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Abstract. Forecasting human activities from visual evidence is an
emerging area of research which aims to allow computational systems
to make predictions about unseen human actions. We explore the task
of activity forecasting in the context of dual-agent interactions to under-
stand how the actions of one person can be used to predict the actions of
another. We model dual-agent interactions as an optimal control prob-
lem, where the actions of the initiating agent induce a cost topology over
the space of reactive poses – a space in which the reactive agent plans an
optimal pose trajectory. The technique developed in this work employs a
kernel-based reinforcement learning approximation of the soft maximum
value function to deal with the high-dimensional nature of human mo-
tion and applies a mean-shift procedure over a continuous cost function
to infer a smooth reaction sequence. Experimental results show that our
proposed method is able to properly model human interactions in a high
dimensional space of human poses. When compared to several baseline
models, results show that our method is able to generate highly plausible
simulations of human interaction.

1 Introduction

It is our aim to expand the boundaries of human activity analysis by build-
ing intelligent systems that are not only able to classify human activities but
are also capable of mentally simulating and extrapolating human behavior. The
idea of predicting unseen human actions has been studied in several contexts,
such as early detection [17], activity prediction [22], video gap-filling [2] and
activity forecasting [9]. The ability to predict human activity based on visual
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RGB Depth Skeleton Gnd truth Observation Simulation

Fig. 2. Left three are the RGB, depth, and tracked skeleton images of SBU dataset.
Right three images show our ground truth, observation, and simulation.

observations of the world is essential for advances in domains such as assistive
robotics [10], human-robot interaction [7], robust surveillance [2], and smart
coaching systems. For example, in the context of video surveillance, it is often
the case that human activities are not fully visible to the camera due to occlusion,
and in extreme cases parts of the activity may fall outside of the field of view (e.g.,
two people fighting at the periphery of the screen). A human observer however,
can extrapolate what is happening despite large amounts of missing data. By
observing a single person punching something outside of the field of view, we
can visualize with high accuracy how the opponent has been hit. The important
point being that humans have the ability to leverage contextual information to
make very accurate predictions despite large amounts of visual occlusion. In this
work, we aim to build a system that is able to predict and more importantly
simulate human behavior in both space and time from partial observations.

We simplify our target domain by focusing on understanding and simulat-
ing dual-agent interaction. Traditionally dual-agent interactions (e.g.., hugging,
pushing) have been represented as a joint phenomenon, where observations from
both people are used as features to recognize human interactions from video
[22,2,21,8,26]. Alternatively, human interactions can also be modeled as a de-
pendent process, where one person is reacting to the actions of an initiating
agent. In this work we model dual-agent interaction as a reactive control sys-
tem, where the actions of the initiating agent induces a cost topology over the
space of reactive poses – a space in which the reactive agent plans an optimal
pose trajectory. This alternative representation of human interaction is a fun-
damentally new way of modeling human interactions for vision-based activity
analysis.

The use of a decision-theoretic model for vision-based activity analysis has
been proposed previously by Kitani et al. [9], where a cost function was learned
over a low-dimensional 2D floor plane (with only 4 possible actions) for a single
agent. While their work highlighted the importance of decision-theoretic model-
ing, the framework was defined over a low-dimensional state space (and action
space) and was limited by the assumption of a single agent acting in a static
world. In reality, the world is not static and people interact with each other.
Additionally, if we desire to model human pose, the state space through which a
person moves is extremely high-dimensional. To give an example, the pose space
used in this work is a 819 dimensional HOG feature space, where both the state
and action space are extremely large. In this scenario, it is no longer feasible to
use the discrete state inference procedure used in [9].
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In this work, we aim to go beyond a two dimensional state space and forecast
dual-agent activities in a high-dimensional pose space. In particular, we intro-
duce kernel-based reinforcement learning [18] to handle the high-dimensionality
of human pose. Furthermore, we introduce an efficient mean-shift inference pro-
cedure [4] to find an optimal pose trajectory in the continuous cost function
space. In comparative experiments, the results verify that our inference method
is able to effectively represent human interactions. Furthermore, we show how
this procedure proposed for 2D dual-agent interaction forecasting can also be ap-
plied to 3D skeleton pose data. Our final qualitative experiment also shows how
the proposed model can be used for human pose analysis and anomaly detection.

Interestingly, the idea of generating a reactive pose trajectory has been ex-
plored largely in computer graphics; a problem known as interactive control. The
goal of interactive control is to create avatar animations in response to user in-
put [12,15]. Motion graphs [11] created from human motion data are commonly
used, and the motion synthesis problem is transformed into selecting proper se-
quences of nodes. However, these graphs are discrete and obscure the continuous
properties of motion. In response, a number of approaches have been proposed
to alleviate this weakness and perform continuous control of character [24,13,14].
It should be noted that all of the interactive control approaches focus on syn-
thesizing animations in response to a clearly defined mapping [11,15] from the
user input to pose. In contrast, we aim to simulate human reaction based only
on visual observations, where the proper reaction is non-obvious and must be
learned from the data.

2 Dual Agent Forecasting

Our goal is to build a system that can simulate human reaction based only on
visual observations. As shown in Figure 1, the ground truth consists of both the
true reaction g = [g1 · · · gT ] on the left hand side (LHS) and the observation
o = [o1 · · · oT ] of the initiating agent on the right hand side (RHS). In training
time, M demonstrated interaction pairs gm and om are provided for us to learn
the cost topology of human interaction. At test time, only the actions of the
initiating agent o (observation) on the RHS is given. We perform inference over
the learned cost function to obtain an optimal reaction sequence x.

2.1 Markov Decision Processes

In this work, we model dual-agent interaction as a Markov decision process
(MDP) [1]. At each time step, the process is in some state c, and the agent may
choose any action a that is available in state c. The process responds by moving
to a new state c′ at the next time step. The MDP is defined by an initial state
distribution p0(c) a transition model p(c′|c, a) and a reward function r(c, a),
which is equivalent to the negative cost function. Given these parameters, the
goal of optimal control is to learn the optimal policy π(a|c), which encodes the
distribution of action a to take when in state c that can maximize the expected
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(a) Input image (b) Foreground map (c) HOG

Fig. 3. HOG features in (c) are our 819 dimensional states, which are the HOG re-
sponses of the input images weighted by the probability of foreground maps in (b)

reward (minimize the expected cost). In this work, the actions are deterministic
because we assume humans have perfect control over their body where one ac-
tion will deterministically bring the pose to the next state. Therefore, p(c′|c, a)
concentrates on a single state c′ = ca and is zero for other states.

2.2 States and Actions

States. We use a HOG [6] feature of the whole image as a compact state repre-
sentation, which does not contain the redundant textural information in the raw
images. Some visualizations are shown in Figure 3. Note that only the poses on
the left hand side (LHS) are referred as states, while poses on the right hand side
(RHS) are our observations. We further make two changes to adapt HOG feature
to our current application, pose representation. First, the HOG is weighted by
probability of foreground (PFG) of the corresponding image because we are only
interested in the human in the foreground. The PFG is computed by median fil-
tering followed by soft thresholding. Second, we average the gradient in the 2×2
overlapping cells in HOG to reduce its dimension. This results in a continuous
high-dimensional vector of 819 dimensions (64× 112 bounding box).

Actions. Even with a continuous state space, a discrete set of actions is still more
efficient to solve the MDP when possible [14]. Furthermore, there are actually
many redundant actions for similar states that can be removed [23]. To alleviate
redundancy, we perform k-means clustering on all the training frames on the
LHS to quantize the continuous state space into K discrete states. For each
cluster c (c = 1 to K), we will refer to the cluster center Xc as the HOG feature
of quantized state c. The kth action is defined as going from a quantized state
c to the kth nearest state, which gives us a total K actions. In the rest of the
paper, we will fix this quantization. Given a new pose vector (HOG feature) x
on the LHS, it is quantized to state c if Xc is the closest HOG feature to x.

2.3 Inverse Optimal Control over Quantized State Space

In this work, we model dual-agent interaction as an optimal control problem,
where the actions of the initiating agent induce a cost topology over the space
of reactive poses. Given M demonstrated interaction pair om (Observation) and
gm (true reaction), we leverage recent progress in inverse optimal control (IOC)
[27] to recover a discretized approximation of the underlying cost topology.
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In contrast to optimal control in Section 2.1, the cost function is not given
in IOC and has to be derived from demonstrated examples [16]. We make an
important assumption about the form of the cost function, which enables us to
translate from visual observations to a single cost for reactive poses. The reward
(negative cost) of a state c and an action a:

r(c, a; θ) = θ�f(c, a), (1)

is assumed to be a weighted combination of feature responses f(c, a) = [f1(c, a)
· · · fJ(c, a)]�, where each fj(c, a) is the response of a type of feature extracted
from the video, such as the velocity of the agent’s center of mass, and θ is a vector
of weights for each feature. By learning these parameters θ, we are learning how
the actions of the initiating agent affect the reaction of the partner. For example,
a feature such as moving forward will have a high cost for punching interactions
because moving forward increases the possibility of being hit by the punch. In
this case, the punching activity induces a high cost on moving forward and
implies that this feature should have a high weight in the cost function. This
explicit modeling of human interaction dynamics via the cost function sets our
approach apart from traditional human interaction recognition models.

In this work, we apply the maximum entropy IOC approach [27] on the quan-
tized states to learn a discretized approximation of the cost function. In this
case, for a pose sequence x = [x1 · · ·xT ] on the LHS, we quantize it into se-
quence c = [c1 · · · cT ] of quantized states defined in Section 2.2. In the maximum
entropy framework [27], the distribution over a sequence c of quantized states
and the corresponding sequence a of actions is defined as:

P (c,a; θ) =

∏
t e

r(ct,at)

Z(θ)
=

e
∑

t θ
�f (ct,at)

Z(θ)
, (2)

where θ are the weights of the cost function, f (ct, at) is the corresponding vector
of features of state ct and action at, and Z(θ) is the partition function.

In the training step, we quantize M training pose sequences g1 · · · gM on
the LHS to get the corresponding sequences c1 · · · cM of quantized states. We
then recover the reward function parameters θ by maximizing the likelihood
of these sequences under the maximum entropy distribution (2). We use expo-
nentiated gradient descent to iteratively maximize the likelihood. The gradient
can be shown to be the difference between the empirical mean feature count
f̄ = 1

M

∑M
m=1 f(cm,am), the average feature counts over the demonstrated

training sequences, and the expected mean feature count f̂θ, the average fea-
ture counts over the sequences generated by the parameter θ. With step size

η, we update θ by θt+1 = θteη(f̄−f̂θ). In order to compute the expected feature
count f̂θ, we use a two-step algorithm similar to that described in [9] and [27].

Backward Pass. In the first step, current weight parameters θ is used to com-
pute the expected reward V (t)(c) to the goal from any possible state c at
any time step t. The expected reward function V (t)(c) is also called the value
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Algorithm 1. Backwards pass

V (T )(c)← 0
for t = T − 1, . . . , 2, 1 do

V (t)(c) = softmaxa r(c, a; θ) + V (t+1)(ca)

π
(t)
θ (a|c) ∝ eV

(t)(ca)−V (t)(c)

end for

Algorithm 2. Forward pass

D(1)(c)← 1
K

for t = 1, 2, . . . , T − 1 do

D(t+1)(ca) += π
(t)
θ (a|c)D(t)(c)

end for
f̂θ =

∑
t

∑
c

∑
a f(t)(c, a)D(t)(c)

function in reinforcement learning. The maximum entropy policy is π
(t)
θ (a|c) ∝

eV
(t)(ca)−V (t)(c), where c is the current state, a is an action, and ca is the state

we will get by performing action a at state c. In other words, the probability
of going to a state ca from c is exponentially proportional to the increase of
expected reward or value. The algorithm is summarized in Algorithm 1.

Forward Pass. In the second step, we propagate an uniform initial distribution

p0(c) = 1
K according to the learned policy π

(t)
θ (a|c), where K is the number

of states (clusters). We do not assume c1 is known as in [9] and [27]. In this
case, we can compute the expected state visitation count D(t)(c) of state c at
time step t. Therefore, the expected mean feature count can be computed by
f̂θ =

∑
t

∑
c

∑
a f

(t)(c, a)D(t)(c). The algorithm is summarized in Algorithm 2.

2.4 Features for Human Interaction

According to (1), the features define the expressiveness of our cost function and
are crucial to our method in modeling dynamics of human interaction. Now we
describe the features we use in our method. In this work, we assume that the
pose sequence o = [o1 · · · oT ] of the initiating agent is observable on the RHS.

For each frame t, we compute different features f (t)(c, a) from the sequence o.

Cooccurrence. Given a pose ot on the RHS, we want to know how often a state c
occurs on the LHS. This provides a strong clue for simulating human interaction.
For example, when the hand of the pose ot is reaching out, there is a high chance
that the hand of the reacting person is also reaching out in response. This can
be captured by the cooccurrence of reaching out poses on both LHS and RHS.

Therefore, the cooccurrence feature f
(t)
1 (c, a) = P (c|ot) is the posterior state

distribution given the observation on the RHS. We estimate this distribution by
discrete approximation. We quantize the observed pose ot to observable quan-
tized state cto by k-means clustering as in Section 2.2, but now the quantization
is on the RHS rather than the LHS. We approximate P (c|ot) by P (c|cto), which
can be estimated by histogram density estimation.

Transition Probability. We want to know what actions will occur at a state c,
which model the probable transitions between consecutive states. For example,
at a state c that the agent is moving forward, transition to a jumping back state

is less likely. Therefore, the second feature is the transition probability f
(t)
2 (c, a)

= P (ca|c), where ca is the state we will get to by performing action a at state
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likely unlikely smooth abrupt attraction repulsion

Cooccurence Transition Symmetry

Fig. 4. We use statistics of human interaction as our features for the cost function

c. We accumulate the transition statistics from the M training sequences cm of
quantized states on the LHS. This feature is independent of time step t.

Centroid Velocity. We use centroid velocities to capture the movements of people
when they are interacting. For example, it is unlikely that the centroid position
of human will move drastically across frames and actions that induce high cen-
troid velocity should be penalized. Therefore, we define the feature smoothness

as f
(t)
3 (c, a) = 1 − σ(|v(c, a)|), where σ(·) is the sigmoid function, and v(c, a)

is the centroid velocity of action a at state c. Only the velocity along the x-
axis is used. In addition, the relative velocity of the interacting agents gives us
information about the current interaction. For example, in the hugging activ-
ity, the interacting agents are approaching each other and will have centroid
velocities of opposite directions. Therefore, we define the feature attraction as

f
(t)
4 (c, a) = �(vto × v(c, a) < 0), where �(·) is the indicator function, and vto is
the centroid velocity of the initiating agent at time t. This feature will be one if
the interacting agents are moving in a symmetric way. We also define the com-

plementary feature repulsion as f
(t)
5 (c, a) = �(vto × v(c, a) > 0) to capture the

opposite case when the agents are repulsive to each other.

2.5 Quantized State Inference

Given a set of demonstrated interactions, we can learn a discretized approxima-
tion of the underlying cost function by the IOC algorithm presented in Section
2.3. At test time, only the pose sequence of the initiating agent otest on the RHS
is observable. We first compute the features f (t)(c, a) under the observation otest,
and weight the features by the learned weight parameters θ to get the reward
function (negative cost) r(c, a; θ) = θ�f (c, a). This gives us the approximated
cost topology induced by otest, the pose sequence of the initiating agent.

In discrete Markov decision process, inferring the most probable sequence is
straightforward: First, we fix the induced r(c, a; θ) and perform one round of
backwards pass (Algorithm 1) to get the discrete value function V (t)(c). At each
time step t, the most probable state is the state with the highest value. However,
the result depends highly on the selection of K in this case. If we choose K too
large, the O(K2T ) Algorithm 1 becomes computational prohibited. Furthermore,
the histogram based estimations become unreliable. On the other hand, if we
choose K too small, the quantization error can be large.
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Algorithm 3. Extended Mean Shift Inference

Compute V (t)(c) by Algorithm 1

x1 = Xc∗ , where c∗ = argmaxc V (1)(c)
for t = 2, . . . , T do

x0 = xt−1, wc = V (t)(c)
while not converged do

xi+1 = 1
Ch

∑K
c=1 XcwcKh(xi, Xc), where Ch =

∑K
c=1 wcKh(xi, Xc)

end while
xt = xconverged

end for

2.6 Kernel-Based Reinforcement Learning

In order to address the problems of discretizing the state space, we introduce
kernel-based reinforcement learning (KRL) [18] to our problem. Based on KRL,

the value function V
(t)
h (x) for any pose x in the continuous state space is assumed

to be a weighted combination of value functions V (t)(c) of the quantized states.
This translate our inference from discrete to continuous state space. At each
time step t, the value function of a continuous state x is:

V
(t)
h (x) =

∑K
c=1 Kh(x,Xc)V

(t)(c)
∑K

c=1 Kh(x,Xc)
, (3)

where Xc is the HOG feature of the quantized state c, and Kh(·, ·) is a kernel
function with bandwidth h. In this work, we use the normal kernel.

The advantage of KRL is two-fold. First, it guarantees the smoothness of
our value function. Second, we have the value function on the continuous space.
Therefore, even with smaller K, we can still perform continuous inference. Fur-
thermore, this formulation allows us to perform efficient optimization for x with

maximal V
(t)
h (x) as we will show in the next section.

2.7 Extended Mean Shift Inference

Now that we have the value function V
(t)
h (x) on the continuous state space, we

want to find the pose x∗ with the highest value. In contrast to optimization in
the discretized space, it is infeasible to enumerate the values of all the states
in continuous space. We leverage the property of human motion to simplify the
optimization problem. Since human motion is smooth and will not change drasti-
cally across frames, the optimal next pose should appear in a local neighborhood
of the current pose. This restricts our search space of optimal pose to a local
neighborhood. In addition, we leverage the resemblance of our formulation in
(3) to the well-studied kernel density estimation (KDE) in statistics, which has
also achieved considerable success in the area of object tracking [3]. To optimize
the density in KDE, the standard approach is to apply the mean shift proce-
dure, which will converge robustly to the local maximum of the density function.
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Our formulation allows us to leverage the similarity of our problem to KDE and
apply the extended mean shift framework proposed in [3] to perform efficient
inference. As shown in [3], the maximization of a function of the form

∑K
c=1wcKh(x,Xc)
∑K

c=1 Kh(x,Xc)
(4)

can be done efficiently by the extended mean shift iterations

xi+1 =

∑K
c=1 XcwcGh(xi, Xc)
∑K

c=1 wcGh(xi, Xc)
(5)

until convergence, where Gh is the negative gradient of Kh. In normal kernel,
Gh and Kh has the same form [4]. Therefore, we can replace Gh in (5) by Kh.

Our goal is to find the pose x that maximize the value function V
(t)
h (x) locally.

In this case, the expression in (3) will have the exact same form to optimize in
(4) if we define wc = V (t)(c). Therefore, we derive our final extended mean
shift update rule by scaling V (t)(c) linearly to [0, 1] as wc. The algorithm is
summarized in Algorithm 3. The mean shift iterations is performed at each time
step, where the update is initialize by the pose of the last frame xt−1, and the
converged result is taken as xt. In our experiments, the first frame x1 is initialized
by the quantized state with the highest value.

3 Experiments

Our goal is to build intelligent systems that are capable of mentally simulating
human behavior. Given two people interacting, we observe only the actions of
the initiator on the right hand side (RHS) and attempt to forecast the reaction
on the left hand side (LHS). For video in which the initiator is on the LHS, we
flip the video to put the initiator on the RHS. Since we do not have access to the
ground truth distribution over all possible reaction trajectories, we measure how
well the learned policy is able to describe the single ground truth trajectory.
For interaction videos, we use videos from three datasets, UT-Interaction 1,
UT-Interaction 2 [20], and SBU Kinect Interaction Dataset [25] where the UTI
datasets consist of only RGB videos, and SBU dataset consists of RGB-D (color
plus depth) human interaction videos. In each interaction video, we occlude
the ground truth reaction g = [g1 · · · gT ] on the LHS, observe o = [o1 · · · oT ]
the action of the initiating agent on the RHS, and attempt to forecast g. For
experiments, we will first evaluate which model provides the best representation
for human reaction. Then we will evaluate the features of the cost function.

3.1 Metrics

We compare the ground truth sequence with the learned policy using two metrics.
The first one is probabilistic, which measures the probability of performing the
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ground truth reaction under the learned policy. A higher probability means the
learned policy is more consistent with the ground truth reaction sequence. We
use the Negative Log-Likelihood (NLL):

− logP (g|o) = −
∑

t

logP (gt|gt−1,o), (6)

as our probabilistic metric. For discrete models, the ground truth reaction se-
quence is quantized into a sequence c of quantized states. The probability is eval-
uated by P (gt|gt−1,o) = P (ct|ct−1,o). For our continuous model, P (gt|gt−1,o)
are interpolated according to (3). The second metric is deterministic, which di-
rectly measure the physical HOG distance (or joint distance for skeleton video)
of the ground truth reaction g and the reaction simulated by the learned policy.
The deterministic metric is the average frame distance:

1

T − 1

∑

t

||gt − xt||2 (7)

where xt is the resulting reaction pose at frame t. The distance is not computed
for the last frame because the reward function r(c, a) is not defined.

3.2 Evaluating the Interaction Model

For model evaluation, we select three baselines to compare with the proposed
method. The first baseline is the per frame nearest neighbor (NN) [5], which
only uses the cooccurrence feature at each frame independently and does not
take into account the effect of consecutive states. For each observation ot, we
find the LHS quantized state with the highest cooccurrence. That is ctNN =
argmaxc P (c|cto) ≈ P (c|ot), where cto is the observable quantized state of ot.

The second baseline is the hidden Markov model (HMM) [19], which has been
widely used to recover hidden time sequences. HMM is defined by the transition
probabilities P (ct|ct−1) and emission probabilities P (ot|ct), which are equivalent
to our transition and cooccurrence features. However, the weights for these two
features are always the same in HMM, while our algorithm learns the optimal
feature weights θ. The likelihood is computed by the forward algorithm and the
resulting state sequence cHMM is computed by the Viterbi algorithm.

Table 1. Average frame distance (AFD) and NLL per activity category for UTI

(a)AFD NN[5] HMM[19] MDP[9] Proposed
shake 5.35 5.21 4.68 3.14
hug 4.00 4.06 3.74 2.88
kick 6.17 6.16 5.33 3.96
point 3.62 3.62 3.31 2.45
punch 5.10 4.99 4.23 3.03
push 4.90 4.91 4.01 3.24

(b)NLL NN[5] HMM[19] MDP[9] Proposed
shake 651.04 473.91 862.81 476.10
hug 751.46 608.81 958.49 487.21
kick 382.62 263.08 550.52 282.36
point 577.22 426.40 750.11 374.73
punch 353.85 260.72 483.01 257.06
push 479.33 357.00 561.01 320.92
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t = 20 t = 30 t = 40 t = 50 t = 60

t = 70 t = 80 t = 90 t = 100 t = 110

Fig. 5. Forecasting result of UTI dataset 1. The RHS is the observed initiator, and the
LHS is the simulated reaction of the proposed method. The activity is shaking hands.

t = 20 t = 30 t = 40 t = 50 t = 60

t = 70 t = 80 t = 90 t = 100 t = 110

Fig. 6. Forecasting result of UTI dataset 2. The RHS is the observed initiator, and the
LHS is the simulated reaction of the proposed method. The activity is hugging.

The third baseline is the discrete state inference in Section 2.5. This can be
seen as applying the discrete Markov decision process (MDP) inference used
in [9] to a quantized state space. We will refer to this baseline as MDP. The

likelihood for MDP is computed by
∏

t π
(t)
θ (at|ct), the stepwise product of the

policy executions. We follow [9] and produce the probabilistic-weighted output.
We first evaluate our method on UT-Interaction 1, and UT-Interaction 2 [20]

datasets, which consist of RGB videos only, and some examples have been shown
in Figure 1. The UTI datsets consist of 6 actions: hand shaking, hugging, kicking,
pointing, punching, pushing. Each action has a total of 10 sequences for both
datasets. We use 10-fold evaluation as in [2]. We use K = 100 in the experiments.
We now evaluate which method can best simulate human reaction.

The average NLL and frame distance per activity for each baseline is shown in
Table 1. It can be seen that, optimal control based methods (MDP and proposed)
outperform the other two baselines in terms of frame distance. In addition, the
proposed mean shift inference achieves the lowest frame distance for all activities
and significantly outperforms other baselines because we use kernel-based rein-
forcement learning to alleviate quantization error and the mean shift inference
ensures the smoothness of the resulting reaction trajectory. It should be noted
that although the MDP is able to achieve lower frame distance than NN and
HMM, the NLL is higher. This is because the performance of discretized infer-
ence can be affected significantly by unseen data. For example, if a transition is
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Fig. 7. Ablative analysis shows that the proposed method continually outperforms the
baselines and verifies the effectiveness of our features

not observed in the training data, it will generate a low transition probability
feature and induce a high cost in the IOC framework. This will make the overall
likelihood of the ground truth significantly lower (a high NLL). On the other
hand, our kernel-based reinforcement learning framework interpolates a smooth
value function over the continuous state space and alleviates this phenomenon.
The effectiveness of our approach is verified by the NLL shown in Table 1. Some
visualization of the results are shown in Figure 5 and Figure 6.

3.3 Evaluating the Effect of Features

As noted in Section 2.4, the features define the expressiveness of our cost func-
tion, and are essential for us to model the dynamics of human interaction. In the
previous section, we have shown that the proposed method is the best interaction
model. We now evaluate the effects of different features for our model.

The average NLL and frame distance for the entire UTI dataset (1 and 2)
using different features are shown in Figure 7. The performances of baselines
and MDP are also shown for reference. It should be note that because centroid-
based features (smooth, attraction, repulsion) cannot be easily integrated into
baselines NN and HMM, the performances of HMM still only use the first two
features in the +Smooth and +Symmetry columns. It can be seen that adding
more features help our method to learn a policy that is more consistent with the
ground truth, and significantly outperforms other baselines because our kernel-
based reinforcment learning and mean-shift framework provides an efficient way
for inference over a continuous space and ensures the smoothness of the result.

3.4 Extension to 3D Pose Space

To show that our method can also work in 3D pose space (not just 2D), we eval-
uate our method on SBU Kinect Interaction Dataset [25], in which interactions
performed by two people are captured by a RGB-D sensor and tracked skeleton
positions at each frame are provided. In this case, the state space becomes a 15×3
(joint number times x, y, z) dimensional continuous vector. We use K = 50 for
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Fig. 8. Ablative analysis shows the effectiveness of our features and verifies that our
2D interaction forecasting framework can also be applied to 3D skeleton data
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Fig. 9. Forecasting result of SBU dataset. The red skeleton is the initiating agent
(observation), and the blue skeleton is our simulation result. Top row shows a result of
activity exchaging object, and the bottom row shows a result of acitivity punching.

the actions because the dataset contains less frames per video compared to the
UT-Interaction datasets. The SBU dataset consists of 8 actions: approaching, de-
parting, kicking,pushing, shaking hands, hugging, exchanging object, punching.
The first two actions (approaching & departing) are excluded from our experi-
ments because the initiating agent has no action and provides no information for
forecasting. 7 participants performed activities in the dataset and results in 21
video sets, where each set contains videos of a pair of different people performing
all interactions. We use 7-fold evaluation, in which videos of one participants are
held out for one fold. The average NLL and frame distance per activity are shown
in Table 2. Again, the proposed model achieves the best performance on both
frame distance and NLL. The feature evaluation results are shown in Figure 8. It
can be seen that adding more features is beneficial for modelling the dynamics of
human interaction. A visualization of the results are shown in Figure 9. The top
row of the figure shows the result of activity ‘exchanging object’. It can be seen
that, the forecasting result (blue skeleton) raises his hand to catch the object

Table 2. Average frame distance (AFD) and NLL per activity category for SBU dataset

(a)AFD NN[5] HMM[19] MDP[9] Proposed
kick 0.855 0.824 0.875 0.660
push 0.575 0.559 0.573 0.413
shake 0.551 0.537 0.503 0.389
hug 0.768 0.751 0.690 0.504
exchange 0.755 0.742 0.724 0.574
punch 0.700 0.692 0.633 0.510

(b)NLL NN[5] HMM[19] MDP[9] Proposed
kick 107.17 92.89 308.85 74.65
push 143.46 139.84 399.56 99.06
shake 187.11 183.14 381.97 120.89
hug 166.06 169.62 284.24 112.21
exchange 133.87 124.95 309.43 87.87
punch 111.81 111.05 306.11 78.98
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Fig. 10. Anomaly detection results. The standing part of the reacting agent is detected
as anomalous (red) and the blue pixels form a proper bowing reaction.

provided by the initiating agent (red skeleton). The bottom row of the figure
shows the result of activity ‘punching’. Our result forecasts correctly that the
opponent will avoid the punch by moving back.

3.5 Extension to Per-pixel Anomaly Detection

While we have shown that our model is able to extrapolate human behavior from
a partially observed video, the application of the learned reaction policy is not
limited to this scenario. We extend the proposed method to anomaly detection.
We address this problem by comparing the simulated probability of foreground
(PFG) map and the PFG map of the testing sequence. We downloaded four
Karate bowing videos from YouTube. We train our model on three of the videos
and test on the remaining one. We synthesize a anomalous reaction by shifting
the LHS of the testing video 20 frames forward temporally. The visual anomaly
detection result is shown in Figure 10. The anomalous part of the body pose is
labeled as red and the normal parts of the pose are shown in blue. This visual
feedback can be used in training scenarios for social interaction or sports.

4 Conclusions

We have presented a fundamentally new way of modeling human interactions for
vision-based activity analysis. While interactions have traditionally been mod-
eled as a joint phenomenon for recognition, we treat human interactions as a
dependent process and explicitly model the interactive dynamics of human in-
teraction. We have pushed beyond previous optimal control approaches for low-
dimensional spaces and have introduced kernel-based reinforcement learning and
mean-shift procedure to tackle the high-dimensional and continuous nature of
human poses. Experimental results verified that our proposed method is able to
generate highly plausible simulations of human reaction and outperforms several
baseline models. Furthermore, we have shown successful extensions to 3D skele-
ton pose data and an application to the task of pose-based anomaly detection.
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