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Abstract. It is now generally recognized that user-provided image tags
are incomplete and noisy. In this study, we focus on the problem of tag
completion that aims to simultaneously enrich the missing tags and re-
move noisy tags. The novel component of the proposed framework is
a noisy matrix recovery algorithm. It assumes that the observed tags
are independently sampled from an unknown tag matrix and our goal
is to recover the tag matrix based on the sampled tags. We show theo-
retically that the proposed noisy tag matrix recovery algorithm is able
to simultaneously recover the missing tags and de-emphasize the noisy
tags even with a limited number of observations. In addition, a graph
Laplacian based component is introduced to combine the noisy matrix
recovery component with visual features. Our empirical study with mul-
tiple benchmark datasets for image tagging shows that the proposed
algorithm outperforms state-of-the-art approaches in terms of both ef-
fectiveness and efficiency when handling missing and noisy tags.

Keywords: Tag completion, noisy tag matrix recovery, matrix comple-
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1 Introduction

With the ever-growing popularity of digital photography and social media, the
number of images with user-provided tags available over the internet has in-
creased dramatically in the last decade. However, many user-provided tags are
incomplete or inaccurate in describing the visual content of images [24], mak-
ing them difficult to be utilized for tasks such as tag based image retrieval and
tag recommendation [15,16,27]. This is particularly true for images extracted
from social media [16,27], where in most cases, only a few tags are provided for
each image and some of them are noisy. In this work, we develop an effective
algorithm that can simultaneously recover the missing tags and remove or down
weight the noisy tags which are irrelevant to the visual content of images.

We refer to our problem as tag completion [7] to distinguish it from previous
image tagging work. Image annotation [9,11] automatically assigns images with
appropriate keywords. As state-of-the-art image annotation approach, search
based algorithms [9,11] rely on the quality of tags assigned to training images [9].

D. Fleet et al. (Eds.): ECCV 2014, Part VII, LNCS 8695, pp. 424–438, 2014.
c© Springer International Publishing Switzerland 2014



Image Tag Completion by Noisy Matrix Recovery 425

Tag recommendation suggests candidate tags to annotators in order to improve
the efficiency and quality of the tagging process [14]. It usually identifies missing
tags by topic models (e.g. Latent Dirichlet Allocation (LDA)) [2,14], but does not
address the noisy tag problem. Tag refinement applies various techniques (e.g.
topic model, tag propagation, sparse training and partial supervision [6,17,25])
to select a subset of user-provided tags based on image features and tag correla-
tion [26]. Although it is able to handle noisy tags, it does not explicitly address
the missing tag problem. Unlike most existing studies, the tag completion prob-
lem studied in this work simultaneously addresses the challenges of missing and
noisy tags [7].

Since the tags of each image can be viewed as a mixture of topics and each
topic follows a multinomial distribution over the vocabulary [2,14,25], we use a
maximum likelihood component to ensure the learned tag probability matrix to
be consistent with the observed tags. To simultaneously address the problem of
missing and noisy tags, we assume that the observed tags are sampled indepen-
dently from a low rank tag matrix; our goal is to recover the tag matrix from the
noisy observations. By enforcing the recovered matrix to be low rank, we are able
to effectively capture the correlation among different tags, which turns out to be
the key in filling out missing tags and down weighting noisy ones [4,19,23]. This
is in contrast to the existing studies for tag completion [15,18,24,27] where no
principled approach is presented to capture the dependence among tags, which,
however in our opinion, is the key issue to the tag completion problem. We refer
to the proposed approach as tag completion by noisy matrix recovery, orTCMR
for short.

We note that although low rank matrix recovery is closely related to topic
model that has been applied to many image tag related problems [14,25], it has
three novel contributions. First, unlike most existing topic models [1] that need
to solve a non-convex optimization problem, the proposed TCMR solves a con-
vex optimization problem and therefore is computationally more efficient. We
have shown theoretically that under favorable conditions, the proposed TCMR
is guaranteed to recover most of the missing tags even when the user-provided
tags are noisy. This is in contrast to most topic models that do not come with
theoretical support. Besides, TCMR further improves the performance by effec-
tively exploiting the statistical dependence between image features and tags via
a graph Laplacian [26,27], which reduces the impact of incomplete and noisy
tags by assigning high weights to tags that are consistent with image features,
and low weights to those which are not. Finally, our work is closely related to
the theory of matrix completion and recovery [4,5]. Unlike existing studies on
matrix completion/recovery, a maximum likelihood estimation is used in this
work to recover the underlying low rank tag matrix, adding more complexity to
both optimization and analysis.

The paper is organized as follows. Section 2 reviews the related work. Section
3 introduces the noisy matrix recovery and TCMR. Section 4 presents the the-
oretical support of TCMR. Section 5 summarizes the experimental results, and
Section 6 concludes this work with future directions.
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2 Related Work

Image Tag Completion. There are only a few studies fitting the category of
tag completion with both incomplete and noisy tags. [27] proposes a data-driven
framework for tag ranking that optimizes the correlation between visual cues
and assigned tags. [16] removes the noisy tags based on the visual and semantic
similarities, and expands the observed tags with their synonyms and hyper-
nyms using WordNet. [24] proposes to search for the optimal tag matrix that
is consistent with both observed tags and visual similarity. [18] formulates tag
completion into a non-negative data factorization problem. [15] exploits sparse
learning techniques to reconstruct the tag matrix. None of these studies provides
any theoretical guarantee for their approaches. Matrix decomposition is adopted
in [3,21,26] to handle both missing and noisy tags. The key limitation of these
approaches is that they require a full observed matrix with a small number of
errors, making it inappropriate for tag completion.

Low Rank Matrix Recovery. Low rank matrix recovery has been applied in
many applications [4,21], including visual recovery [19,21], multilabel classifica-
tion [3], tag refinement [26], etc. Since the function of matrix rank is non-convex,
a popular approach is to replace it with the nuclear norm, the tightest convex re-
laxation for matrix rank [4,5,26]. Using the nuclear norm regularization, it is pos-
sible to accurately recover a low rank matrix from a small fraction of its entries [5]
even if they are corrupted with noise [4,10]. Various algorithms [10,12,21,26] have
been developed to solve the related optimization problem. Instead of the �1-norm
loss [10,26], squared loss [23] and max-margin factorization model [19] used in
most studies on matrix completion/recovery, a maximum likelihood estimation
is used in our work to recover the underlying tag matrix.

3 Image Tag Completion by Noisy Matrix Recovery
(TCMR)

In this section, we first describe a noisy matrix recovery framework for tag com-
pletion and then discuss how to incorporate visual features into the matrix re-
covery framework.

3.1 Noisy Matrix Recovery

Let m be the number of unique tags, and D = {d1, · · · ,dn} be a collection of
n tagged images, where di = (di,1, · · · , di,m) is the tag vector for the i-th image
with di,j = 1 when tag j is assigned to the image and zero, otherwise. For the
simplicity of analysis, in this study, we assume that all the images have the same
number of assigned tags, denoted by m∗1.
1 This assumption is only for the convenience of analysis, and does not affect the
algorithm. When different number of tags are observed, we apply the weighting
technique [22] to handle the variation in the number of tags.
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Following the idea of language models [1,2], we assume that all the observed
tags in each image are drawn independently from a fixed but unknown multino-
mial distribution. Let pi = (pi,1, · · · , pi,m) be the multinomial distribution used
to generate tags in di. We use P = (p1, · · · ,pn) to represent the multinomial
distributions for all the images. Our goal is to accurately recover the multinomial
distribution P from a limited number of observed tags in D. In general, this is
impossible since the number of parameters to be estimated is significantly larger
than the number of observed tags. To address this challenge, we follow the key
assumption behind most topic models [23,26], i.e. tags of any image are sampled
from a mixture of a small number of multinomial distributions. A direct impli-
cation of this assumption is that matrix P has to be of low rank, the foundation
for the theory of low rank matrix recovery [5].

Before presenting our algorithm and analysis, we first introduce the notation
that will be used throughout this paper. We use Q∗,i to represent the i-th column
of matrixQ, |Q|F , |Q|tr and |Q|∗ to represent the Frobenius norm, nuclear (trace)
norm and spectral norm of matrix Q, respectively. |Q|1 is used to represent the
�1 norm of matrix Q, i.e., |Q|1 =

∑
i,j |Qi,j |, and |v|∞ is used to represent the

infinity norm of vector v, i.e., |v|∞ = maxi |vi|. We also use ei ∈ {0, 1}n to
represent the i-th canonical basis for Rn, and 1 ∈ R

m to represent a vector with
all its entries being 1.

The proposed approach combines the idea of maximum likelihood estimation,
a common approach for topic model, and the theory of low rank matrix recovery.
It aims to recover the multinomial probability matrix P by solving the following
optimization problem

min
Q∈Δ

L(Q) := −
n∑

i=1

m∑

j=1

di,j
m∗

logQi,j

︸ ︷︷ ︸
:=E1

+ ε|Q|tr
︸ ︷︷ ︸
:=E2

, (1)

where domain Δ =
{
Q ∈ (0, 1)m×n : Q�

∗,i1 = 1, i ∈ [1, n]
}
, and ε is a regular-

ization parameter. We denote by Q̂ the optimal solution to (1). Term E1 in (1)
ensures the learned probability matrix Q̂ to be consistent with the observed tag
matrix, and term E2 ensures that Q̂ is of low rank and therefore all image tags
are sampled from a mixture of a small number of multinomial distributions.

3.2 Incorporating Visual Features

The limitation of the noisy matrix recoverymethod in (1) is that it fails to exploit
visual features, an important hint for accurate tag prediction. So we next modify
(1) to incorporate visual features.

Let X = (x1, · · · ,xn)
� include the visual features of all images, where vec-

tor xi ∈ R
d represents the visual content of the ith image. Let W = [wi,j ]n×n

be the pairwise similarity matrix, where wi,j is the visual similarity between
images xi and xj , i.e., wi,j = exp

(−d(xi,xj)
2/σ2

)
if j ∈ Nk(i) or i ∈ Nk(j),

where Nk(i) denotes the index set for the k nearest neighbors of the ith image,
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k is empirically set k = 0.001n, d(xi,xj) represents the distance between xi

and xj , and σ is the average distance. We adopt χ distance if xi is histogram
features and �2 distance, otherwise. Using matrix W , we can measure the consis-
tency between the estimated tag probability matrix Q and visual similarities by∑n

i,j=1 Wi,j |Q∗,i−Q∗,j|2 = Tr(Q�LQ), where L = diag(W�1)−W is the graph

Laplacian. By minimizing Tr(Q�LQ), we ensure that the recovered probability
matrix Q to be consistent with visual features.

By combining the noisy matrix recovery component with the component of
visual features, we recover the tag probability matrix Q by solving the following
optimization problem

min
Q∈Δ

−
n∑

i=1

m∑

j=1

di,j
m∗

logQi,j +
α

n
Tr(QTLQ) + β|Q|tr, (2)

where both α and β are regularization terms. By minimizing the objective in
(2), we are able to simultaneously fill out the missing tags and filter out/down
weight the noisy tags.

3.3 Implementation

Incorporation with Irrelevant Tags. Regarding the fact that the initially unob-
served tags are with a small probability relevant to the associated image, we also
maximize the likelihood of their irrelevance, and the objective in (2) becomes

min
Q∈Δ

−
n,m∑

i,j=1

[
di,j
m∗

logQi,j +
1− di,j
m−m∗

log(1−Qi,j)

]

+
α

n
Tr(QTLQ) + β|Q|tr,

(3)

where Δ is defined in (1).

Efficient Solution of the Proposed Algorithm. We incorporate several heuristics
to improve the computational efficiency. First, we adopt one projection paradigm
that has been successfully applied to metric learning [8]. The key idea is to
ignore the domain constraint Q ∈ Δ during the iteration, and only project the
solution Q into Δ at the end of optimization. As a result, we only need to
solve an unconstrained optimization problem. Second, we adopt the extended
gradient method in [12]. To this end, we rewrite the objective function in (2) as
L(Q) = f(Q) + ε|Q|tr. Given the current solution Qk−1, we update the solution
Qk by solving the following optimization problem

argmin
Q

Ptk(Q,Qk−1) =
1

2

∣
∣
∣
∣Q−

(

Qk−1 − 1

tk
∇f(Qk−1)

)∣
∣
∣
∣

2

F

+
ε

tk
|Q|tr. (4)

where tk is the step size for the kth iteration. The detailed algorithm for solving
the unconstrained version of (2) can be found in [12].
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4 Theoretical Guarantee of TCMR

The following theorem bounds the difference between P and the recovered prob-
ability matrix Q̂.

Theorem 1. Let r be the rank of matrix P , and N be the total number of
observed tags. Let Q̂ be the optimal solution to (1). Assume N ≥ Ω(n log(n+m)),
and denote by μ− and μ+ the lower and upper bounds for the probabilities in P.
Then we have, with a high probability

1

n
|Q̂− P |1 ≤ O

(
rnθ2 log(n+m)

N

)

, where θ2 :=
μ+|P1|∞

nμ2−
≤ μ2

+

μ2−
. (5)

It is clear that the recovery error is O(rn log(n + m)/N), implying that the
tag matrix can be accurately recovered when N ≥ Ω(rn log(n + m)). This is
consistent with the standard results in matrix completion [13]. The impact of low
rank assumption is analyzed in Section 4.1. We note that unlike standard matrix
completion theory where observed entries are sampled uniformly at random from
a given matrix, in topic model, each observed tag is sampled from an unknown
multinomial distribution. This difference makes the square loss inappropriate for
topic model, leading to additional challenges in analyzing the recovery property
for topic model.

We now proceed to present a sketch of the proof. More details can be found
in the supplementary document. Define matrix M as

M :=

n∑

i=1

(
1

m∗
di − pi

)

e�i =

n∑

i=1

1

m∗
die

�
i − P, (6)

where ei ∈ {0, 1}n is the canonical base for Rn. Since the occurrence of each tag
in di is sampled according to the underlying multinomial distribution pi, it is
easy to verify that E[M ] = 0.

Before presenting our analysis, we need two supporting lemmas that are im-
portant to our analysis.

Lemma 1. Let P ∈ Δ and Q ∈ Δ be two probability matrices. We have

n∑

i=1

m∑

j=1

|Pi,j −Qi,j |2
Qi,j

≥
n∑

i=1

m∑

j=1

|Pi,j −Qi,j | = |P −Q|1. (7)

Lemma 2. ([13]) Let Z1, · · · , Zn be independent random matrices with dimen-
sion m1 × m2 that satisfy E[Zi] = 0 and |Zi|∗ ≤ U almost surely for some
constant U , and all i = 1, · · · , n. Define

σZ = max

{∣
∣
∣
∣
∣

1

n

n∑

i=1

E[ZiZ
�
i ]

∣
∣
∣
∣
∣
∗
,

∣
∣
∣
∣
∣

1

n

n∑

i=1

E[Z�
i Zi]

∣
∣
∣
∣
∣
∗

}

. (8)

Then, for all t > 0, with a probability 1− e−t, we have
∣
∣
∣
∣
∣

1

n

n∑

i=1

Zi

∣
∣
∣
∣
∣
∗
≤ 2max

{

σZ

√
t+ log(m1 +m2)

n
, U

t+ log(m1 +m2)

n

}

. (9)
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The following theorem is the key to our analysis. It shows that the estima-
tion error |P − Q|1, measured by �1 norm, will be small when P can be well
approximated by a low rank matrix.

Theorem 2. Let Q̂ be the optimal solution to (1). If ε ≥ |M |∗/μ−, where M is
defined in (6), then

|Q̂− P |1 ≤ min
Q∈Δ

{
1

μ−
|Q− P |2F + 16ε2μ+rank(Q)

}

. (10)

To utilize Theorem 2 for bounding the difference between P and Q̂, we need
to bound |M |∗. The theorem below bounds |M |∗ by using Lemma 2.

Theorem 3. Define γ as

γ :=
2

μ−
max

⎛

⎝ t+ log(m+ n)

m∗
,

√

max(1, |P1|∞)
t+ log(n+m)

m∗

⎞

⎠ . (11)

With a probability 1− e−t, we have |M |∗ ≤ γμ−.

Combining Theorems 2 and 3, we have the following result for recovering the
probability matrix P .

Corollary 1. Set ε = γ. With a probability at least 1− e−t, we have

|Q̂− P |1 ≤ min
Q∈Δ

{|Q − P |2F /μ− + 16γ2μ+rank(Q)
}
. (12)

Furthermore, let P̂ be the best rank-r approximation of P . We have, with a
probability 1− e−t

|Q̂− P̂ |1 ≤ |P − P̂ |2F /μ− + 16γ2μ+r. (13)

We now come to the proof of Theorem 1. When the rank of P is r, using
Corollary 1, we have, with a high probability, |Q̂−P |1 ≤ 16γ2μ+r. If |P1|∞ ≥ 1
and m∗ ≥ O(log(m+ n)), we have

γ = O

⎛

⎝ 1

μ−

√

|P1|∞ log(n+m)

m∗

⎞

⎠ (14)

and therefore, with a high probability, we have

1

n
|Q̂ − P |1 ≤ O

(
r log(n+m)

m∗
μ+|P1|∞

μ2−

)

≤ O

(
rn log(n+m)

N

μ+|P1|∞
nμ2−

)

.(15)

where N is the number of observed tags. This immediately implies Theorem 1.
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4.1 Impact of Low Rank Assumption on Recovery Error

In order to see the impact of low rank assumption, let us consider the maximum
likelihood estimation of multinomial distribution. Since tags for different images
are sampled independently, we only need to consider one image at each time.
Let p be the underlying multinomial distribution to be estimated, and let d be
the image tag vector comprised of m∗ words sampled from p. We estimate p by
the simple maximum likelihood estimation, i.e.,

min
p∈[μ−,μ+]m:p�1=1

−
n∑

i=1

di log pi, (16)

where m is the number of unique tags, n is the number of images, μ− and μ+ are
the lower and upper bounds for the probabilities in matrix P = (p1, · · · ,pn).

Theorem 4. Define z = d/m∗−p. Let q̂ be the optimal solution to (16). Then

|p− q̂|1 ≤ (μ2
+/μ

2
−)|z|22.

Theorem 5. With a probability 1− 2e−t,

|z|2 ≤
√

t+ logm

μ−m∗
|p|2.

Following the concentration inequality for vectors in Theorem 5, we bound
|z|2. Then by combining Theorems 4 and 5, we have, with a probability 1−2e−t,

|p− q̂|1 ≤ μ2
+|p|22
μ4−

2(t+ logm)

m∗
(17)

By applying the above result to matrix P and taking the union bound, we
have, with probability 1− e−t,

1

n
|P − Q̂|1 ≤ μ2

+

μ4−
max
1≤i≤n

|pi|22
2n(t+ logm+ logn)

|Ω| . (18)

We now compare the bound in (18) to that in (5). It is easy to verify that
|pi|22/μ2

− ≥ m for any pi. Hence, the net effect of the bound in (5) is to replace
m with r, which is exactly the impact of low rank assumption.

5 Experiments

5.1 Datasets and Experimental Setup

Four benchmark datasets are used to evaluate our proposed algorithm. ESP
Game dataset was collected for a collaborative image labeling task and consists
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of images including logos, drawings and personal photos. IAPR TC12 dataset
consists of images of actions, landscapes, animals and many other contemporary
life, and its tags are extracted from the text captions accompanying each image.
Both Mir Flickr and NUS-WIDE datasets [7] include images crawled from Flickr,
together with users provided tags. ESP Game and IAPR TC12 are collabora-
tively human labeled and thus relatively clean, while Mir Flickr and NUS-WIDE
are automatically crawled from social media and hence pretty noisy. A bag-of-
words model based on densely sampled SIFT descriptors is used to represent
the visual content in Mir Flickr, ESP Game and IAPR TC12 datasets2. In NUS-
WIDE dataset, visual content are represented by six low-level features, including
color information, edge distribution and wavelet texture [7].

To evaluate the proposed approach for tag completion, we divide the original
tag matrix Y into two parts: the observed tag matrix (i.e. training set) D and
the left as evaluation ground truth (i.e. testing set). We create the observed
tag matrix by randomly sampling a subset of tags from D for each image. The
number of observed tags m∗ is set to 3 for Mir Flickr and 4 for other datasets
throughout this section unless it is specified otherwise. To guarantee that the
evaluation is meaningful, we ensure that each image has at least one evaluation
tag by filtering out images with too few tags and tags associated with only a
few images. As a result of this filtering step, Mir Flickr has 5, 231 images with
372 tags, ESP Game has 10, 450 images with 265 tags, IAPR TC12 has 12, 985
images with 291 tags, and NUS-WIDE has 20, 968 images with 420 tags. Detailed
statistics about the refined datasets are listed in the supplementary document.
All the hyper parameter values used in TCMR, e.g. ε, α, β, and the parameter
values in the baselines are determined by cross-validation.

Following [15], we evaluate the tag completion accuracy by the average preci-
sion @N (AP@N). It measures the average percentage of the top N recovered
tags that are correct. Note that a tag is correctly recovered if it is included in the
original tag matrix Y but not observed in D. We also use average recall (AR@N)
to measure the percentage of correct tags that are recovered by a computational
algorithm out of all ground truth tags, and coverage (C@N) to measure the per-
centage of images with at last one correctly recovered tag. Both the mean and
standard deviation of evaluation metrics over 20 experimental trials are reported
in this paper.

5.2 Comparison to State-of-the-Art Tag Completion Methods

We first compare our proposed TCMR algorithm3 to several state-of-the-art
tag completion approaches: (1) LRES [26], tag refinement towards low-rank,
content-tag prior and error sparsity, (2) TMC [24] that searches for the optimal

2 The features were obtained from
http://lear.inrialpes.fr/people/guillaumin/data.php. More detailed descrip-
tion about Mir Flickr, ESP Game and IAPR TC12 can also be found at this site.

3 The source code can be downloaded from our website
http://www.cse.msu.edu/~fengzhey/downloads/src/tcmr.zip

https://www.flickr.com/
http://lear.inrialpes.fr/people/guillaumin/data.php
http://www.cse.msu.edu/~fengzhey/downloads/src/tcmr.zip
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tag matrix consistent with both the observed tags and visual similarity, (3) MC-
1 [3] which applies low rank matrix completion to the concatenation of visual
features and assigned tags, (4) FastTag [6] that co-regularizes two simple linear
mappings in a joint convex loss function, (5) LSR [15] that optimally reconstructs
each image and each tag with remaining ones under constraints of sparsity. We
also compare the proposed approach with three state-of-the-art image annotation
algorithms that are designed for clean tags: (6) TagProp [11], (7)RKML [9],
a kernel metric learning algorithm, and (8) vKNN, a nearest neighbor voting
algorithm.
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Fig. 1. Tag completion performance of TCMR and state-of-the-art baselines

Figs. 1 (a), (b), and (c) show the results for the IAPR TC12 dataset measured
by AP@N , AR@N and C@N , respectively. Figs. 1 (d), (e), and (f) show the
results of AP@N for the three remaining datasets; the results of the other two
metrics can be found in the supplementary document. We observe that overall,
the proposed TCMR and LSR yield significantly better performance than the
other approaches in comparison. TCMR performs significantly better than LSR
in terms of C@N . In particular, TCMR recovers at least one correct tag out of
the top six predicted tags for 80% of the images while the other approaches are
only able to recover at least one correct tag for less than 50% of the images,
indicating that the proposed algorithm is more effective in recovering relevant
tags for a wide range of images, an important property for image tag completion
algorithm. We also observe that TCMR performs slightly better than LSR in
terms of AP@N when the number of predicted tags N is small.

Table 1 summarizes the running time of all algorithms in comparison. We
observe that although TCMR is not as efficient as several baselines, it is more
efficient than LSR which yields similar performance as TCMR in multiple cases.
The high computational cost of LSR is due to the fact that it has to train a
different model for each instance, which does not scale well to large datasets.
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Table 1. Running time (seconds) for tag completion baselines. All algorithms are run
in Matlab on an AMD 4-core @2.7GHz and 64GB RAM machine.

LRES TMC MC-1 FastTag LSR TagProp RKML vKNN TCMR

MirFlickr 5.6e2 4.7e3 8.6e2 1.4e3 6.2e3 2.5e2 3.0e2 2.1e2 1.3e3

ESP Game 3.4e2 5.8e3 1.0e3 8.6e2 1.3e4 6.7e2 1.3e3 4.3e2 5.9e3

IAPR TC12 5.2e2 1.2e4 1.7e3 1.6e3 1.6e4 1.1e3 1.5e3 1.0e3 9.4e3

NUS-WIDE 6.8e3 2.9e4 1.8e3 2.6e3 2.8e4 1.5e3 3.8e3 1.2e3 1.9e4

Evaluation of Noisy Matrix Recovery. The key component of the proposed ap-
proach is a noisy matrix recovery framework. To independently evaluate the
effectiveness of noisy matrix recovery component proposed in this work, we com-
pare it (TCMR0) to several baseline approaches for matrix completion that do
not take into account visual features: (1) Freq, which assigns the most frequent
tags to all the images, (2) LSA [20], Latent Semantic Analysis, (3) tKNN, ma-
jority voting among the nearest neighbors in the tag space, (4) LDA [2], (5)
LRES0 [26], a version of LRES algorithm without using visual features, and (6)
pLSA, probabilistic LSA.
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Fig. 2. AP@N for different topic models and matrix completion algorithms

Fig. 2 compares the tag completion performance without using visual features.
We observe that the proposed noisy matrix recovery algorithm performs signifi-
cantly better than the other baseline methods, implying that it can successfully
capture the important dependency among tags. We also observe that a simple
tKNN algorithm works better than the topical models (LSA, LDA and pLSA),
suggesting that directly applying a topical model may not be appropriate for the
tag completion problem.

From Figs. 1 and 2, we observe that TMC and RKML perform much worse
than the other algorithms in comparison, while LSA and tKNN perform quite
good. Accordingly, we exclude TMC and RKML, and include LSA and tKNN
in the following evaluation cases.

Sensitivity to the Number of Observed Tags. We also examine the sensitivity of
the proposed TCMR to the number of initially observed tags by comparing it
to the baseline algorithms on IAPR TC12 and NUS-WIDE datasets. To make a
meaningful evaluation, we only keep images with 6 or more tags for IAPR TC12
dataset, and images with 9 or more tags for NUS-WIDE dataset. As before, we
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divide the tags into testing and training sets, and randomly sample m∗ tags for
each image from the training tag set to create the partially observed tag matrix,
where the number of sampled tags m∗ is varied. We evaluate the tag completion
performance on the testing tag sets.
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Fig. 3. Tag completion performance (AP@3) with varied number of observed tags

Fig. 3 shows the influence of the number of partially observed tags to the final
tag completion performance measured by AP@3; results of the metric AR@5 are
reported in the supplementary document. We observe that the performance of all
algorithms improves with increasing number of observed tags. We also observe
that when the number of observed tags is 3 or larger, TCMR and LSR perform
significantly better than the other baseline approaches. When the number of
observed tags is small (i.e. 1 or 2), TCMR performs significantly better than
LSR, indicating that the proposed algorithm is noticeably effective even when
the number of observed tags is small.

Sensitivity to Noise. To evaluate the sensitivity to noise, we conduct experiments
with noisy observed tags on datasets IAPR TC12 and NUS-WIDE. To generate
noisy tags, we replace some of the sampled tags with the incorrect ones that are
chosen uniformly at random from the vocabulary. The percentage of noisy tags
among the total observed ones in the whole gallery is varied from 0 to 0.9. To
ensure there are a sufficient number of noisy tags as well as sufficient number of
images, we set m∗, the number of sampled tags, to be 8 for NUS-WIDE dataset
and to be 4 for IAPR TC12 dataset in this experiment.

Fig. 4 shows the tag completion performance for different algorithms using
noisy observed tags. It is not surprising to observe that the performance of
all algorithms in comparison degrades with increasing amounts of noise. We also
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Fig. 4. Comparison of tag completion performance (AP@3)using noisy observed tags
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Table 2. Examples of tag completion results generated by some baseline algorithms
and the proposed TCMR. The observed tags in red italic font are noisy tags, and
others are randomly sampled from the ground truth tags. The completed tags are
ranked based on the recovered scores in descending order, and the correct ones are
highlighted in blue bold font.

building, front, boy, cap, hair, bank, bush, balcony, door, bed, brick,
Ground group, people, house, power, helmet, entrance, car, curtain, leg,

palm, lawn, pole, roof, sky, jacket, life, flag, front, man, short,
truth tree, square, shirt, sweater, people, river, lamp, house, sweater,

statue terrain, tree rock, tree sky, window wall, woman
Observ- lawn, people, cap, terrain, life, river balcony, car, curtain, wall,
ed tags square, cloud sky, meadow tree, llama window, water floor, team

LSER

people, bike, terrain, sky, tree, river, entrance, car, woman, wall,
wall, cloud, hair, sweater, life, helmet, front, balcony, table, room,
square, roof, mountain, rock, woman water, window, hand, curtain,

tree, house, wall, meadow, llama, jacket, building, people, floor, team,
lawn, palm cap, trouser gravel, people harbour, sky person, front

MC-1

people, square, sky, meadow, tree, river, window, car, wall, curtain,
cloud, lawn, terrain, cap, life, man, balcony, water, floor, team,
tree, sky, wall, mountain, llama, wall, man, front, window, room,
building, man, house, people, front building, wall, man, table,
front, wall woman, hair mountain, sky house, woman front, bed

FastTag

tree, tourist, wall, boy, life, mountain, building, front, wall, room,
footpath, shirt, desk, meadow, people, front, house, car, table, window,
river, group, mountain, girl, tourist, railing, grey, window, bed, curtain,
woman, tile hair, tee-shirt, river, llama, rail, balcony, hand, night,

people plane, fence tree, wall street, photo cup, towel

LSR

sky, square, house, sky, bank, jacket, front, building, wall, room,
building, hill, boy, grey, river, helmet, house, wall, window, front,

people, tree, jacket, tree, bush, tourist, sky, cliff, uniform, bed,
house, lawn, terrain, cloud, boat, mountain, door, window, table, jersey,
street, cloud landscape tree, people street, man short, round

TagProp

people, tree, wall, woman, people, tree, wall, front, front, woman,
square, man, sky, front, woman, front, man, building, wall, table,

house, front, sweater, hair, man, rock, woman, table, man, house,
wall, tourist, mountain, wall, river, people, house, room, people,
man, woman table, desert sky, mountain sky, entrance tree, window

vKNN

tree, wall, sweater, desert, people, tree, front, building, room, woman,
house, sky, landscape, helmet, front, people, house, table, front,

people, sky, terrain, hair, river, bush, entrance, sky, house, wall,
woman, bike, mountain, wall, woman, life, wall, balcony, man, chair,
front, square cloud, front sky, man tree, window window, child

LSA

people, cloud, sky, meadow, tree, bush, car, window, wall, room,
square, roof, cloud, hair, lake, palm, street, house, table, bed,

group, meadow, roof, road, meadow, river, building, room, window, hair,
building, tower, short, tree, tourist, slope, lamp, front, girl, wood,

landscape woman, boy building, grass bed, bush boy, curtain

tKNN

people, square, sky, meadow, tree, river, window, car, wall, floor,
cloud, lawn, terrain, cap, life, bush, balcony, wall, curtain, room,
sky, tree, people, cloud, house, sky, house, front, bed, front,

mountain, street, hill, mountain, building, man, building, bed, window, girl,
building road, tree people, bank room, curtain team, brick

TCMR

people, square, sky, terrain, tree, river, car, window, wall, floor,
lawn, sky, cap, boy, hill, life, boat, balcony, door, curtain, bed,
building, house, hair, jacket, bank, building, wall, brick, room
tree, cloud, landscape, llama, helmet, front, house, window, front,
street, palm sweater, cloud rock, mountain water, sky table, team
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observe that LSR seems to be significantly sensitive to the noise in the observed
tags than the proposed TCMR algorithm. In particular, we find that TCMR
outperforms LSR significantly when the percentage of noisy tags is large. The
contrast is particularly obvious for the IAPR TC12 dataset, where LSR starts
to perform worse than several other baselines when the noise level is above 50%.
Besides, all algorithms reduce their performance dramatically as the noise level
increases from 70% to 90%. This is not surprising because at the 90% noise
level, a number of images do not have accurate observed tags for training the
model, especially for the NUS-WIDE dataset whose originally assigned tags are
pretty noisy. However, the proposed TCMR algorithm is overwhelmingly better
in this case, especially on IAPR TC12, indicating that it is more powerful in
recovering expected tags from severely noisy tagged images. Table 2 shows the
tag completion results of exemplar images by different algorithms, where both
partially true and noisy tags are observed.

6 Conclusions

We have proposed a robust yet efficient image tag completion algorithm (TCMR),
which is capable of simultaneously fill in the missing tags and remove/down
weight the noisy tags. TCMR introduces a noisy matrix recovery procedure that
captures the underlying dependency by enforcing the recovered matrix to be
of low rank. Besides, a graph Laplacian based on the image visual features is
also applied to ensure the recovered tag matrix is consistent with the visual
content. Experiments over four different scaled image datasets demonstrate the
effectiveness and efficiency of the proposed TCMR algorithm by comparing it
to state-of-the-art tag completion approaches. In the future, we plan to improve
the tag completion performance by incorporating the visual features a more
effectively, and adopting more efficient nuclear norm optimization procedure.
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