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Abstract. Consider a video sequence captured by a single camera ob-
serving a complex dynamic scene containing an unknown mixture of mul-
tiple moving and possibly deforming objects. In this paper we propose
an unsupervised approach to the challenging problem of simultaneously
segmenting the scene into its constituent objects and reconstructing a
3D model of the scene. The strength of our approach comes from the
ability to deal with real-world dynamic scenes and to handle seamlessly
different types of motion: rigid, articulated and non-rigid. We formulate
the problem as hierarchical graph-cut based segmentation where we de-
compose the whole scene into background and foreground objects and
model the complex motion of non-rigid or articulated objects as a set of
overlapping rigid parts. We evaluate the motion segmentation function-
ality of our approach on the Berkeley Motion Segmentation Dataset. In
addition, to validate the capability of our approach to deal with real-
world scenes we provide 3D reconstructions of some challenging videos
from the YouTube-Objects dataset.

1 Introduction

With the emergence of video cameras on phones and laptops and the rise of video
libraries (e. g. YouTube Action, YouTube Objects) the use of 3D information for
recognition tasks has experienced a resurgence. While structure from motion
(sfm) techniques exist that can reliably reconstruct a static scene, most scenes of
interest contain multiple moving objects or even articulated or non-rigid objects.
Motion segmentation and non-rigid scene reconstruction from monocular video
have become more important than ever. This paper proposes a refocusing of 3D
reconstruction towards reconstructing videos of dynamic scenes.

Multibody sfm and non-rigid structure from motion (nrsfm) have addressed
some of the limitations of sfm and have seen sustained progress in dealing with
dynamic scenes [21,25] or creating vivid life-like reconstructions of deformable
objects [12]. However, they remain far behind their rigid counterparts. Multi-
body sfm approaches can segment the scene into multiple rigidly moving objects,
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Fig. 1. Segmentation and 3D reconstruction results of two dynamic sequences
of the Youtube-Objects Dataset [23] and a football sequence downloaded from
YouTube. Left: segmentation into parts (rigid models). Centre: segmentation into
objects. Right: densified 3D video pop-up from a novel viewpoint. The motor-
bike sequence, acquired with a moving camera, shows articulated motion. The
cat sequence is a non-rigid sequence occluding a static background. Bottom row
shows a reconstruction of football footage. For videos see the project website
http://www0.cs.ucl.ac.uk/staff/lagapito/research/youtube3d.

however they cannot deal simultaneously with the presence of deformable or ar-
ticulated objects in the scene. Although nrsfm algorithms can reconstruct a
single pre-segmented deformable surface moving in front of a camera [12,33],
they require manual segmentation of the scene into background and foreground.

Piecewise approaches to non-rigid and articulated reconstruction have been
successfully applied to explain the complex motion of 2D tracks on a single non-
rigid surface or an articulated object as a network of overlapping parts [9,26,33].
However, if applied to an entire scene with foreground/background objects oc-
cluding one another, depth boundaries between objects would not be respected
and neighbouring models in the image would be forced to overlap irrespective of
whether or not they belong to the same physical object.

Contributions: The main contribution of this paper is to offer a solution to the
problem of scene reconstruction for real-world dynamic monocular videos that
deals seamlessly with the presence of non-rigid, articulated or pure rigid motion.
In an entirely unsupervised approach, we reorganise/segment the scene into a
constellation of object parts, recognise which parts are likely to constitute ob-
jects, join them together, and reconstruct the scene. We offer solutions to some
of the problems of previous approaches to dynamic scene reconstruction: (i) Our
approach is able to adapt the topology of the neighbourhood graph by breaking
edges where necessary to preserve boundaries between objects. In this way our
approach can deal with an entire scene where objects might occlude one another
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and not just pre-segmented objects; (ii) Our work results in a hierarchical ap-
proach to dynamic scene analysis. At the higher level of the hierarchy the scene
is explained as a set of objects that are detached from the background and from
each other. At the lower level of the hierarchy, each object can be explained as
a set of overlapping parts that can model more complex motion.

2 Related Work

Most works in dynamic scene reconstruction [7,10,27,21] follow a pipeline ap-
proach where first feature point tracks or dense optical flow is estimated, followed
by a motion segmentation step to cluster trajectories into different independent
motions before 3D reconstruction is applied independently to each of the objects.
The first approach to multibody reconstruction [7] extended the classic affine
factorisation algorithm for static scenes [30] to the case of multiple independently
moving rigid objects. While the original approach [7] was unable to deal with
dependencies in the motions it was later extended to deal with degenerate [38]
and articulated motions [32,36]. More recent approaches to multibody sfm such
as Ozden et al. [21] are able to perform simultaneous tracking, segmentation and
reconstruction of a few feature points on realistic sequences. Roussos et al. [25]
proposed a dense approach to multibody sfm in which depth values are estimated
for every pixel in the image. However, none of these approaches can deal with
non-rigidity or articulation in each of the objects which are assumed to be rigid.

Providing robust solutions to video and motion segmentation is a funda-
mental problem in computer vision and often a preliminary step towards 3D re-
construction. A wealth of motion segmentation algorithms for multi-rigid scenes
have been proposed including algebraic frameworks such as GPCA [34] and
methods that can deal with noise and outliers [24]. Motion segmentation has
also been cast as a motion subspace clustering problem, first applied to the affine
camera case [8,15] and later extended to the case of perspective scenes [18]. Ap-
proaches such as Brox and Malik’s [6] exploit the consistency of point trajectories
over time and can deal with non-rigid motion. On the other hand, superpixel [11]
and supervoxel [35] methods for video segmentation can produce high quality
video over-segmentations that respect object boundaries, are temporally con-
sistent and are aligned with objects. However, since their aim is to segment
non-rigid and articulated objects as a single segment, they are not appropriate
for piecewise 3D reconstruction.

Non-rigid structure from motion (nrsfm) approaches reconstruct 3D mod-
els of non-rigid objects from monocular video, typically by fitting a global low-
rank shape model [31,22] to 2D tracks. Piecewise reconstruction has also been
successfully applied to nrsfm [26,33] and articulated reconstruction [9] by fit-
ting local models. However all existing methods can only reconstruct a single
presegmented object and can not resolve entire scenes.

Our approach is most closely related to the paradigm of multiple model fit-
ting where tracks, that might contain outliers, belong to an unknown number of
models. The assignment of tracks to models and the estimation of model param-
eters is then optimised jointly [14,26] to minimise a geometric cost subject to the
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constraint that neighbouring tracks must belong to the same model. The cost also
incorporates a minimum description length (MDL) cost that prefers sparse solu-
tions. The cost function is optimised by alternating between a discrete graph-cuts
algorithm to solve the labelling problem and continuous optimisation to update
the model parameters. This approach has previously been applied to computer
vision problems such as stereo [2]; motion segmentation [14]; 3D reconstruction
of non-rigid [26] and articulated objects [9]; and multi-body reconstruction [25].

Our approach departs from previous work in geometric multiple model fit-
ting in multiple ways: (i) Our model offers segmentation at two granularities:
object-level and part-level. At the object-level, we segment the scene into a small
number of disjoint objects. At the part-level, objects are further divided into a
set of overlapping parts; (ii) Our model uses a combination of appearance and
geometry cues for segmentation which encourages salient foreground objects to
be separated accurately from the background even when the motion is not dis-
tinctive enough; (iii) Our geometric cost uses a perspective camera model and
is able to deal with perspective effects and incomplete tracks.

3 Simultaneous Segmentation and Reconstruction

We consider a monocular video sequence, possibly downloaded from the web,
captured by a single camera observing a complex dynamic scene that contains
an unknown mixture of multiple moving and possibly deforming objects. First,
we extract a set T = [1, . . . , T ] of feature point tracks using Sundaram et al.’s
publicly available code [29]. Although the tracker aims to provide long-term video
correspondences, the length of tracks is variable and not all points tracked are
visible in all the frames. We make no assumptions about the number of objects
in the scene or their motions which could be rigid, articulated or non-rigid. Our
goal is to estimate the 3D coordinates for all feature points in every frame.

3.1 Piecewise Reconstruction with Overlapping Models

The works [26,9] proposed a novel piecewise approach to the problem of 3D re-
construction of non-rigid objects. Rather than attempting to reconstruct objects
by fitting a global low-rank shape model [31,22] that is sufficiently expressive to
capture deformations, but sufficiently low-rank to discourage overfitting, they au-
tomatically segmented the object to be reconstructed into a set of parts, each of
which could be expressed by a simple model – either local rigid reconstructions [9]
or local quadratic deformations [26]. By forcing these parts to overlap, and to
agree about the reconstruction of the region of overlap, per part depth/scale
and sign-flip ambiguities can be resolved. Figure 2 shows an illustration of the
segmentation of an articulated object into overlapping rigid parts.

The problem was formulated as a labelling one where the assignment of tracks
to models and the fitting of models to tracks were jointly optimised to minimise
a geometric fitting cost subject to the spatial constraint that neighbouring tracks
should also belong to the same model.
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Fig. 2. Left: Conceptual illustration of our approach to 3D reconstruction of complex
dynamic scenes. The image shows a person occluding a car. In the original neighbour-
hood graph, some point-tracks on the car are path connected with tracks on the person.
Our approach reasons about object boundaries by adapting the neighbourhood, and
breaking edges where necessary to detach parts from other occluding objects. Top
Right: Illustration of the concept of overlapping models and interior points [26]. A
tracked point belongs to the interior of a model (points with the same colour) if all
its neighbours also belong to that model (though not necessarily as interior points).
Bottom right: Real world example of segmentation into parts (left) and two objects
and background (right).

Assignment of Point Tracks to Models. Let T refer to a set of point tracks
and M a set of models. We use the notation x = {x1,x2, . . .xT } to refer to a
labelling, where xi is the set of models assigned to track i. Assuming a known
topology, or graph, which connects tracks together in a neighbourhood structure
N , the following objective was proposed by [9,26]

C(x) =
∑

i∈T

∑

m∈xi

Ui(m) +MDL(x) (1)

where tracks are allowed to belong to multiple models in M. The unary term
Ui(m) is the cost of assigning track i to model m and the term MDL(x) is a label
cost that encourages sparse solutions. In [9] local rigid models were used where
each model was parameterised with the rotation and translation associated with
a rigid motion and the unary cost Ui(m) was defined as the image reprojection
error under orthographic projection for that point given the model parameters.
The optimisation of (1) was subject to the constraint that each track must be
an interior point of some model i.e. that for every track there is a model such
that that track and all its neighbours belong to that model (Figure 2 illustrates
the concept of interior point), or more formally ∀i∃α : α = Ii and

Ii = α → ∀j ∈ Ni, α ∈ xj (2)

where I = {I1, I2 . . . IT } refers to the assignment of each track i to the interior
of one model Ii and Ni is the neighbourhood of track i. Russell et al. [26] showed
how this problem could be formulated as a labelling problem over the assignment
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of tracks to the interior of models and efficiently solved using a novel variant
of α-expansion. Starting from an excess of models the optimisation followed a
hill climbing approach that alternates between assigning tracks to models, and
refitting the models to minimise the geometric error (image reprojection error).

3.2 Obstacles to Reconstruction in the Wild

Although these multiple model fitting approaches based on overlapping models
do provide a robust approach to non-rigid [26] and articulated [9] reconstruction,
they have shortcomings. First, they cannot deal with whole scenes in which the
neighbourhood graph maintains connections between tracks of different objects
(see Figure 2) – the constraints (2) combined with a bad neighbourhood struc-
ture can force parts to straddle multiple objects, leading to an error that can not
be recovered from. Secondly, the unary terms of [9,26] minimise a geometric cost
based on multiview affine factorisation. Therefore, they have difficulty dealing
with incomplete tracks. In real-world videos, tracks are likely not to persist for
a large number of frames. Finally, a further limitation of the above approaches
comes from the fact that only motion cues are used for the segmentation. Com-
bining motion and appearance cues is useful to encourage object boundaries to
be respected. Besides, these cues complement each other particularly if there are
frames in the sequence with small motion.

The main contribution of our work is to offer solutions to these three limi-
tations: (i) Our approach adapts the topology of the neighbourhood graph by
breaking edges where necessary to preserve boundaries between objects. This
allows our approach to deal with complete video footage where objects might
occlude one another and not just singular pre-segmented objects. (ii) Our geo-
metric unary cost is based on frame-to-frame fundamental matrices, an approach
that leads itself naturally to handling incomplete tracks. (iii) Our data term
combines geometric and appearance costs. We use the saliency score provided
by [28] to encourage parts of similar saliency to belong to the same object.

4 Scene Reconstruction with an Adaptive Neighbourhood

We propose a novel cost that allows us to modify the topology of the original
neighbourhood by deleting edges between point tracks that belong to different
physical objects, and should not overlap. Our new cost has four terms

C(x) =Edata + Eedge break + Esparse + Emdl (3)

=
∑

i∈T

∑

m∈xi

Ui(m) +
∑

i∈T

∑

j∈Ni

di,jΔ(j �∈ N ′
i) (4)

+
∑

m �=n∈M
Δ(∃i : Ii = m,n ∈ xi) +MDL(x) (5)

where as before xi is the set of models that point i belongs to;Δ(·) is the indicator
function, takingvalue 1 if the statement is true and0otherwise; andN ′

i themodified
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neighbourhood of track i. This optimisation is subject to the constraints that every
track i belongs to the interior of one model Ii, or more formally

∀i, Ii = α → ∀j ∈ N ′
i , α ∈ xj (6)

We now describe in detail each term of our cost function.

4.1 Unary Costs (Edata)

Our unary term is the sum of two costs i.e. Ui(m) = Gi(m) + Pi(m), that en-
courage tracks that both move consistently as a rigid object and have similar
saliency scores, to belong to the same model. The geometric term Gi(m) evalu-
ates the cost of assigning track i to a rigid model m as the deviation from the
epipolar geometry across all pairs of consecutive frames. The second term Pi(m)
computes a saliency score for each pixel in every frame and encourages tracks
with similar saliency scores, to belong to the same model.

Rigidity Term Gi. Given a set of point tracks assigned to the same rigid
part, we parameterise the rigid model m associated with them as a set of F − 1
fundamental matrices Fm = {F1,2

m , . . . ,Ff,f+1
m , . . . ,FF−1,F

m } for every pair of
consecutive frames in the sequence f = {1, . . . , F − 1}. The cost of associating
track i to a specific rigid model m is the Sampson error [13] added over all pairs
of fundamental matrices

Gi(m) =
∑

f<F

γ−1(uf+1
i

T
Ff,f+1

m uf
i )

2 (7)

where uf
i encodes the homogeneous image coordinates of track i in frame f and

uf+1
i its corresponding position in frame f +1 and γ is the Sampson weight [13].

This cost is summed over all frames in which the track is visible. To estimate the
fundamental matrices, we use the eight-point algorithm embedded in a Ransac
scheme followed by non-linear refinement of (7). This fitting cost has several
clear advantages over the affine factorisation cost used by [9]. First, it allows to
model perspective effects which are often present in unconstrained videos and to
perform perspective reconstruction given an estimate of the camera calibration
matrix. Second, it behaves better in the presence of missing data or short tracks,
as it computes frame-to-frame geometric costs only for the frames where the track
is visible rather than the multiframe factorisation cost of [9].

Saliency Term. The work [28] provides a fully unsupervised method for object
detection in an image I, using a novel saliency map SI . While [28] made use of
both the statistics taken from a large corpus of unlabelled images, and from the
image itself, we only make use of the statistics of the single image (this measure
is termed within image saliency in [28]). We compute saliency maps SIf for each
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frame f in the video sequence and define the saliency cost Pi(m) of point i
belonging to model m as the distance from the mean saliency of model m

Pi(m) = λs

∑

f≤F

(SIf (i)− S̄m)2 (8)

where S̄m is the mean saliency of all tracks that currently belong to model
m, SIf (i) is the saliency score of point i in frame f and λs a weight on the
importance of this term.

4.2 Topologically Adaptive Neighbourhood (Eedge break)

The cost (1) proposed in [26] was internally represented as a local MDL prior
defined over the set of interior labels present in a local neighbourhood, and took
the cost ∑

i∈T

∑

m:∃j∈Ni∩m=Ij

Ui(m) (9)

As discussed, in order to separate connected objects from one another, we wish
to discard edges from the neighbourhood Ni with a per edge cost of di,j . As
such, the new cost will be of the form

∑

i∈T

∑

m:∃j∈Ni∩m=Ij

min
( ∑

j:Ij=m

di,j , Ui(m)
)

(10)

Here, the weights di,j are found by passing the distance between points i and j
in the image and velocity spaces through a sigmoid function.

4.3 Overlap Sparsity Term (Esparse)

By itself, discarding edges from the neighbourhood graph improves the quality
of the parts found, and allows more objects to be found. However, it does not
correctly separate objects from the background. In almost all sequences, we find
that one or two ambiguous tracks exist that could be easily explained as either
object or background parts. These ambiguous tracks act as junctions, or regions
of overlap between foreground and background objects, connecting the two and
making it impossible to distinguish between foreground and background.

To eliminate this leaking, we introduce a novel sparsity term that penalises
the total number of models that overlap and encourages regions with limited
overlap to disconnect. We formulate this penalty as a count of the number of
pairs of models (m,n) such that there exists a track belonging to the interior of
model m and also to model n, i.e.

∑

m �=n∈M
Δ(∃i : Ii = m,n ∈ xi) (11)

As this cost does not depend on the number of tracks in the region of overlap,
it dominates in small regions of overlap or where the cost of discarding edges is
small, and is ignored elsewhere.
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5 Efficient Optimisation

As with other multiple model fitting approaches [9,14,26], we initialise with an
excess of models which are generated by sampling randomly groups of ten feature
tracks and computing the frame-to-frame fundamental matrices using the eight-
point algorithm [13]. We then optimise the cost (3) using a hill-climbing approach
alternating between: (i) fixing the parameters Fm and optimising the labelling
that assigns tracks to a set of parts (models) x = {x1,x2, . . .xT } and (ii) fixing
the labelling and optimising Fm for all models.

Alpha expansion [5] finds a local optimum of a difficult to optimise cost func-
tion by iteratively moving from a current labelling to the lowest-cost solution
obtained by relabelling some of the variables as α. Finding an optimal move is
formulated as a pseudo Boolean optimisation [3] and solved using graph-cuts [4].
We follow [26] in considering expansion moves over the interior of labels. We use
A ∈ 2T to refer the found expansion move, with Ai taking value 1 if variable Ii
transitions to label α in the move, and 0 otherwise. Unlike [26] we will need to
explicitly keep track of whether or not tracks belong to models at all (either as
interior or boundary tracks) and for a particular expansion move on label α this
will be done by means of binary variablesMα

i = 1 if α ∈ xi and a complementary

set of variables Mβ
i , such that β �= α and Mβ

i = 0 if β ∈ xi.
Optimisation of the costs Edata and Emdl can be done using the techniques

of [26]. We now deal with the modifications to the optimisation required by the
terms Ebreak and Esparse. Although exact optimisation of either of these costs is
relatively straightforward, optimising both together is challenging, and we make
use of the convex-concave procedure (CCP) [37,20], and find an optimisable cost
that is tight at the current location, but an over-estimate elsewhere.

5.1 Exactly Optimising Ebreak

We can rewrite cost (10) in terms of the auxiliary variables
∑

i∈T

∑

β∈M
β �=α

∑

j:Ij=β

min
Mβ

i

(
Ajdi,j(1 −Mβ

i ) + Ui(β)(1 −Mβ
i )

)
(12)

+
∑

i∈T

∑

j:Ij=α

min
Mα

i

(
(1−Aj)di,jM

α
i + Ui(α)M

α
i

)
(13)

This change can been seen as a robustification of the local co-occurrence poten-
tials of [26] analogous to the robust Pn model [16]. As with the Pn potentials, it
can be formulated as a graph-cut problem simply by adjusting the edge weights
used as shown in Figure 3, left and centre left.

5.2 Approximately Minimising Esparse

For the following section it is more convenient to use sets to describe which points
belong to which models. We use Mβ to refer to the set of points belonging to
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Fig. 3. Graph constructs. Of the main graph construct repeated in all subfigures,
the top row contains all auxiliary variables indicating if tracks, a, b or c belong to
model m or n. The middle row contains the standard expansion variables which govern
whether or not a variable transitions to the interior of model α, while the bottom row
indicates if a variable belongs to model α.

model β, Iβ for the interior of model β, Mβ
last for the region (fixed throughout

the move) that was assigned to model β by the previous move, and Iβlast for
points previously belonging to the interior of model β. Performing an expansion
move on label α, we have three cases to consider:

1. The cost is a direct function of the interior labels Iα

2. The cost depends on tracks in the boundary of points belonging α: Mα \ Iα
3. The cost is not a function of α and depends on: Iβ ∩Mγ , where β, γ �= α.

For an expansion move on label α, Iα is monotone increasing while Iβ is mono-
tone decreasing. If one of either the sparsity costs, or the edge breaking of the
previous subsection was not used, the labelling of Mα and Mβ would also be
guaranteed to be monotone increasing/decreasing, but together the situation
is more complex. In the following discussion, we artificially constrain the set
of possible moves of Mβ to be monotone decreasing, and allow Mα to change
arbitrarily. Let us deal with these costs by turn:

Interior of α cost: We consider the localised MDL costs

Δ(Mβ
last ∩ Iα �= ∅) +Δ(Iβ �= ∅)− 1. (14)

This cost is 1 if Iα expands into Mβ
last without completely removing model β

(which can only be done by making sure no tracks belong to the interior of
model β) and 0 otherwise. Clearly this is an over-estimate as the true Mβ in



Video Pop-up: Monocular 3D Reconstruction of Dynamic Scenes 593

the set of all moves considered is always smaller than Mβ
last, and tight at the

current location. As this cost is simply two MDL costs defined over subregions
of the graph, it can be optimised using the techniques of [17]. As these move
costs satisfy the CCP criteria, they reduces the original cost function.

Boundary of α cost: A similar argument can be made for the above cost. Instead
of directly optimising it, we solve the over-approximation

Δ(Mα ∩ Iβlast �= ∅) +Δ(Iβ �= ∅)− 1. (15)

This can be formulated as a local MDL prior over the auxiliary variable of the
previous section and an MDL cost over label β. What is more interesting is the
quality of the approximation of these terms. If we assume that all tracks belong-
ing to the same model at every iteration of graph-cuts are path-connected1, and
if no edges are discarded2 then the over-estimate is tight. There are 3 straight-
forward cases to consider:

1. No variables in Mβ
last are in Iα. Here the cost is trivially correct.

2. No variable belongs to Mβ . Again, the cost is trivially correct.
3. At least one variable i belongs to Iα and Mβ

last, and one variable j belongs

to Iβ . As i and j are path-connected in Mβ
last, and for any possible move

variables in Mβ
last must either stay as variable β or move to label α, we

have a chain of variables {i, k, l, . . . j} belonging to either Iα or Iβ such that
i ∈ Nk, k ∈ Nl, l ∈ . . . Nj. As i ∈ Iα, j ∈ Iβ , there must be at least one pair
where k ∈ Nl, k ∈ Iα and l ∈ Iβ – and the cost is tight. 	


Although the proof does not hold where edges are discarded it does provide
intuition as to how alpha-expansion minimises the cost. In the first iterations,
regions are swept out without breaking all edges, and finding solutions with
excessive overlap between models. In subsequent iterations, the region belonging
to the boundaries of models contracts cleanly separating parts.

Costs not dependent on α: The local co-occurrence potentials considered here,
fall into the class of potentials that can not be exactly optimised by an expansion
move over label α. Instead we follow the strategy of [17] and optimise the cost

0.5Δ(Iγ ∩Mβ
last �= ∅) + 0.5Δ(Iγlast ∩Mβ �= ∅) (16)

5.3 Merging Parts into Objects: Object-Level Segmentation

The final result of our scene segmentation algorithm is the labelling x which
assigns each feature track to a set of rigid parts. Figure 6 shows some results
of the part segmentation (second row) for five videos of the Berkeley Motion
Segmentation Dataset [6]. To segment the scene into objects we label connected
components of overlapping parts as object detections.

1 In practice this is almost always true, due to the regularisation caused by overlapping
models or pairwise terms.

2 Again, most edges are not discarded. The majority of models that would overlap
without edge discardation, continue overlapping in the solution found.
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Fig. 4. Reconstruction results for a cat sequence of the Youtube-Objects Dataset [23]

Table 1. Evaluation results on the Berkeley Motion Segmentation Dataset using the
metrics of [6] Fayad et al. shows performance without discarding edges, this the same
optimisation as in [9,26].

Density overall error average error over-segmentation extracted objects
First 10 frames(26 sequences)

Brox Malik 3.34% 7.75% 25.01% 0.54 24
Fayad et al. 3.28% 15.23% 51.89% 0.23 7
Our method 3.28% 8.00% 25.46% 1.00 22

First 50 frames(15 sequences)
Brox Malik 3.27% 7.13% 34.76% 0.53 9
Fayad et al. 3.25% 24.95% 63.67% 0.20 0
Our method 3.25% 5.93% 27.84% 3.70 13

First 200 frames(7 sequences)
Brox Malik 3.43% 7.64% 31.14% 3.14 7
Fayad et al. 3.42% 28.81% 66.78% 0.29 0
Our method 3.42% 13.28% 39.86% 8.60 4

6 3D Reconstruction

The optimisation of our cost function results in the labelling of rigid models or
parts. Using the information about the regions of overlap and the saliency scores,
we also have a decomposition of the scene into different objects. In addition, our
optimisation estimates model parameters for each rigid model m. Each rigid
model is parameterised as the set of fundamental matrices Fm that describe the
epipolar geometry between every pair of consecutive frames.

The 3D reconstruction of each object is then carried out using a piecewise
rigid reconstruction approach. For each object we have a list of its constituent
parts and a rigid model (set of fundamental matrices) for each of part. First each
part is reconstructed independently using the estimated fundamental matrices
Fm. If the calibration of the camera is known, each fundamental matrix can
be decomposed into the relative rotation and translation between frames and
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Fig. 5. Top: Reconstruction results for a motorbike sequence Youtube-Objects
Dataset [23]. Bottom: Sparse reconstruction of football footage, showing both the
assignment of tracks to parts and the quality of reconstruction before densification.

an initial estimate of the shape is obtained using the DLT algorithm [13]. The
shape and motion parameters are then refined using the sparse implementation
of bundle adjustment [19]. If the camera calibration is unknown the shape is ini-
tialized using a factorization algorithm followed by per-frame motion estimation
using the PnP algorithm [13]. A final refinement of the shape, motion and focal
length parameters is then carried out via bundle adjustment.

Aligning Overlapping Segments: Objects are segmented as a set of overlap-
ping parts that require a final stitching step using the areas of overlap to enforce
global consistency on the 3D surface. As we use a perspective camera model,
the only existing ambiguity between parts is a depth/scale ambiguity which can
be resolved by enforcing that tracks belonging to two or more parts should be
reconstructed at the same depth by each part model.

Depth-Map Densification: Our reconstruction algorithm is based on sparse
feature tracks. To densify the 3D reconstruction, we apply Gaussian filtering on
the sparse 3D tracks in xy-RGB image space using the fast implementation of [1]
that performs filtering using the permutohedral lattice. Regions of the video far
from any tracks in the xy-RGB space are assigned to a flat background billboard.



596 C. Russell, R. Yu, and L. Agapito

cars1 marple1 marple3 marple7 marple8

Fig. 6. Motion segmentation results on five sample sequences of the Berkeley Motion
Segmentation Dataset [6]. Second row: Part segmentation. Third row: Object seg-
mentation.

7 Experimental Results

Since we recover both a segmentation of the scene into multiple moving objects
and a 3D model for each object, we evaluate both of these steps independently.

Evaluation of the Motion Segmentation Step: We evaluate the results of
our object-level segmentation on the Berkeley Motion Segmentation Dataset us-
ing the tracks and evaluation tool proposed in [6]. Table 1 shows a comparison
between the scores of our approach and the results from Brox and Malik’s motion
segmentation algorithm [6]. The results show that our method exhibits compa-
rable performance to [6]. While our over-segmentation error is higher than [6],
the overall error and average error are very close, and in some cases lower.
Although our algorithm can be used for motion segmentation exclusively, it is
geared towards 3D reconstruction of complex dynamic scenes. Providing object
boundaries are respected, our 3D reconstruction method is unharmed by a slight
over-segmentation given that we perform piecewise reconstruction. The same set
of parameters was used for all the experiments. The results of Fayad et al. [9]
show how our algorithm would perform without the novel edge breaking and
sparsity terms. Objects are never discovered in sequences longer than 10 frames,
and in the majority of the 10 frame long sequences no objects are discovered.

Evaluation of the 3D Reconstruction: We demonstrate our approach on
videos from the Youtube-Objects Dataset [23]. These are unconstrained real-
world videos downloaded from YouTube, with the purpose of object detection in
video [23]. Figure 1 shows reconstructions of a cat, a motorbike, and a footballer.
We show the decomposition into parts, objects and a 3D model of the objects
from a novel viewpoint for one frame. Figures 4 and 5 show 3D reconstructions for
further frames of the three sequences. Our algorithm shows a good segmentation
of the scenes and a convincing 3D reconstruction of these challenging videos.
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8 Conclusion

In this paper we propose a fully unsupervised approach to the challenging prob-
lem of simultaneously segmenting a dynamic scene into its constituent objects
and reconstructing a 3D model of the scene. We focus on the reconstruction of
real-world videos downloaded from the web or acquired with a single camera
observing a complex dynamic scene containing an unknown mixture of multiple
moving and possibly deforming objects. Our results show examples of segmen-
tation and 3D reconstruction on videos from the Youtube Objects dataset.
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