30 23.14 8.56

In addition, we also compare the actual reconstruction results for eight color
patches in the color chart in Figure 5 for Canon 1D Mark III. The images are
taken under indoor illumination using metal halide lamp of 4300K color tem-
perature (spectrum in Figure 6). The ground truth of the spectral reflectances
are obtained from the hyperspectral camera. The quantitative results of these
patches for all methods are shown in Table 4. Again, it can be seen that our
method performs better than the others methods. Additional results are shown
in the supplementary material.

Our method also obtains good results for recovering spectral illumination. The
reconstructed spectra of six illuminations are also shown in Figure 6 along with
the ground truth ones. Three top illuminations are metal halide lamp 2500K,
metal halide lamp 4300K and sunlight from our dataset. Three bottom illumina-
tions are Sylvania 50MR16Q, Solux 3500K and Solux 4700K from Barnard’s web-
site. Our accuracies of the recovered spectral illumination are within 0.94− 0.99
in term of similarity measurement (goodness-of-fit coefficient).

We also test our method in terms of RGB accuracy. The reconstructed spectral
reflectance and illumination are projected back onto the same camera sensitivity
functions to measure the error in RGB space. Table 5 shows the mean values of
similarity measurements sR and error measurement εR. Our result is almost the
same with the input RGB with only small errors. In addition, Figure 7 show an
example of relighting application for our work. Our relit image is close to the
ground truth image captured under the target illumination.
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Table 2. This table shows the reflectance reconstruction results of three commercial
cameras: Canon 1D Mark III, Canon 600D, and Nikon D40. he mean values of similarity
measurements sR in Eq. 15 and error measurement εR in Eq. 16 are shown. In this
experiment, we test all five methods under illuminations present in the training data.

Canon 1D Mark III Canon 600D Nikon D40

sR εR sR εR sR εR
PCA 0.8422 0.0957 0.8340 0.0966 0.8438 0.0947
Agahian [2] 0.8743 0.1139 0.8757 0.1079 0.8837 0.1008
Abed [1] 0.9715 0.0350 0.9707 0.0356 0.9723 0.0347
Ours w/o WB 0.9736 0.0315 0.9742 0.0313 0.9743 0.0320
Ours 0.9802 0.0311 0.9811 0.0312 0.9805 0.0313

Table 3. This table shows the reflectance reconstruction results of three commercial
cameras: Canon 1D Mark III, Canon 600D, and Nikon D40. he mean values of simi-
larity measurements sR in Eq. 15 and error measurement εR in Eq. 16 are shown. In
this experiment, we test all five methods under illuminations not present in the train-
ing data. These spectral illuminations are downloaded from the dataset in Barnard’s
website.

Canon 1D Mark III Canon 600D Nikon D40

sR εR sR εR sR εR
PCA 0.8528 0.0873 0.8438 0.0896 0.8568 0.0856
Agahian [2] 0.8971 0.0791 0.8941 0.0793 0.8973 0.0773
Abed [1] 0.9293 0.0796 0.9107 0.0867 0.9281 0.0815
Ours w/o WB 0.9529 0.0722 0.9393 0.0727 0.9434 0.0702
Ours 0.9805 0.0315 0.9812 0.0315 0.9810 0.0314

Table 4. This table shows the reconstruction result (in RMSE) of colorchecker’s re-
flectance using Canon 1D Mark III under indoor illumination using metal halide lamp
of 4300K color temperature

(a) (b) (c) (d) (e) (f) (g) (h)

PCA 0.0464 0.0517 0.0360 0.0321 0.0597 0.0560 0.0366 0.0668
Agahian [2] 0.0470 0.0286 0.0328 0.0252 0.0511 0.0457 0.0350 0.0832
Abed [1] 0.0465 0.0845 0.0382 0.0225 0.0908 0.0507 0.0603 0.0721
Ours w/o WB 0.0367 0.0516 0.0553 0.0330 0.0474 0.0375 0.0723 0.0292
Ours 0.0228 0.0260 0.0210 0.0117 0.0229 0.0226 0.0271 0.0416

Table 5. This table shows colorimetric accuracy of our spectral reconstruction for
three commercial cameras: Canon 1D Mark III, Canon 600D, and Nikon D40. The
mean values of similarity measurements sR in Eq. 15 and error measurement εR in
Eq. 16 are shown.

Canon 1D Mark III Canon 600D Nikon D40

sR εR sR εR sR εR
0.9967 0.0146 0.9969 0.0139 0.9929 0.0169
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Fig. 5. This figure shows the reconstruction result of colorchecker’s reflectance using
Canon 1D Mark III under indoor illumination using metal halide lamp of 4300K color
temperature. The quantitative errors of all patches are shown in Table 4.
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Fig. 6. This figure shows the reconstruction result for six illuminations. Three top
illuminations are metal halide lamp 2500K, metal halide lamp 4300K and sunlight
from our dataset. Three bottom illuminations are Sylvania 50MR16Q, Solux 3500K
and Solux 4700K from Barnard’s website.
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Image captured under incandescent Relit image to fluorescent Ground truth image under fluorescent Error map 

Fig. 7. This figure shows an example of relighting application

7 Discussion and Concluding Remarks

We have presented a new approach to reconstruct a spectral reflectance image
from a single RGB image which is useful for several computer vision tasks, e.g.
to relight the scene with a new illumination or to obtain the image under a new
observer (camera). Our approach is based on a radial basis function network
using white-balancing as an intermediate step. Despite the mathematical loss of
the spectral data in a RGB camera, we show that the spectral reflectance can be
reconstructed with low RMSE errors and high goodness-of-fit coefficients. Our
method improved reconstruction performance compared with previous works,
especially when the tested illumination is not included in the training data.
This indicates that our method is not severely dependent on the availability of
illumination information directly or indirectly. This is a result of using RGB
white balancing which indirectly normalizes the illumination component in the
image.

In addition, we have also proposed an effective method to recover the spec-
tral illumination from a single RGB image and its scene’s spectral reflectance
(estimated from previous step). As part of this work, we have generated a much
needed set of hyperspectral images that is suitable for exploring this research as
well as other aspects of spectral imaging, analysis, and processing.

A limitation of our work is the assumption that a scene is illuminated by an
uniform illumination. For many scene this is not the case. Moreover, although our
approach can handle well the reflectance and illumination which have smooth
spectra, our approach like other approaches still has poor results in case of
spiky spectra. Spectral reconstruction under very narrow band illuminations or
severely spiky illuminations will be interesting and challenging areas for future
investigation. Another interesting areas to explore in the future will be intrinsic
video and retinal imaging (where some retinal tissues can be fluorescent).
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3. Ayala, F., Echávarri, J.F., Renet, P., Negueruela, A.I.: Use of three tristimulus
values from surface reflectance spectra to calculate the principal components for
reconstructing these spectra by using only three eigenvectors. J. Opt. Soc. Am.
A 23(8), 2020–2026 (2006)

4. Barakzehi, M., Amirshahi, S.H., Peyvandi, S., Afjeh, M.G.: Reconstruction of total
radiance spectra of fluorescent samples by means of nonlinear principal component
analysis. J. Opt. Soc. Am. A 30(9), 1862–1870 (2013)

5. Brainard, D.H., Freeman, W.T.: Bayesian color constancy. J. Opt. Soc. Am.
A 14(7), 1393–1411 (1997)

6. Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal least squares learning algorithm
for radial basis function networks. IEEE Transactions on Neural Networks 2(2),
302–309 (1991)

7. Cheng, D., Prasad, D.K., Brown, M.S.: Illuminant estimation for color constancy:
why spatial-domain methods work and the role of the color distribution. J. Opt.
Soc. Am. A 31(5), 1049–1058 (2014)

8. Cohen, J.: Dependency of the spectral reflectance curves of the munsell color chips.
Psychonomic Science (1964)

9. Connah, D., Westland, S., Thomson, M.G.: Recovering spectral information using
digital camera systems. Coloration Technology 117(6), 309–312 (2001)

10. Eslahi, N., Amirshahi, S.H., Agahian, F.: Recovery of spectral data using weighted
canonical correlation regression. Optical Review 16(3), 296–303 (2009)

11. Fairman, H.S., Brill, M.H.: The principal components of reflectances. Color Re-
search & Application 29(2), 104–110 (2004)

12. Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Color and
Imaging Conference, vol. 2004, pp. 37–41 (2004)

13. Gijsenij, A., Gevers, T., van de Weijer, J.: Computational color constancy: Survey
and experiments. IEEE Transactions on Image Processing 20(9), 2475–2489 (2011)

14. Hall, R., Hall, R.: Illumination and color in computer generated imagery, vol. 7.
Springer, New York (1989)

15. Jaaskelainen, T., Parkkinen, J., Toyooka, S.: Vector-subspace model for color rep-
resentation. J. Opt. Soc. Am. A 7(4), 725–730 (1990)

16. Jiang, J., Liu, D., Gu, J., Susstrunk, S.: What is the space of spectral sensitivity
functions for digital color cameras? In: IEEE Workshop on Applications of Com-
puter Vision, pp. 168–179 (2013)

17. Laamanen, H., Jetsu, T., Jaaskelainen, T., Parkkinen, J.: Weighted compression
of spectral color information. J. Opt. Soc. Am. A 25(6), 1383–1388 (2008)

18. Lenz, R., Meer, P., Hauta-Kasari, M.: Spectral-based illumination estimation and
color correction. Color Research & Application 24, 98–111 (1999)

19. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics
and Probability, California, USA, vol. 1, pp. 281–297 (1967)

20. Maloney, L.T.: Evaluation of linear models of surface spectral reflectance with
small numbers of parameters. J. Opt. Soc. Am. A 3(10), 1673–1683 (1986)



Training-Based Spectral Reconstruction from a Single RGB Image 201

21. Maloney, L.T., Wandell, B.A.: Color constancy: a method for recovering surface
spectral reflectance. J. Opt. Soc. Am. A 3(1), 29–33 (1986)

22. Marimont, D.H., Wandell, B.A.: Linear models of surface and illuminant spectra.
J. Opt. Soc. Am. A 9(11), 1905–1913 (1992)

23. Park, J.I., Lee, M.H., Grossberg, M.D., Nayar, S.K.: Multispectral imaging us-
ing multiplexed illumination. In: International Conference on Computer Vision,
pp. 1–8 (2007)

24. Parkkinen, J.P., Hallikainen, J., Jaaskelainen, T.: Characteristic spectra of munsell
colors. J. Opt. Soc. Am. A 6(2), 318–322 (1989)

25. Peyvandi, S., Amirshahi, S.H.: Generalized spectral decomposition: a theory and
practice to spectral reconstruction. J. Opt. Soc. Am. A 28(8), 1545–1553 (2011)

26. Peyvandi, S., Amirshahi, S.H., Hernández-Andrés, J., Nieves, J.L., Romero, J.:
Spectral recovery of outdoor illumination by an extension of the bayesian inverse
approach to the gaussian mixture model. J. Opt. Soc. Am. A 29(10), 2181–2189
(2012)

27. Prasad, D.K., Nguyen, R., Brown, M.S.: Quick approximation of camera’s spectral
response from casual lighting. In: IEEE International Conference on Computer
Vision Workshops, pp. 844–851 (2013)

28. Romero, J., Garcia-Beltran, A., Hernández-Andrés, J.: Linear bases for represen-
tation of natural and artificial illuminants. J. Opt. Soc. Am. A 14(5), 1007–1014
(1997)

29. Sharma, G., Wang, S.: Spectrum recovery from colorimetric data for color re-
productions. In: Color Imaging: Device-Independent Color, Color Hardcopy, and
Applications VII. Proc. SPIE, vol. 4663, pp. 8–14 (2002)

30. Zhang, X., Xu, H.: Reconstructing spectral reflectance by dividing spectral space
and extending the principal components in principal component analysis. J. Opt.
Soc. Am. A 25(2), 371–378 (2008)

31. Zhao, H., Kawakami, R., Tan, R.T., Ikeuchi, K.: Estimating basis functions for
spectral sensitivity of digital cameras. In: Meeting on Image Recognition and Un-
derstanding, vol. 1 (2009)

32. Zhao, Y., Berns, R.S.: Image-based spectral reflectance reconstruction using the
matrix r method. Color Research & Application 32(5), 343–351 (2007)


	Training-Based Spectral Reconstructionfrom a Single RGB Image
	1 Introduction
	2 Related Work
	3 Scene Reflectance Reconstruction
	3.1 Pre-requisites
	3.2 Training Stage
	3.3 Reconstruction Stage

	4 Spectral Illumination Reconstruction
	5 Dataset of Hyperspectral Images
	6 Experimental Results
	7 Discussion and Concluding Remarks
	References




