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Abstract. This paper proposes a novel approach to multi-modal gesture
recognition by using skeletal joints and motion trail model. The approach
includes two modules, i.e. spotting and recognition. In the spotting mod-
ule, a continuous gesture sequence is segmented into individual gesture
intervals based on hand joint positions within a sliding window. In the
recognition module, three models are combined to classify each gesture
interval into one gesture category. For skeletal model, Hidden Markov
Models (HMM) and Support Vector Machines (SVM) are adopted for
classifying skeleton features. For depth maps and user masks, we em-
ploy 2D Motion Trail Model (2DMTM) for gesture representation to
capture motion region information. SVM is then used to classify Pyra-
mid Histograms of Oriented Gradient (PHOG) features from 2DMTM.
These three models are complementary to each other. Finally, a fusion
scheme incorporates the probability weights of each classifier for gesture
recognition. The proposed approach is evaluated on the 2014 ChaLearn
Multi-modal Gesture Recognition Challenge dataset. Experimental re-
sults demonstrate that the proposed approach using combined models
outperforms single-modal approaches, and the recognition module can
perform effectively on user-independent gesture recognition.

Keywords: Gesture Recognition, Skeletal Joints, HMM, SVM, 2DMTM,
PHOG

1 Introduction

Human gesture recognition has been a very active research topic in the area
of computer vision. It has been widely applied in a large variety of practical
applications in real world, e.g. human-computer interaction, video surveillance,
health-care and content-based video retrieval [9]. However, it is still a challenging
problem owing to the large intra-class variability and inter-class similarity of
gestures, cluttered background, motion blurring and illumination changes.

In the past decades, research on human gesture recognition mainly concen-
trates on recognizing human actions and gestures from video sequences captured
by ordinary RGB cameras [1]. The difficulties of gesture recognition based on
RGB video sequences come from several aspects. Human gestures captured by
ordinary RGB cameras can only encode the information induced by the lateral
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movement of the scene parallel to the image plane. Gesture motion information
performed in a high dimensional space may be lost.

Recently, the launch of cost-effective depth cameras (e.g. Kinect) provides
possibilities to alleviate the difficulties mentioned above. Depth information has
long been regarded as an essential part of successful gesture recognition [11].
Using depth cameras, depth information can be obtained simultaneously with
the RGB video. In addition, the positions of skeletal joints can also be predicted
effectively from the depth data [22]. As a result, the depth maps and skeletal
joints provide more information than RGB data. Thus, recent research has been
motivated to explore more efficient multi-modal gesture recognition methods [28,
17, 5, 2]. Furthermore, how to recognize human gestures using multi-modal in-
formation in an efficient way is still a hot topic.

In order to promote the research advance in gesture recognition, ChaLearn
organized a challenge called “2014 Looking at People Challenge” [7] including
three parallel challenge tracks. Track 3 (Gesture Recognition) is focused on mul-
tiple instances, user independent gesture spotting and learning. The dataset of
the competition is recorded with a Microsoft Kinect camera, containing RGB
videos, depth videos, user mask videos and skeleton data. Fig. 1 shows an exam-
ple of different data sources available. The gesture vocabulary used in this dataset
consists of 20 Italian cultural/anthropological signs. The most challenging points
are that there are no obvious resting positions and the gestures are performed
in continuous sequences. In addition, sequences may contain distracter gestures,
which are not annotated since they are not included in the main vocabulary of
20 gestures [8].

Fig. 1. An example from the dataset: RGB video, depth video, user mask video and
skeleton data (left to right)

In this paper, we propose to use multi-modal data for gesture recognition.
Specifically, a novel approach using skeletal joints and motion trail model [16]
is proposed for multi-modal gesture recognition. The general framework of the
proposed approach is illustrated in Fig. 2. In the gesture spotting module, within
sliding windows we calculate the vertical difference of hand positions to divide
one continuous gesture sequence into several gesture intervals. Three models, i.e.
skeletal joints, depth maps and user masks, are then used to classify each gesture
interval into one gesture category. For skeletal joints, pairwise joints distance and
bone orientation features are extracted as skeleton features to encode 3D space
information of the gesture. A concatenated classifier, HMM-SVM, is employed
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Fig. 2. The general framework of the proposed approach

for skeleton features classification in time-domain. Furthermore, an RBF-SVM
classifier is used to classify skeleton statistics features. Meanwhile, depth maps
and user masks are also used in our work, since skeleton data only encode joint
information of human, ignoring the motion region information. Specifically, ges-
ture regions are segmented by combining depth maps and user masks. 2D motion
trail model (2DMTM) is performed on gesture regions for gesture representa-
tion, since 2DMTM is able to represent gesture motion information along with
static posture information in 2D space to encode the motion region informa-
tion of human gestures [16]. Then Pyramid Histograms of Oriented Gradient
(PHOG) descriptors are extracted from 2DMTM. 2DMTM-PHOG descriptors
are classified by linear-SVM. These models are complementary to each other.
Finally, the probability scores from classifiers are fused for the final recognition.
We evaluate our approach on 2014 Chalearn Multi-modal Gesture Recognition
Challenge dataset [7] and further explain why the combination of the models
achieves far better results than the single model.

The remainder of this paper is organized as follows. Section 2 reviews four
categories of existing methods in the area of gesture recognition. In section 3, we
provide a detailed procedure of our proposed approach based on skeletal joints
and motion trail model. Experimental results and discussions are presented in
section 4. At last, we give a conclusion of the paper and outline the future work
in section 5.

2 Related Work

According to the data inputs, the existing methods of gesture recognition or
action recognition can be roughly divided into four categories: RGB video based,
depth video based, skeleton data based and multi-modal data based.

RGB video based methods. In video sequences captured by RGB cameras, the
spatio-temporal interest points (STIPs) [13] are widely used in gesture recogni-
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tion, as human gestures are showing spatio-temporal patterns. These methods
first detect interesting points and then extract features based on the detected
local motion volumes. These features are then combined to model different ges-
tures. In the literature, many spatio-temporal feature detectors [13, 6, 12, 18] and
features [26, 27, 14, 21] have been proposed and shown promising performance for
gesture recognition in RGB videos. Bobick and Davis [3] propose Motion His-
tory Image (MHI) and Motion Energy Image (MEI) to explicitly record shape
changes for template matching. Tian et al. [23] employ Harris detector and lo-
cal HOG descriptor on MHI to perform action recognition and detection. The
core of these approaches is the detection and representation of spatio-temporal
volumes.

Depth video based methods. With the release of depth cameras, there are
many representative works for gesture recognition based on depth information.
Li et al. [15] propose a bag of 3D points model for action recognition. A set of
representative 3D points from the original depth data is sampled to characterize
the action posture in each frame. The 3D points are then retrieved in depth
maps according to the contour points. To address issues of noise and occlusions
in the depth maps, Vieira et al. [24] present a novel feature descriptor, named
Space-Time Occupancy Patterns (STOP). Yang et al. [31] develop Depth Motion
Maps (DMM) to capture the aggregated temporal motion energies. The depth
map is projected onto three pre-defined orthogonal Cartesian planes and then
normalized. Oreifej and Liu [19] describe the depth sequence using a histogram
capturing the distribution of the surface normal orientation in the 4D space of
time (HON4D), depth, and spatial coordinates. Inspired by the great success of
silhouette based methods developed for visual data, Jalal et al. [10] extract depth
silhouettes to construct feature vectors. HMM is then utilized for recognition.
More recently, Liang and Zheng [16] propose a three dimensional motion trail
model (3D-MTM) to explicitly represent the dynamics and statics of gestures in
3D space using depth images. Specifically, depth images are projected onto two
other planes to encode additional gesture information in 3D space. Evaluations
on the MSR Action3D dataset [15] show a good performance.

Skeleton data based methods. Furthermore, motivated by the joints estimation
of Kinect and associated SDK, there have been many different approaches relying
on joint points for action recognition. In [25], the joints of the skeleton are used
as interest points. In this way, the shapes of the area surrounding the joint along
with the joint location information are captured using a local occupancy pattern
feature and a pairwise distance feature, respectively. Xia et al. [29] propose a
compact representation of postures named HOJ3D using the 3D skeletal joint
locations from Kinect depth maps. They transfer skeleton joints into a spherical
coordinate to achieve view-invariance. A more general method has been proposed
by Yao et al. [32] where skeleton is encoded by relation pose features. These
features describe geometric relations between specific joints in a single pose or a
short sequence of poses. Yang et al. [30] propose a type of features by adopting
the differences of joints. EigenJoints are then obtained by PCA for classification.
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Multi-modal data based methods. Instead of using a single model, gesture
recognition methods based on multi-modal data have been explored widely in
recent years. Zhu et al. [33] propose to recognize human actions based on a
feature-level fusion of spatio-temporal features and skeleton joints. The random
forest method is then applied to perform feature fusion, selection, and action
classification together. Wu et al. [28], the winner team of the 2013 Multi-modal
Gesture Recognition Challenge [8], propose a novel multi-modal continuous ges-
ture recognition framework, which makes full exploration of both audio and
skeleton data. A multi-modal gesture recognition system is developed in [17] for
detecting as well as recognizing the gestures. The system adopts audio, RGB
video, and skeleton joint models. Bayer and Silbermann [2] present an algorithm
to recognize gestures by combining two data sources (audio and video) through
weighted averaging, and demonstrate that the approach of combining informa-
tion from two difference sources boosts the models performance significantly.

3 The Proposed Approach

We propose a multi-modal gesture recognition approach based on skeletal joints
and motion trail model [16]. The framework consists of gesture spotting module
and gesture recognition module. In gesture spotting module, each continuous
gesture sequence is divided into gesture intervals using hand joint positions and
sliding windows. After gesture spotting, classifiers based on skeleton features
and 2DMTM-PHOG descriptors are constructed separately and then combined
together to generate the final recognition result. In this section, we present the
proposed approach in detail.

3.1 Gesture Spotting

The process of identifying the start and end points of continuous gesture se-
quences is called Gesture Spotting. We only focus on the positions of the hand
joint to do gesture spotting, since all the gestures from the dataset are mainly
performed using a single hand or two hands. The spotting method of work [17]
is extended in our work by adding adaptive thresholds and sliding windows.
The basic idea is that joint positions of two hands along vertical direction are
varying while gesture is performing. Thus, the peaks of the hand joints position
sequences indicate the presence of gesture performance, as shown in Fig. 3. In
this way, a continuous gesture sequence can be segmented into individual gesture
intervals according to the y-coordinates of hand joints. More specifically, the aim
is to transform a continuous hand joint position sequence into a sequence of ges-
ture types: left-hand dominant, right-hand dominant, two-hands dominant and
neutral position. Therefore, the start and end points of gesture intervals would
be the gesture boundaries in the gesture type sequence.

The gesture spotting in our approach consists of three steps. In the first step,
single hand dominant gestures (left-hand dominant and right-hand dominant)
are detected. A gesture type filter g is designed to transform hand joint position
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Fig. 3. Hand joint position and gesture type sequence

sequence to gesture type sequence. Let T be the total number of frames in a
gesture sequence. Let y(t) be the y-coordinate of a joint position in the tth

(t = 1, 2, . . . T ) frame. In order to avoid the noise in the hand position sequence,
a sliding window of size w is added here. Thus, a vector of a single joint position
can be defined as Y (t) = [y(t), y(t + 1), . . . , y(t + w − 1)] to represent joint
locations within a sliding window. The average joint position Ȳ (t) = ‖Y (t)‖1/w
can be obtained using L1-norm. Therefore, the value of the filter g for the tth

frame is defined as follows:

g(t) =

1, if Ȳl(t)− Ȳr(t) > η1
2, if Ȳl(t)− Ȳr(t) < −η1
0, otherwise

(1)

where Ȳl(t) and Ȳr(t) are the average joint positions of left hand and right hand
within the sliding window, respectively. η1 = d/5 is an adaptive threshold, where
d is the average distance between “shoulder center” and “hip center” within the
sliding window. The filter value of 1 indicates left-hand dominant gesture, and
the filter value of 2 indicates right-hand dominant gesture. If the value of the filter
is 0, the gesture type could be either two-hands dominant or neutral position.

The second step is to identify the boundaries of two-hands dominant gestures.
This is done by comparing the distance between hands position and hip position.
If the distance is greater than the adaptive threshold η2 = d/10, it is assumed
that a two-hands dominant gesture is present. In this case, the filter value for
that frame is changed to 3.

The last step of segmentation is to check the duration of the candidate gesture
intervals. If the duration of a gesture is extremely short, the “gesture” will be
discarded because noisy data could result in impulse intervals. On the other hand,
if the duration is two times longer than the average duration, the “gesture” will
be divided into two gestures. In general, this step is to discard “short-interval
gestures” and separate “long-interval gestures”. Fig. 3 shows the hand position
sequences and the corresponding gesture type sequence after filtering. In the
figure, hand joint positions are normalized to range [0, 1]. For gesture type
sequence, the value of 1 indicates the left-hand dominant gesture, the value of
2 indicates the right-hand dominant gesture, the value of 3 indicates two-hands
dominant gesture, and the value of 0 indicates neutral position.
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3.2 Recognition based on Skeletal Joints

The spatial information of gestures is important for gesture recognition. Provided
that the human skeleton joints can be estimated efficiently [22], we use pairwise
joints distance and bone orientation features to complete the spatio-temporal
features. The skeletal joints data provide 3D joint positions and bone orienta-
tions. Specifically, within frame t, skeleton data of each joint i is encoded using
three coordinates: world position si,w(t) = (xi,w(t), yi,w(t), zi,w(t)) representing
the real-world position of a tracked joint, pixel position si,p(t) = (xi,p(t), yi,p(t))
with respect to the mapped pixel position over RGB maps, and bone rotation
si,r(t) = (wi,r(t), xi,r(t), yi,r(t), zi,r(t)) in the form of a quaternion related to
the bone rotation.

The skeleton positions of the joints are, however, not invariant to the gesture
movements. Therefore, before extracting any features, all the 3D joint coordi-
nates are transformed from the world coordinate system to a person centric
coordinate system by placing the hip center at the origin. Inspired by the work
of Wang et al. [25], we use pairwise joints distance as skeleton features. Fur-
thermore, to eliminate the effect of variant sizes of the subjects, the transformed
skeletons are then normalized by the sum of the pairwise distances of all selected
skeletons. To characterize the posture information of the frame t, we compute
the pairwise joints distances within that frame as follows:

fw(t) =

{
‖si,w(t)− sj,w(t)‖2∑
‖si,w(t)− sj,w(t)‖2

∣∣∣∣ i, j = 1, 2, . . . N ; i 6= j

}
(2)

where N is the number of selected joints. To capture the corresponding mapped
posture information fp(t), the mapped pairwise joints distances within the frame
t can be extracted in the similar way.

In addition, joint orientation information is essential for gesture movement.
The orientation information is provided in form of quaternions. To encode the
bone rotation features, we normalize the quaternion of joint i by its magnitude
‖si,r(t)‖2. According to our observation, most of the gestures are performed by
upper-body movements, so we only extract 12 skeletal joints of upper-body from
all 20 skeletal joints available: the head, shoulder center, spine, hip center, shoul-
ders, elbows, wrists and the hands. Pairwise joints distance and bone orientation
features are then concatenated together as the final skeleton features.

For classification task, we first use HMM [20] to construct a model for each
gesture category. After forming the models for each category, we take a gesture
interval and calculate its probability of all the 20 models. Then 20 probability
scores are obtained. Usually the gesture is classified as one category which has
the highest probability score, but we continue to use the obtained 20 scores
as a new feature vector for the gesture, and adopt SVM [4] as a concatenated
HMM-SVM classifier. The performance on validation data demonstrate that
the concatenated HMM-SVM classifier performs better than the single HMM
classifier.

The skeleton features mentioned above are extracted within each frame, and
the holistic information (e.g. repeat movements, high-frequency motion regions
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and the range of gesture movements) of gestures may be lost. Therefore, in
order to capture the holistic information of skeleton features, another 4 statistics
(variance, mean, minimum and maximum) are used to aggregate the skeleton
features of each frame over a gesture interval. Then an RBF-SVM classifier is
trained to classify the skeleton statistics features. In this way, gestures can be
disriminated from each other.

3.3 Recognition based on Motion Trail Model

To capture gesture regions information, the 2D motion trail model (2DMTM) [16]
is adopted in our approach. It employs four templates along the front view, i.e.
depth motion history image (D-MHIf ), average motion image (AMIf ), static
posture history image (SHIf ), and average static posture image (ASIf ). 2DMTM
is able to represent the motion information and static posture information of hu-
man gestures in a compact and discriminative way.

In order to alleviate the influence of noisy background, we need to segment
gesture regions from the original depth maps. Since user mask videos are avail-
able for each gesture sample, we propose to segment the gesture regions using
depth videos and mask videos. Additionally, median filter is applied to remove
the noise in the videos. We assume a binary user mask at frame t is Mt, and
the corresponding depth map is Dt. Then gesture regions can be segmented by
aligning these two maps to find their intersection Rt = Mt ∩ Dt, as shown in
Fig. 4

(a) User mask Mt (b) Depth map Dt (c) Gesture regions

Fig. 4. Gesture regions segmentation

Then the 2DMTM is performed on the segmented gesture region sequence.
The motion update function ΨM(x, y, t) and static posture update function ΨS(x, y, t)
are defined to represent the regions of motion and static posture with gesture
performing. They are called for every frame analyzed in the gesture interval:

ΨM(x, y, t) =

{
1 if Kt > ςM ,
0 otherwise.

(3)

ΨS(x, y, t) =

{
1 if Rt −Kt > ςS ,
0 otherwise.

(4)

where x, y represent pixel position and t is time. Rt = (R1, R2, . . . , RT ) is a seg-
mented gesture region sequence, and Kt = (K1,K2,K3, . . . ,KT ) is a difference
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image sequence indicating the absolute difference of depth value. In addition,
these two update functions need thresholds ςM and ςS for motion and static
information within consecutive frames.

Therefore, the depth motion history image (D-MHI) HM(x, y, t) can be ob-
tained by using motion update function ΨM(x, y, t):

HM(x, y, t) =

{
T if ΨM(x, y, t) = 1
HM(x, y, t− 1)− 1 otherwise

(5)

where T is the total number of frames in the gesture sequence. Additionally,
static posture history image (SHI) HS(x, y, t) can be generated utilizing the
static posture update function ΨS(x, y, t) to compensate for static regions over
the whole action sequence, which can be obtained in the similar way as D-MHI:

HS(x, y, t) =

{
T if ΨS(x, y, t) = 1

HS(x, y, t− 1)− 1 otherwise
(6)

In order to cover the information of repetitive movements and repetitive
static postures over the whole gesture interval, average motion image AMI and
average static posture image ASI are employed. The summation of all motion
information ΨM(x, y, t) or static information ΨS(x, y, t) and normalization of the
pixel values define the AMI and ASI:

AM =
1

T

T∑
t=1

ΨM(x, y, t) , AS =
1

T

T∑
t=1

ΨS(x, y, t) (7)

Fig. 5 shows the motion trial model (2DMTM) of one gesture example. D-
MHI and SHI present more recent moving regions and static regions brighter,
respectively. AMI and ASI capture the average motion regions and average static
regions information. Therefore, the 2DMTM gesture representation is able to
characterize the accumulated motion and static regions distribution, meanwhile
significantly reduces considerable data of depth maps to just four 2D gray-scale
images.

(a) D-MHI (b) SHI (c) AMI (d) ASI

Fig. 5. 2DMTM of one gesture example

For feature extraction from 2DMTM, we apply PHOG [16] on 2DMTM to
characterize local shapes at different spatial scales for gesture recognition. Specif-
ically, the 2DMTM-PHOG descriptor is extracted from the calculation of gra-
dients in a dense grid of the 2DMTM to encode human gesture representation.
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It is directly performed on the four templates from the 2DMTM, which requires
no edge or interesting regions extraction. In 2DMTM-PHOG, each template is
divided into small spatial grids in a pyramid way at different pyramid levels.
Each gradient orientation is quantized into B bins. Gradients over all the pixels
within a grid are accumulated to form a local B bins 1-D histogram. Therefore,
each template from 2DMTM at level l is represented by a B × 2l × 2l dimen-
sion vector. Since there are four templates in 2DMTM, we concatenate the four
PHOG vectors as the 2DMTM-PHOG descriptor. The obtained feature vector,
V ∈ Rd (d = 4 × B ×

∑L
l=1 (2l × 2l)), is the 2DMTM-PHOG descriptor of the

2DMTM. In our experiment, we choose B = 9 bins and L = 3 levels empirically.
Finally, linear-SVM is adopted to classify 2DMTM-PHOG descriptors.

3.4 Combining Skeleton and Motion Trail Model

In the above, three classifiers have been constructed for recognition: the spatio-
temporal skeleton features based concatenated HMM-SVM classifier, skeleton
statistics features based RBF-SVM classifier, and 2DMTM-PHOG descriptor
based linear-SVM classifier. We have used LIBSVM [4] for all of our SVM im-
plementations. LIBSVM has implemented an extension to SVM to provide prob-
ability estimates in addition to the decision values. Thus, each classifier is able
to predict a probability score for each gesture category, indicating the confidence
of prediction.

Table 1. Weights used for combining classifiers

Features Classifier Weight

Pairwise Joints Distance+Bone Orientation Features HMM-SVM 0.35
Skeleton Statistics Features RBF-SVM 0.45
2DMTM-PHOG Descriptors Linear-SVM 0.20

We examine the influence of each classifier on performance and conclude a
late fusion scheme to combine three classifiers based on their probability weights.
Therefore, a fusion scheme is used to combine the weighted probability scores
from the classifiers for the final recognition (Table 1). The weights are obtained
by the experiments performed on the validation data.

4 Experimental Results

The proposed approach has been evaluated on the 2014 Chalearn Multi-modal
Gesture Recognition Challenge dataset [7]. We extensively compare the proposed
multi-modal approach with the single-modal approaches using mean Jaccard In-
dex. In order to investigate the recognition module performance of the proposed
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approach, we further use truth start and end points to do gesture spotting,
and then evaluate gesture recognition using the proposed approach in terms of
accuracy.

4.1 Dataset and Experimental settings

The 2014 Chalearn Multi-modal Gesture Recognition Challenge dataset is fo-
cused on “multiple instances, user independent learning” of gestures. There are
20 Italian sign categories, e.g., vattene, vieniqui, and perfetto. Several features
make this dataset extremely challenging, including the continuous sequences,
the presence of distracter gestures, the relatively large number of categories,
the length of the gestures sequences, and the variety of users [8]. Therefore, the
dataset provides several models to attack such a difficult task, including RGB,
depth videos, user mask videos, and skeletal model.

The dataset is split into three parts: training data, validation data, and test
data. We use all the gesture sequences from training data for learning our models.
Validation data is used for parameters optimization. The size of sliding window
is 5 frames, and the number of hidden states in HMM is 15 in our work. Besides,
the optimal parameters of SVMs are obtained by 5-fold cross-validation. At last,
the proposed approach is evaluated on test data.

4.2 Evaluation Metric

For each unlabeled video sequence, the gesture category, corresponding start and
end points are predicted using the proposed approach. Recognition performance
is evaluated using the Jaccard Index. Therefore, for each one of the 20 gesture
categories labeled for each gesture sequence, the Jaccard Index is defined as
follows:

Js,n =
As,n ∩Bs,n

As,n ∪Bs,n
(8)

where As,n is the ground truth of gesture n in sequence s, and Bs,n is the pre-
diction for the corresponding gesture in sequence s. The proposed approach is
evaluated upon mean Jaccard Index among all the gesture categories for all se-
quences. The mean Jaccard Index not only indicates the performance of recogni-
tion, but also the performance of gesture boundaries identification. Thus, higher
mean Jaccard Index means better performance of the approach.

4.3 Comparison of Single-modal and Multi-modal Performance

In order to evaluate the performance of the proposed approach, we compare the
experimental results by using single-modal and multi-modal approaches. Con-
tinuous gesture sequences are first divided into individual gesture intervals using
hand joints positions and sliding windows. Then we perform experiments using
single-model and multi-modal approaches, and compare the results. For skele-
ton joints, pairwise joints distance and bone orientation features are classified
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by concatenated HMM-SVM classifier, and skeleton statistics features are clas-
sified by an RBF-SVM classifier. Additionally, depth maps and user masks are
used to segment gesture regions, and 2DMTM is employed for gesture represen-
tation. To capture the gesture regions information, 2DMTM-PHOG descriptors
are adopted and a linear-SVM is trained for classification.

Table 2. Comparison of single-modal and multi-modal performance

Model Classifier Jaccard Index Score

Skeleton HMM-SVM 0.453989
Skeleton RBF-SVM 0.519499
Depth+Mask Linear-SVM 0.462335
Skeleton+Depth+Mask Multi-Modal 0.597177

The experimental results are shown in Table 2. From the results, we can
see that the Jaccard Index scores are 0.453989, 0.519499 and 0.462335 using
only HMM-SVM, RBF-SVM and linear-SVM, respectively. The RBF-SVM using
skeleton statistics features has a higher score than other single-modal classifiers.
It is probably because holistic skeleton information are user-independent, which
means that the skeleton statistics features of the same gestures performed by
different users are similar. In order to compensate the temporal information of
skeleton joints, HMM-SVM is used to encode spatio-temporal skeleton features.
Using our fusion scheme, the Jaccard Index score is improved to 0.597177, which
is our final score for the competition.

(a) Skeleton model (b) Motion trial model

Fig. 6. Gesture samples with similar skeleton models

It is obvious that multi-modal recognition improves the performance signif-
icantly. Our analysis indicates that theses models are complementary to each
other. Specifically, some skeleton joint positions are not very accurate in some
cases. In addition, it is hard to differentiate two gestures when their skeleton
models are very similar, but gesture representation using 2DMTM can provide
discriminative information in this case. For example, as shown in Fig. 6(a), the
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two gesture samples have similar skeleton model, so the classifiers using skeleton
model could fail to recognize them as two different categories. However, motion
trail model provides complementary motion region information of the gestures,
which can help to complete recognition task in a better way (Fig. 6(b)). There-
fore, the proposed multi-modal approach improves performance than single-
modal approaches. According to the final ranking results released by the com-
petition organizers, our team is ranked 11/17 in the final evaluation phase.

4.4 Recognition using Truth Spotting Labels

Gestures in the dataset are continuous and some of them are distracter gestures,
so gesture spotting and distracter gestures rejection need to be considered in the
competition. Thus, the performance of gesture spotting and distracter gestures
rejection have a great effect on the final recognition results. In order to investigate
how our approach impacts the final result, we first evaluate the performance of
gesture spotting module using mean Jaccard Index, and the score is 0.819643.
To investigate the performance of recognition module, we use the truth labels
of start and end points provided by the dataset to do the spotting, and then
recognize the gesture intervals using the multi-modal approach. In this way, only
the performance of recognition module of multi-modal approach is evaluated,
and compared with other single-modal approaches. Since we use truth labels to
divide continuous gestures, the performance of recognition module is evaluated
in terms of accuracy. The experimental results are shown in Table 3.

Table 3. Comparison of recognition using truth spotting labels

Model Classifier Accuracy

Skeleton HMM-SVM 77.47%
Skeleton RBF-SVM 83.02%
Depth+Mask Linear-SVM 76.99%
Skeleton+Depth+Mask Multi-Modal 92.80%

From the Table 3, we can see that the multi-modal approach also outperforms
other single-modal approaches in recognition performance. The final recognition
accuracy over the whole test data reaches 92.80%, which is a relatively high
score in “user independent” gesture recognition. Furthermore, the visualization
of confusion matrix is illustrated in Fig. 7. From the confusion matrix, we can see
that the highest accuracy is 100% for category 5 (cheduepalle), and the lowest
accuracy is 85% for category 14 (prendere). Based on the results in section 4.3
and this section, we deduce that the spotting module remains to be improved
to increase the overall performance of the proposed approach. In addition, we
observe the test data and find out that the skeleton data of some gestures are
missing, which causes some gestures are mis-discarded when performing gesture



14 Bin Liang, Lihong Zheng

spotting. Therefore, only skeleton data might not be enough for a better gesture
spotting, and combining other models could improve the performance.

Fig. 7. Confusion matrix

5 Conclusion

We have presented a novel approach to multi-modal gesture recognition. The
framework consists of gesture spotting module and gesture recognition module.
In gesture spotting module, the start and end points of continuous gesture se-
quences are identified using hand joint positions within a sliding window. In ges-
ture recognition module, the skeleton features characterize the spatio-temporal
skeletal joints positions and holistic skeleton information while the 2DMTM-
PHOG descriptors capture the motion regions information during a gesture per-
formance. Three different classifiers, i.e. HMM-SVM, RBF-SVM and Linear-
SVM, are then combined based on the late fusion scheme. We have conducted
experiments on the 2014 Chalearn Multi-modal Gesture Recognition Challenge
dataset, and shown that our proposed approach outperforms single-modal ap-
proaches. We further investigate the performance of recognition module in our
approach, and get a relatively high accuracy of 92.80%. This demonstrates the
good performance of recognition module. For the future work, we will combine
more models to further improve the performance of gesture spotting under our
proposed multi-modal framework.
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