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Abstract. Conventional pairwise constrained metric learning methods usually
restrict the distance between samples of a similar pair to be lower than a fixed
upper bound, and the distance between samples of a dissimilar pair higher than a
fixed lower bound. Such fixed bound based constraints, however, may not work
well when the intra- and inter-class variations are complex. In this paper, we pro-
pose a shrinkage expansion adaptive metric learning (SEAML) method by defin-
ing a novel shrinkage-expansion rule for adaptive pairwise constraints. SEAML
is very effective in learning metrics from data with complex distributions. Mean-
while, it also suggests a new rule to assess the similarity between a pair of sam-
ples based on whether their distance is shrunk or expanded after metric learning.
Our extensive experimental results demonstrated that SEAML achieves better
performance than state-of-the-art metric learning methods. In addition, the pro-
posed shrinkage-expansion adaptive pairwise constraints can be readily applied
to many other pairwise constrained metric learning algorithms, and boost signif-
icantly their performance in applications such as face verification on LFW and
PubFig databases.

Keywords: Shrinkage-expansion rule, adaptive bound constraints, pairwise con-
strained metric learning, face verification.

1 Introduction

Distance metric learning aims to learn an appropriate distance metric by taking advan-
tages of the intrinsic structure of training data. Numerous metric learning methods have
been proposed for a variety of computer vision applications such as face verification
[10,17,27], object classification [26], image annotation [7,33], and visual tracking [21],
etc. The information conveyed by training data can be generally represented as triplet
and pairwise constraints. Triplet constraints based metric learning approaches, includ-
ing large margin nearest neighbor (LMNN) [35], BoostMetric [31] and FrobMetric [30],
restrict that for each triplet the distance between a pair of samples from the same class
should be smaller than the distance between a pair of samples from different classes.
Pairwise constraints are more pervasive in metric learning. In many applications such
as face verification, only pairwise constraints are available from the training data. For
example, under the restricted setting of the LFW face database [15], the only known
information is whether a pair of face images is matched or not.
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Fig. 1. An illustrative example of face verification by ITML and SEA-ITML. (a) The face im-
age manifolds of two persons with pose variations. (b) The verification results with the decision
threshold bI before metric learning. A1 ∼ A4 are all wrongly verified to be dissimilar with A0 .
(c) The verification results with the decision threshold bITML after metric learning by ITML [6]
with fixed bound constraints. A1 now is correctly verified, but A2 ∼ A4 are still wrongly veri-
fied. (d) The verification results with the decision threshold bSEA−ITML after metric learning by
ITML with the proposed shrinkage expansion adaptive constraints (SEA-ITML). A1 ∼ A4 can
all be correctly verified.

Most pairwise constrained metric learning methods restrict the distance between
samples of a similar pair to be lower than a fixed upper bound and the distance between
samples of a dissimilar pair higher than a fixed lower bound. Davis et al. [6] proposed an
information theoretic metric learning (ITML) method, which restricts that the distances
for all similar pairs should be smaller than an upper bound u and the distances for all
dissimilar pairs should be larger than a lower bound l. Guillaumin et al. [10] learned a
Mahalanobis distance metric via discriminative linear logistic regression. This method
intends to find a bound b so that all distances of similar pairs can be smaller than those
of dissimilar pairs. Li et al. [22] learned a second-order discriminant function instead
of Mahalanobis distance for verification problem. They confined the function values of
all similar pairs to be smaller than −1 and those of all dissimilar pairs larger than 1.

The above fixed bound based constraints may fail to learn effective metrics when
the intra- and inter-class variations are complex. In face recognition or verification, it is
commonly accepted that the face images of a person with pose and lighting variations
are in a nonlinear manifold [12]. The face manifolds of different persons are similar,
while the challenge lies in that the intra-class variation of face images is often very
complex. Figure 1 (a) illustrates the face manifolds of two persons, Bush (A0 ∼ A4)
and Blair (B0 ∼ B3). Figure 1 (b) illustrates the face verification results before metric
learning. To avoid false acceptance, the decision threshold can be set as bI based on the
distance between A0 and B0. One can see that although A0 and B0 can be correctly
verified as different subjects by bI , A1 ∼ A4 will be wrongly verified as different
subjects from A0 since their distances to A0 are higher than bI . Figure 1 (c) illustrates
the verification results after metric learning by using the well-known ITML [6]. We can
see that the manifolds shrink along the horizontal direction while keeping unchanged
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Fig. 2. A real failure case of face verification on the LFW database by conventional methods
which only use a threshold b to decide if the pair is a match or non-match after metric learning.
By the proposed SEAML, we can classify the pair by exploiting the shrinkage-expansion property
of its sample distance, and thus both the two pairs can be correctly classified.

in the vertical direction. This time A1 can be correctly verified by using the decision
threshold bITML; however, the other images A2 ∼ A4 still cannot be correctly verified.

To tackle the above mentioned problem, in this paper we propose a self-adaptive
shrinkage-expansion rule based on the original Euclidean distances of the pairs, which
relaxes the fixed bound based constraints by shrinking the distances between samples
of similar pairs and expanding the distances between samples of dissimilar pairs. The
details can be found in Section 3.1. As illustrated in Figure 1 (d), by means of SEA-
ITML (i.e., ITML with the proposed shrinkage-expansion adaptive constraints; please
refer to Section 3.3 for details), A1 ∼ A4 all can be correctly verified by using the
decision threshold bSEA−ITML, improving significantly the verification performance.
According to our experiments, ITML [6] with the proposed pairwise constraints can
boost its verification performance from 76.2% to 82.4% and from 69.3% to 77.8% on
the LFW and PubFig face databases, respectively (please refer to Section 5 for details).
Since ITML and SEA-ITML use the same regularization and loss terms, the benefit
shall be owed to that the proposed shrinkage-expansion adaptive constraints is more
effective to learn the desired metrics from data with complex distributions.

Another distinct advantage of the proposed shrinkage expansion adaptive metric
learning (SEAML) method is that the shrinkage-expansion adaptive constraints sug-
gest a novel paradigm to assess the similarity between a pair of samples. Given a pair of
samples, conventional metric learning approaches usually compute their Mahalanobis
distance d, and judge if they are from the same class based on whether d is lower or
higher than the decision threshold b. Different from these approaches, SEAML learns
a Mahalanobis distance metric to shrink the distances between samples of similar pairs
and expand the distances between samples of dissimilar pairs. Thus, SEAML allows
us to make the decision by considering both b and the changes between the distances
before and after metric learning. Figure 2 shows two pairs of images from the LFW
face database. After metric learning, the Mahalanobis distance of a similar (dissimilar)
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pair is still higher (lower) than the threshold b = 69.96. With the conventional decision
paradigm, these two pairs would be misclassified. Fortunately, one can observe that
after metric learning, the distance of the similar pair shrinks from 86.86 to 70.27, while
the distance of the dissimilar pair expands from 55.62 to 69.43. Thus, when the distance
between samples of a pair is close to the decision threshold b, we can classify the pair
according to the shrinkage-expansion property of its sample distance. In this way, both
the two pairs in Figure 2 can be correctly classified by the proposed SEAML method.
The details of the verification rule will be given in Section 4.

Our extensive experimental results on 12 UCI datasets [2], LFW [15] and PubFig
[19] face databases show that SEAML outperforms many state-of-the-art metric learn-
ing methods. The rest of this paper is organized as follows. In Section 2, we review
the literature related to our work. Section 3 presents the proposed shrinkage expansion
adaptive metric learning framework and we introduce a novel verification paradigm
of SEAML in Section 4. In Section 5, we show experimental results of the proposed
method on both classification and face verification tasks. Finally, we conclude our pa-
per in Section 6.

2 Related Work

Most of the existing metric learning methods learn metrics with triplet or pairwise con-
straints. The classical triplet constrained metric learning method LMNN [35] has shown
powerful classification capability with the k nearest neighbor (kNN) classifier. Moti-
vated by LMNN, Shen et al. [31] used the exponential loss instead of hinge loss in
LMNN, resulting in a BoostMetric method. Based on LMNN and BoostMetric, Shen
et al. [30] proposed the FrobMetric method, which utilizes the Frobenius norm reg-
ularizer to make metric learning more efficient and scalable. For kNN classification,
the proposed SEAML shares similar philosophy to LMNN [35], BoostMetric [31] and
FrobMetric [30]. For each triplet (xi,xj ,xk) (the class label of xi is the same as that
of xj but different from that of xk), methods in [30,31,35] restrict that the learned dis-
tance DM(xi,xj) between xi and xj should be smaller than the distance DM(xi,xk)
between xi and xk. From the perspective of the proposed SEAML, this triplet con-
straint can be regarded as that DM(xi,xk) is used as a locally adaptive upper bound of
DM(xi,xj), or DM(xi,xj) is used as a locally adaptive lower bound of DM(xi,xk).
However, [30,31,35] cannot be applied to tasks where only pairwise constraints are
available [28]. Unlike [30,31,35], SEAML uses the Euclidean distance of a pair to adap-
tively set the lower and upper bounds, and thus can work in more general cases.

Some pairwise constrained metric learning methods [8,9,11] also need the label
information of each sample. Neighborhood components analysis [9] learns a metric
for nearest neighbor classifier (NNC) by finding a linear transformation of input data
such that the average leave-one-out classification performance is maximized in the
transformed space. Globerson et al. [8] proposed to learn a metric by maximizing the
distances between different classes while collapsing the intra-class distances to zero.
Huang et al. [11] proposed an ensemble metric learning method that restricts the intra-
class distances to be smaller than inter-class distances. Similar to triplet constrained
metric learning methods, they work in a fully supervised learning manner.
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Although many pairwise constrained metric learning approaches, such as ITML [6],
LDML [10], work in a weakly supervised manner, these methods adopt the fixed bound
based constraints, making them less effective when the intra- and inter-class variations
are complex. To the best of our knowledge, thus far only Li et al. [23] relaxed the fixed
bound problem by learning a locally adaptive decision function to distinguish similar
pairs and dissimilar ones. The proposed SEAML method in this paper is essentially
different from the method in [23]. First, SEAML uses a shrinkage-expansion rule to
set the adaptive pairwise constraints. Second, it suggests a novel verification paradigm
by considering both the decision threshold and the shrinkage-expansion property of the
distance with the learned metric. Finally, SEAML learns a Mahalanobis distance met-
ric while [23] learns a second-order decision function. In recent years, some multiple
metrics learning methods [29,34] have been proposed to handle data with complex dis-
tributions. They are distinctly different from SEAML which learns a single metric but
with adaptive constraints. One may refer to [3] for more details on the recent progresses
on metric learning.

3 Shrinkage Expansion Adaptive Metric Learning

In Section 3.1, we first introduce the formulation of shrinkage-expansion adaptive pair-
wise constraints, resulting in a shrinkage expansion adaptive metric learning (SEAML)
framework. In Section 3.2, we substantiate a SEAML algorithm by using the squared
Frobenius norm (F-norm) regularizer and the hinge loss, which can be efficiently op-
timized by alternating between SVM training [4] and projection on the cone of all
positive semidefinite (PSD) matrices. Section 3.3 shows that the proposed shrinkage-
expansion rule can be flexibly embedded into many existing pairwise-based metric
learning methods, such as ITML [6].

3.1 Shrinkage-Expansion Adaptive Constraints

Denote the set of similar pairs by S = {(xi,xj) : xi and xj belong to the same class },
and the set of dissimilar pairs by D = {(xi,xj) : xi and xj belong to different classes}.
Metric learning aims to learn a PSD matrix M ∈ R

d×d which characterizes the Maha-
lanobis distance:

DM(xi,xj) = (xi − xj)
TM(xi − xj). (1)

To learn a proper Mahalanobis distance metric, conventional pairwise constraints
usually require that the learned distances of similar pairs should be lower than some
fixed upper bound u, while those of dissimilar pairs should be higher than some fixed
lower bound l, which can be formulated as:

DM(xi,xj) ≤ u (xi,xj) ∈ S, (2)

DM(xi,xj) ≥ l (xi,xj) ∈ D.

The above fixed bound based constraints may not work well for data with complex
distributions, as discussed in Section 1. To address this issue, we propose to relax the fix
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bound based constraints by introducing an adaptive shrinkage-expansion rule to design
pairwise constraints. Given a similar/dissimilar pair (xi,xj), the Euclidean distance
Dij = DI(xi,xj) is used as a reference to guide the shrinkage/expansion, and thus
the adaptive upper/lower bound can be defined as a function of Dij , i.e., f(Dij). One
obvious principle for the design of f(Dij) is : the larger the distance of a similar pair,
the more f(Dij) should shrink from Dij , while the smaller the distance of a dissimilar
pair, the more f(Dij) should expand from Dij . Based on this principle, we define the
following shrinkage-expansion rule to compute the adaptive upper/lower bounds for
similar/dissimilar pairs:

fs(Dij) = Dij − (D
( 1
Ns

)

ij /Dc) (xi,xj) ∈ S.
fd(Dij) = Dij + (Dc/D

( 1
Nd

)

ij ) (xi,xj) ∈ D. (3)

where Dc ≥ 1 is a constant. Ns ≥ 1 and Nd ≥ 1 are scale factors which control the
level of shrinkage and expansion, respectively.

From Eq. (3), we can see that the larger the Ns, the slower fs(Dij) will shrink,
while the larger the Nd, the faster fd(Dij) will expand. In this paper, we set Dc as
the maximal distance (denoted by Dmax) among all pairs used in training data and set
Ns = 1 and Nd = 1/log( Dc

Dc−2 ). Nd is abbreviated as n in the following Eq. (4). Thus,
we obtain the following shrinkage-expansion adaptive constraints:

fs(Dij) = Dij − (Dij/Dmax) (xi,xj) ∈ S.
fd(Dij) = Dij + (Dmax/

n
√
Dij) (xi,xj) ∈ D. (4)

We set Ns = 1 to ensure that fs(Dij) can shrink the fastest (note that Ns < 1 cannot
guarantee fs(Dij) to be always positive). We set Nd = 1/log( Dc

Dc−2 ) to ensure rapid
expansion of fd(Dij), while it allows us to automatically distinguish similar and dis-
similar pairs by Dc, i.e., fs(Dij) < Dc and fd(Dij) > Dc , ∀(i, j). In our experiments,
it is found that when the constant Dc > 2, it has little influence on the classification and
verification performance.

The proposed shrinkage-expansion rule can adaptively determine the pairwise con-
straints, and thus can effectively distinguish between similar pairs and dissimilar pairs.
Based on the proposed shrinkage-expansion rule, we can formulate the SEAML frame-
work as follows:

minM,ξ r1(M) + C · r2(ξ) (5)

s.t. DM(xi,xj) ≤ fs(Dij) + ξij (xi,xj) ∈ S,
DM(xi,xj) ≥ fd(Dij)− ξij (xi,xj) ∈ D,

ξij ≥ 0, ∀(i, j), M � 0.

where r1 is the regularizer on M, r2 is the loss term on ξ, and ξij is introduced as
the soft penalty on the pairwise inequality constraint. Many existing regularizers (e.g.,
squared F-norm and LogDet divergence) and loss functions (e.g., hinge loss and logistic
loss) can be used in the proposed SEAML framework.
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3.2 SEAML with Squared F-Norm Regularizer

The studies in [18] have shown that the squared F-norm regularizer can achieve good
performance in object recognition, and it is strictly convex. On the other hand, it is
known that the hinge loss has good generalization performance and it is adopted in
LMNN and SVM. Thus, we adopt the squared F-Norm regularizer and hinge loss func-
tion in the proposed SEAML framework, resulting in the following metric learning
model:

minM,ξ
1
2‖M‖2F + C

∑

ij
ξij (6)

s.t. DM(xi,xj) ≤ fs(Dij) + ξij (xi,xj) ∈ S,
DM(xi,xj) ≥ fd(Dij)− ξij (xi,xj) ∈ D,

ξij ≥ 0, ∀(i, j), M � 0.

We can rewrite Eq. (6) as follows:

minM,ξ
1
2‖M‖2F + C

∑

ij
ξij (7)

s.t. lijDM(xi,xj) ≥ f(Dij , lij)− ξij ,

ξij ≥ 0, ∀(i, j), M � 0.

where lij = −1, f(Dij , lij) = −fs(Dij) if (xi,xj) ∈ S and lij = 1, f(Dij , lij) =
fd(Dij) if (xi,xj) ∈ D. For simplicity, hereafter f(Dij , lij) is abbreviated as fij .

Let Zij = (xi−xj)(xi−xj)
T . We can rewrite Eq. (1) in the form of inner product:

DM(xi,xj) = 〈Zij ,M〉 = tr(ZijM). Then, the Lagrange function of Eq. (7) can be
expressed as follows:

L(M,Y,β,γ, ξ) = 1
2‖M‖2F + C

∑

ij
ξij − 〈Y,M〉

−
∑

ij
βij [lij〈Zij ,M〉 − fij + ξij ]−

∑

ij
γijξij (8)

s.t. βij ≥ 0, γij ≥ 0, ξij ≥ 0 ∀(i, j), M,Y � 0.

where βij , γij , and Y are the Lagrange multipliers. Based on the Karush-Kuhn-Tucker
(KKT) conditions, we obtain the Lagrange dual problem of Eq. (7):

maxY,β − 1
2‖

∑

ij
βij lijZij +Y‖2F +

∑

ij
fijβij (9)

s.t. 0 ≤ βij ≤ C, ∀(i, j), Y � 0.

Please refer to the supplementary material for the detailed deduction of the Lagrange
dual.

The problem in Eq. (9) involves the joint optimization of PSD matrix Y and vector
β, which can be solved by iterating between two procedures. First, by fixing Y, the
subproblem in Eq. (9) can be reformulated as a quadratic programming (QP) problem:

maxβ − 1
2

∑

ij

∑

pq
βijβpqlij lpq〈Zij ,Zpq〉+

∑

ij
gijβij

s.t. 0 ≤ βij ≤ C, ∀(i, j). (10)
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where gij = fij−lij(〈Zij ,Y〉). Clearly, we can use the off-the-shelf SVM solver [4] to
obtain the optimal solution to the subproblem on β. After updating β, the subproblem
on Y can be reformulated as the projection of Ŷ on the cones of PSD matrices:

minY
1
2‖Y − Ŷ‖2F (11)

s.t. Y � 0.

where Ŷ = −∑
ij βij lijZij . Let Ŷ = UΣVT be the SVD of Ŷ, where Σ is the

diagonal matrix of eigenvalues, and U is an orthonormal matrix consisting of the cor-
responding eigenvectors. The closed form solution of Y can then be represented as
Y = UΣ+V

T , where Σ+ = max(0,Σ).
We iteratively update β and Y until the convergence of the objective function. Based

on [5], it is guaranteed that the proposed alternating minimization approach would make
the objective function in Eq. (9) converge to the global optimum. Finally, the learned
matrix M can be obtained by

∑
ij βij lijZij +Y. The proposed SEAML algorithm is

summarized in Algorithm 1. The time complexity of training in SEAML is O(L(dN2+
d3)), where L is the iteration number, d is the feature dimension, and N is the number
of pairs.

3.3 ITML with Shrinkage-Expansion Adaptive Constraints

The proposed shrinkage-expansion adaptive constraints can be flexibly embedded into
many pairwise constrained metric learning methods by substituting the original fixed
bound based constraints with the adaptive pairwise constraints suggested in Section
3.1. As an example, we embed the shrinkage-expansion adaptive constraints into ITML
[6], and call the resulting model SEA-ITML:

minM,ξ Dld(M,M0) + γDld(diag(ξ), diag(ξ0)) (12)

s.t. DM(xi,xj) ≤ fs(D(xi,xj)) + ξij (xi,xj) ∈ S,
DM(xi,xj) ≥ fd(D(xi,xj))− ξij (xi,xj) ∈ D,

ξij ≥ 0, ∀(i, j), M � 0.

where Dld is the LogDet divergence [16] between matrices.
Apparently, the SEA-ITML model in Eq. (12) is an instantiation of the proposed

SEAML framework with the LogDet regularizer. SEA-ITML can be solved using the
same algorithm of ITML, and thus SEA-ITML has the same complexity as ITML [6]. It
is mentionable that SEA-ITML can achieve much better performance than the original
ITML method. Moreover, SEA-ITML performs much better than most of state-of-the-
art metric learning methods.

4 A Novel Verification Paradigm with SEAML

Thanks to the proposed shrinkage-expansion rule, the shrinkage-expansion property of
the distance before and after metric learning is also an important cue when SEAML
is applied to verification. In the training stage, a decision threshold b and a critical
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Algorithm 1. Algorithm of Shrinkage-Expansion Adaptive Metric Learning (SEAML)
Input: A set of pairwise training data points {(xi,xj , lij)|∀(i, j)} with label l, the trade off

parameter C, Y0 = I, t = 0.
1: while Not Converge do
2: Fix Yt and solve the subproblem Eq. (10) on βt by SVM solver.
3: Compute Ŷ = −∑

ij β
t
ij lijZij

4: Fix βt and solve the subproblem Eq.(11) to update Yt: Yt = UΣ+V
T , where Ŷ =

UΣVT is the SVD of Ŷ and Σ+ = max(Σ,0).
5: t = t+ 1.
6: end while
7: Obtain the solution β∗ = βt and Y∗ = Yt.
8: M =

∑
ij β

∗
ij lijZij +Y∗.

Output: M

value δ can be determined from the training data. First, like the traditional verification
paradigm, we can find a decision threshold b on the training data using the methods
suggested in [10,17,38]. Then, for all training pairs, given decision threshold b and an
initialization of δ (e.g., δ = 0), if the absolute value of the difference between the
Mahalanobis distance of training pair (xi,xj) and b is smaller than δ, we adjust its
label based on the following paradigm:

(xi,xj) ∈
{S if Dij −DM

ij ≥ 0,
D if Dij −DM

ij < 0.
(13)

where Dij and DM
ij denote the Euclidean distance and the Mahalanobis distance of pair

(xi,xj), respectively. Finally, we can search an optimal solution of δ within a range on
the training data. For example, we let δ ∈ [0, 3] and set the step size as 0.15.

In the test stage, we take advantage of a two-step strategy to verify if a test pair is
similar or dissimilar with the decision threshold b and optimal δ. In the first step, the
label of the test pair (xz ,xk) is decided by comparing the Mahalanobis distance with
the threshold b. In the second step, if the Mahalanobis distance DM

zk of the pair (xz ,xk)
is close to b (i.e., |DM

zk − b| ≤ δ), we adjust its label by using Eq. (13). The novel
verification paradigm can improve more than 1% the verification performance.

5 Experiments

In this section, we evaluate the proposed method on both classification and face verifi-
cation problems. The proposed SEAML and SEA-ITML have two tradeoff parameters,
i.e., C and γ. Similar to ITML [6] and LMNN [35], these two parameters are tuned via
three-fold cross validation in the classification experiments on the UCI datasets. In face
verification, we set C = 1 and γ = 1 throughout our experiments. The Matlab code can
be downloaded at http://www4.comp.polyu.edu.hk/˜cslzhang/code/
SEAML.rar.

5.1 Classification Results on the UCI Datasets
We first evaluate the classification performances of SEAML and SEA-ITML on 12
datasets from the UCI machine learning repository [2]. These datasets are widely used

http://www4.comp.polyu.edu.hk/~cslzhang/code/SEAML.rar
http://www4.comp.polyu.edu.hk/~cslzhang/code/SEAML.rar
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to evaluate the classification performance of metric learning methods such as ITML [6],
DML-eig [38], etc. Table 1 summarizes the 12 UCI datasets. The k nearest neighbor
(kNN) classifier is used for classification, and we set k = 3 for all the datasets. We
compare SEAML and SEA-ITML with the baseline algorithm without metric learning
(i.e., kNN with standard Euclidean distance), and three state-of-the-art metric learning
methods: ITML [6], LMNN [35] and DML-eig [38]. The hyper-parameters in ITML
and LMNN are tuned via three-fold cross validation, and the classification results of
DML-eig are cropped from the original paper [38].

We run the experiments 100 times. In each run, we randomly split each dataset into
a training subset and a test subset. The numbers of samples in the training and test
subsets are shown in Table 1. The experimental results by averaging over the 100 runs
are reported in Table 2. One can see that SEAML and SEA-ITML achieve the best or
the second best classification rate on almost every dataset, and they have the best and
the second best average rank, outperforming DML-eig, ITML and LMNN.

5.2 Face Verification on LFW

Experimental Setting. In this subsection, we evaluate the proposed SEAML and SEA-
ITML methods for face verification on the Labeled Faces in the Wild (LFW) database
[15]. LFW is a challenging database designed for studying the unconstrained face ver-
ification problem. It contains 13,233 face images from 5,749 persons. Figure 3 shows
some samples of similar and dissimilar pairs. There are two commonly used test pro-
tocols on LFW: image restricted and image unrestricted protocols. Under the image
restricted protocol, the identities of the training images are ignored. The only avail-
able information is whether each pair of training images are from the same subject
or not. The performance of a face verification algorithm is evaluated by 10-fold cross-
validation, and each fold contains a subset of 300 positive and 300 negative image pairs.

To be consistent with the experimental settings used in most of state-of-the-art
metric learning methods [10,17,22,38], we adopt the image restricted protocol with the
face images aligned by the funneling method [13]. We represent face images by using

Table 1. Summary of the UCI datasets used in the experiment

Wine Iris Segment. Optdigits Letter Sonar Waveform Diabetes Iono. Breast Face Cardi.
# Classes 3 3 7 10 26 2 3 2 2 2 40 10
# Samples for Training 125 105 1617 1934 16000 188 3500 538 176 398 280 1914
# Samples for Test 53 45 693 946 4000 20 1500 230 175 171 120 212
Dimension 13 4 19 64 16 60 21 8 34 30 64 21

Table 2. Classification rates (%) on the UCI databases. The best and second best results on each
dataset are highlighted in red and blue, respectively.

Method Wine Iris Segment. Optdigits Letter Sonar Waveform Diabetes Iono. Breast Face Cardi. Ave. Rank
Baseline 94.24 94.89 94.28 98.33 95.54 79.58 81.13 68.91 81.73 93.53 93.33 75.34 5.92
ITML 96.18 95.56 94.98 98.54 97.22 85.14 84.06 70.04 85.52 93.18 97.58 80.1 4.67

LMNN 96.92 95.78 96.31 98.63 96.55 88.43 81.39 70.3 87.41 94.65 97.92 80.79 3.17
DML-eig 98.65 96.89 97.03 98.55 96.14 86.5 84.67 72.29 83.74 96.47 98.33 79.71 2.83

SEA-ITML 97.79 96.94 96.87 98.74 97.81 87.97 84.54 71.56 86.67 96.37 97.62 80.37 2.5
SEAML 98.54 97.13 97.21 98.67 97.77 88.67 85.02 71.94 86.81 95.75 97.89 80.31 1.92
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Similar pairs Dissimilar pairs

Fig. 3. Some examples of face image pairs in the LFW face database [15]. Left: four similar pairs;
Right: four dissimilar pairs.

their SIFT features [25] provided by [10], where 128 dimensional SIFT descriptors
are extracted on three scales and at 9 fiducial points (corners of the mouth, eyes, and
nose) detected by a facial feature detector. Finally, each face is represented by a 3,456
dimensional SIFT feature vector. This dimensionality is rather too high for stable metric
learning. Therefore, to be consistent with [10,38], principal component analysis (PCA)
is applied to project each SIFT feature vector into a d-dimensional subspace. Then a
d× d PSD matrix is learned as the metric matrix for face verification.

Dimension of Principal Components. The dimension d of principal components has
an important impact on the verification performance of metric learning algorithms. Fig-
ure 4 shows the verification accuracy of SEAML, ITML [6], LDML [10] and DML-eig
[38] with various dimensions of principal components. We can see that SEAML per-
forms the best under all dimensions, while DML-eig performs the second best. With
the increase of dimension, ITML, LDML, and DML-eig achieve their best results at di-
mension 55, 35, and 100, respectively. Their performance will then drop rapidly. Unlike
the other methods, the verification accuracy of the proposed SEAML increases stably
with the increase of PCA dimension until 170, and its verification accuracy only drops
slightly (about 0.6%) when d is 200. In summary, SEAML has not only better verifi-
cation accuracy than the competing methods, but also more robustness to the feature
dimension. This validates that the proposed shrinkage-expansion adaptive constraints
are effective in improving the accuracy and stability of metric learning.
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Fig. 4. Comparison of LDML, ITML, DML-eig and SEAML in face verification under different
dimensions of SIFT features
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Comparison with State-of-the-Arts. We compare SEAML with 13 state-of-the-art
methods [1,6,10,14,17,19,20,22,23,28,32,36,38] under the same protocol of image re-
stricted setting. Note that LMNN is not compared because it requires triplet constraints
which are not applicable to the LFW database under restricted setting.

In Table 3, we first compare SEAML with those metric learning based methods us-
ing the SIFT features. Clearly, SEAML and SEA-ITML outperform all the other met-
ric learning methods, validating the effectiveness of the proposed shrinkage-expansion
adaptive pairwise constraints. Besides SIFT features, we also evaluate SEAML using the
attribute features provided by [19] (please refer to Section 5.3 for more information of
attribute features). With the attribute features, SEAML and SEA-ITML achieve a sim-
ilar verification rate of 85.8%, outperforming state-of-the-art metric learning methods,
such as LDML [10](83.4%), ITML [6] (84.0%) and KissMe [17] (84.6%). SEAML and
SEA-ITML also perform slightly better than the Attribute and Simile classifiers (85.3%)
[19], which achieves state-of-the-art performance using the SVM based method.

In Table 4, we evaluate SEAML by combining the SIFT and Attribute features, and
compare it with those state-of-the-art non-metric learning methods or metric learning
methods with multiple features. We can see that the verification accuracy (87.5%) of
SEAML is the second highest, the same as Fisher vector face (87.5%) [32]. Kindly note
that [32] uses much more complicated strategies, including Fisher vector based face rep-
resentation and discriminative dimensionality reduction, joint distance-similarity metric
learning and horizontal flipping. The method in [23] reports the best accuracy (89.6%).
This method employs a learned second-order decision functions solved by kernel SVM
(may suffer from high memory burden in large scale problem) for verification and it
combines SIFT with complex hierarchical Gaussianization (HG) vector features [39].

Table 3. Verification accuracies (%) of competing metric learning methods on the LFW-funneled
database under the image restricted protocol. (Symbol ”-” means that the result is not available.)

Metric learning with single feature
Method SIFT Attributes
LDML [10] 77.5 ± 0.5 83.4
ITML [10] 76.2 ± 0.5 84.0
LDA-based [36] 79.4 ± 0.2 –
DML-eig [38] 81.3 ± 2.3 –
SODFML [22] 81.0 –
KissMe [17] 80.5 84.6
SEA-ITML 82.4 ± 1.7 85.8
SEAML 83.2 ± 1.2 85.8

Table 4. Comparison with state-of-the-art results on the LFW-funneled database under the image
restricted protocol

Method Features Accuracy (%)
MERL+Nowark [28] SIFT and geometry 76.2 ± 0.6
V1-like/MKL [14] V1-like features 79.4 ± 0.5
MRF-MLBP [1] Multi-scale LBP 79.1 ± 0.2
APEM(fusion) [20] Dense SIFT + LBP 84.1 ± 1.2
Attr.& sim. classifiers [19] Attributes 85.3
DML-eig combined [38] SIFT + LBP + TPLBP + FPLBP 85.7 ± 0.6
Fisher vector face [32] Dense SIFT 87.5 ± 1.5
Li et al. [23] SIFT + HG vector features 89.6
SEA-ITML SIFT + Attributes 87.2 ± 1.7
SEAML SIFT + Attributes 87.5 ± 1.3
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Fig. 5. ROC curves of various methods on the restricted LFW-funneled database

In Figure 5, we plot the ROC curves of various methods on the restricted LFW-
funneled dataset. We can see that SEAML and Fisher vector face show comparable
performance and they outperform the other competing methods. The experimental re-
sults clearly demonstrated that the proposed SEAML method can learn effective metrics
from training data with complex structures and distributions.

5.3 Face Verification on PubFig

Experimental Setting. The Public Figures (PubFig) [19] face database shares similar
philosophy with LFW. It is also a large, real-world face database collected from the
internet, consisting of 58,797 images from 200 people. PubFig is a very challenging
database with large face variations in pose, expression, lighting, scene, camera, and
so on. Like LFW, PubFig provides an evaluation platform for face verification: 20,000
pairs of images from 140 people are divided into 10 cross-validation folds, and each
fold consists of 1,000 intra and 1,000 extra pairs from disjoint sets of 14 people. Some
illustrative examples of similar and dissimilar pairs are shown in Figure 6.

Unlike most of the existing face databases which use handcrafted features to rep-
resent face images, PubFig provides high-level semantic features which contain 73
kinds of attributes, such as hair, glass, age, race, smiling and so on. All attributes are
computed by the effective attribute classifiers [19]. These attribute features allow the
elaboration of semantic description which are more robust against large image vari-
ations, and can lead to good verification performance. In this section, to be consistent
with [6,10,17,19,35], we use these high-level semantic features to evaluate SEAML and
SEA-ITML.

Comparison with State-of-the-Arts. Apart from the baseline with Euclidean dis-
tance, we compare SEAML and SEA-ITML with ITML [6], LMNN [35], LDML [10],
KissMe [17] and SVM [19]. The results of these competing methods are obtained from
[17], and they are all metric learning based methods except for SVM. Kindly note that
the publically reported results on the PubFig dataset are not as many as those on the
LFW dataset, and the compared results here are the best ones in literature.
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Fig. 6. Examples of similar and dissimilar pairs in the PubFig face database [19]

The verification results (Equal Error Rate, EER) of the competing methods are listed
in Table 5. One can see that SEAML and SEA-ITML are the best two methods. LDML,
KissMe and SVM also perform well. ITML does not perform well on this dataset and
its EER (69.3%) is even worse than the baseline with Euclidean distance. However,
by adopting the proposed shrinkage-expansion adaptive constraints into ITML, the re-
sulting SEA-ITML method can achieve an EER of 77.8%. This further validates the
effectiveness of the proposed shrinkage-expansion adaptive constraints in improving
the verification performance of pairwise constrained metric learning methods.

Table 5. Verification performance on the PubFig face database. All methods use the attribute
features provided by [19]. The reported results of all compared methods are copied from [17].

Method EER
L2 (Euclidean distance) 72.5%
ITML 69.3%

LMNN 73.5%

LDML 77.6%

KissMe 77.6%

SVM 77.6%

SEA-ITML 77.8%

SEAML 78.6%

6 Conclusion

In this paper, we presented a novel metric learning framework, namely shrinkage expan-
sion adaptive metric learning (SEAML). With the proposed shrinkage-expansion adap-
tive pairwise constraints, SEAML can learn more effectively the distance metrics from
data with complex distributions, and endow a new paradigm to determine whether a pair
is matched or not by considering both the decision threshold and the change of matching
distances before and after metric learning. Moreover, the proposed shrinkage-expansion
rule can be embedded into many existing pairwise constrained metric learning methods
(e.g., ITML [6]), and improve much their performance. Experimental results on the
UCI datasets, the LFW and PubFig face databases validated that SEAML outperforms
many state-of-the-art metric learning algorithms. In the future work, we will investigate
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how to adopt a low rank regularizer [37,24] in the SEAML framework to further im-
prove its robustness against the feature dimension and computational efficiency. We are
also interested in studying a flexible scheme which can learn optimized parameters of
proposed shrinkage-expansion adaptive constraints.
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