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Abstract. We propose a novel spatio-temporal filtering technique to improve the
per-pixel prediction map, by leveraging the spatio-temporal smoothness of the
video signal. Different from previous techniques that perform spatio-temporal fil-
tering in an offline/batch mode, e.g., through graphical model, our filtering can be
implemented online and in real-time, with provable lowest computational com-
plexity. Moreover, it is compatible to any image analysis module that can produce
per-pixel map of detection scores or multi-class prediction distributions. For each
pixel, our filtering finds the optimal spatio-temporal trajectory in the past frames
that has the maximum accumulated detection score. Pixels with small accumu-
lated detection score will be treated as false alarm thus suppressed. To demon-
strate the effectiveness of our online spatio-temporal filtering, we perform three
video event tasks: salient action discovery, walking pedestrian detection, and s-
ports event detection, all in an online/causal way. The experimental results on
the three datasets demonstrate the excellent performances of our filtering scheme
when compared with the state-of-the-art methods.

1 Introduction

Despite the success of object/event detection in images, it remains a challenging task to
extend state-of-the-art image analysis techniques to streaming videos. It is not uncom-
mon that the generated per-pixel prediction map becomes more noisy and unreliable
due to the low quality of video data, e.g., illumination variations, motion blur, low res-
olution, not to mention the challenges caused by moving camera.

Instead of performing image analysis on each video frame independently, enforcing
consistent labels among pixels over space and time has shown great improvement of the
prediction map and avoids the “flickering” prediction in streaming videos [22, 20, 26].
Many existing spatio-temporal filtering methods [20, 26, 10, 23, 4, 35], only works in
an offline/batch mode where the whole video is required to perform the spatio-temporal
smoothing of prediction maps. In streaming video applications, however, we need to
refine the prediction map by only using the previous detections without accessing future
frames. As a result, offline filtering methods are not directly applicable. Therefore, we
still lack efficient online spatio-temporal filtering schemes for video event detection.

Motivated by classic linear causal filtering, we propose a novel online spatio-temporal
filtering method to improve the per-pixel prediction map of streaming videos. Suppose
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the image analysis module can produce a per-pixel discriminative detection map for
each video frame, e.g. positive value for positive class while negative value for negative
class. For each pixel at the detection map, we search for its optimal spatio-temporal
trajectory in the previous frames with maximum accumulated detection score, as il-
lustrated in Figure 1. Pixel with small accumulated detection score will be treated as
false alarm thus filtered. Pixel that miss detected can be retrieved if one can find a
historical trajectory of high accumulated scores to support itself. Compared to classic
linear causal filters, our proposed filtering method can adaptively choose the temporal
window size to perform temporal filtering. Our spatio-temporal filtering can be easi-
ly extended to handle per-pixel prediction map where each pixel is associated with a
multi-class probability distribution rather than a single discriminative score. It can al-
so easily incorporate appearance modeling to improve detection results. The proposed
filtering method is general enough for video event/object detection applications.

Fig. 1: Overview of our proposed spatio-temporal filtering, which refines the current prediction
map by accumulating prediction score at previous frames.

In order to search for optimal spatio-temporal trajectories of each pixel with high ef-
ficiency, we further design an online dynamic programming algorithm that can achieve
the goal with lowest time complexity and small memory cost. Instead of searching for
the optimal trajectory per pixel, we propagate the accumulated score from one frame
to another, with optimality guarantee. In practice, our online spatio-temporal filtering
algorithm can run 67 frames per second for video of size 320×240, given that per-pixel
detection map is available and parameters have been set.

To evaluate the effectiveness of our online spatio-temporal filtering, we perform
three video event tasks: salient action discovery, walking pedestrian detection, and s-
ports event detection. The excellent performances compared with the state-of-the-art
methods validate the effectiveness and efficiency of the proposed spatio-temporal filter-
ing method.
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2 Related Work

Omniscient Spatio-Temporal Filtering. Omniscient approaches [26, 23, 4, 35, 1, 32,
7, 38, 30, 33, 39, 2, 11] take both past and future data into consideration. Andriluka et
al. [1] introduced a hierarchical Gaussian process latent variable model to improve
people-detection by people-tracklet detection in frames. Berclaz et al. [4] formulated
multi-target tracking as a k-shortest node-disjoint paths problem and utilized disjoint
path algorithm in calculation. Pirsiavash et al. [26] formulated multi-target tracking as
a “spatio-temporal grouping” problem and proposed a near-optimal algorithm based on
dynamic programming. Lan et al. [18] built a figure-centered model for joint action
localization and categorization based on statistical scene context and structural repre-
sentation of individual person. Tran et al. [35] formulated video event detection as a
spatio-temporal path discovery problem. They proposed an OPD algorithm that search-
es the global optimal path that connects a sequence of regions with efficiency. Tran et
al. [34] and Nataliya et al. [23] implemented structured output learning combined with
spatio-temporal smoothing over entire video sequences.

Causal Spatio-Temporal Filtering. Causal approaches [22, 17, 25, 24, 42, 12, 6, 13, 14,
19, 29, 8] perform online spatio-temporal filtering relying on past data only. Kalman fil-
tering had been used to aggregate data over time by Kim and Woods [17], and Patti
et al. [25]. Paris et al. [24] derived the equivalent tool of mean-shift image segmenta-
tion for video streams based on ubiquitous use of the Gaussian kernel. Leibe et al. [19]
introduced a non-Markovian hypothesis selection framework that searches globally op-
timal set of spatio-temporal trajectories for object detection. Grundmann et al. [12]
proposed a hierarchical graph-based algorithm to segment long video sequences. Chen
and Corso [6] introduced a Video Graph-Shifts approach for efficiently incorporating
temporal consistency into MRF energy minimization framework. Hernández et al. [13]
proposed a generic framework for object segmentation using depth maps based on Ran-
dom Forests and Graph-cuts theory. Miksik et al. [22] designed a filtering algorithm to
improve scene analysis by learning visual similarities across frames.

3 Online Spatio-Temporal Filtering

3.1 Problem Formulation

For each frame It of a video sequence S, we denote its per-pixel prediction map as Mt.
For each pixel p = (x, y), letMt(p) denote the corresponding detection score. Without
loss of generality, we assume the prediction map is discriminative, where Mt(p) ∈
[−1, 1]. A positive score of Mt(p) indicates a strong response at pixel p of the t−th
frame, while a negative score stands for weak response.

As the prediction map Mt is generated independently per image, temporal consis-
tency of pixel labels among video frames is not considered. Thus, it is necessary to
avoid the “flickering” prediction issue by enforcing consistent labels among pixels over
time. To denoise the prediction map, we believe the online spatio-temporal filtering
should be able to achieve the following three goals.
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1. it can suppress false alarm prediction of Mt based on previous prediction maps;
2. it can recover missing prediction of Mt based on previous prediction maps;
3. it can be performed online and implemented in real-time.

Fig. 2: Online Spatio-Temporal Filtering by refining prediction score of each pixel through find-
ing a spaito-temporal path that has the maximum accumulated score. (a) spatio-temporal trellis.
(b) our spatio-temporal filtering mechanism.

For the above three requirements, classic linear causal filters such as temporal mean
filter may not provide satisfactory result as the prediction noise can be abrupt and non-
Gaussian. To provide a better filtering, we design a novel non-linear filtering criterion.
To help better explain our idea, we introduce a 3-dimensional trellisW×H×T denoted
by G, where W × H is the frame size and T is the length of sequence. We denote
each pixel p of the t−th frame as a vertex Gt(p). As shown in Figure 2, in the trellis,
each vertex is connected to the spatial neighbors, e.g., 9-neighborhood in the previous
frame. In general, we measure the distance between two pixels p and q by ‖p− q‖∞,
where ‖x‖∞ = max{|x1|, |x2|, · · · , |xd|}. For simplicity, ‖p− q‖∞ is denoted as
‖p− q‖. We define a spatio-temporal trajectory as a pathP , which connects a sequence
of vertices P = {Gti(pi)} in consecutive frames.

For each vertex Gt(p), we search for the maximum path in the past prediction maps
that can generate the overall accumulated score. For each pixel, its maximum path score
is denoted by Ut(p). As the length of our path is adaptive (e.g. 1 ≤ s ≤ t), we actually
perform adaptive temporal filtering rather than performing temporal filtering with a
fixed length window. For each pixel, its refined prediction map is the multiplication
of the original prediction score and its maximum path score. Formally, the following
definition explains how to obtain the refined prediction map from the original map.

Ut(p) = max
s : 1≤s≤t

{
max

pi:‖pi−pi+1‖≤R

t−1∑
ti=s

Mti(pi)

}
+Mt(p)

M ′t(p) =Mt(p)× Ut(p)

(1)

From Eq. 1, we can see that the accumulated detection score Ut(·) serves as the
confidence weight that strengths or weakens original prediction score Mt(·). For exam-
ple, the prediction Mt(p) will be enhanced if there exists a spatio-temporal trajectory
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P = {Gti(pi)} ending at Gt(p) with large enough accumulated score. On the other
hand, even if the pixel has a strong positive detection at the current location, if it is
an isolated one and cannot find a historical path to support itself, the detection at that
location will be treated as false alarm thus suppressed.

To verify the effectiveness of our filtering scheme, we simulate a video sequence
of prediction maps {Mt}. The noise ε is generated first, in which the noise follows a
Gaussian distribution N (µε, σε

2). On top of the noise map, the object is generated as
a sequence of bounding boxes centered at pixel pt in the t−th frame. To incorporate
the slow motion constraint, we require ‖pi − pi+1‖ ≤ R (R is an upper bound on
spatial-temporal consistency). For each frame, pixels in the object bounding box are
treated as the target and the values also follow Gaussian distribution N (µ, σ2). Final-
ly, by following Eq 1, we visualize the simulated prediction map, filtered map (mean)
and our refined map in Figure 3. The mean filter refers to averaged score over fixed
number of frames (10) for each pixel at the same location. It is worth noting that mean
filter addresses short-term temporal consistency well but fails to take long-term tem-
poral consistency into consideration (shown in Figure 3). Detailed configuration of the
simulation has been included in supplementary materials.

Fig. 3: Visualized snapshots of a simulated video sequence. The top row shows the groundtruth
and frame number, in which the target exists from 30th frame to 180th frame and is temporal-
ly overwhelmed by noise from 95th frame to 105th frame. The second row and the third row
compares results of mean filter and our filter. It is clear that our filter achieves better refined pre-
diction map. More importantly, mean filter fails to recover the signal from 95th frame to 105th
frame when signal is overwhelmed by noise.

From the simulation result, it shows that our filtering can suppress false alarm pre-
dictions. Since a false alarm prediction Mt(p) is usually not supported by a high ac-
cumulated detection score Ut(p) and hence will be suppressed. Similarly, the filtering
criterion can address miss predictions. A missing prediction at pixel p is often featured
by 0 < Mt(p) < Mt(q), where q is another pixel with much lower accumulated de-
tection score Ut(q) compared to Ut(p). Since refined prediction map is generated by
multiplying Mt and Ut, it is likely 0 < Mt(q) × Ut(q) < Mt(p) × Ut(p). Thus, the
missing prediction in Mt will be recovered in the refined prediction map M ′t with high
chance. In our formulation, we do not recover missing prediction when Mt(p) ≤ 0,
since it may lead to false alarm prediction again.
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3.2 Online Filtering Algorithm

Despite the effectiveness of our online spatio-temporal filtering, its implementation is a
non-trivial issue. The search space of the spatio-temporal path for each pixels is O(cT ),
where c denotes the number of spatial neighbors. Following the idea of using dynamic
programming, [35] and [26], we can reduce the cost of finding one path to O(T ), thus
the cost of a whole frame is O(W ×H × T ) as there are W ×H pixels. Considering
that we have in total T frames, the computational cost will be O(W ×H × T 2).

In order to provide real-time implementation, we propose an efficient online filtering
algorithm that further reduces the complexity to obtain the accumulated mapUt. Instead
of finding spatio-temporal path for each pixel separately, dynamic programming helps
to avoid redundant calculation of subproblems (e.g. Ut−1(p) and Ut−1(q)). The idea
of our algorithm can be explained in the following Lemma.

Lemma 1. Ut(p) resulted from Eq. 2 is the maximum accumulated detection score
tracing back from Gt(p).

Ut(p) = max

{
max

‖p−q‖≤R
Ut−1(q), 0

}
+Mt(p) (2)

The correctness of Lemma 1 is proved in supplementary material. Intuitively, for
Ut−1(q) < 0, it cannot bring higher accumulated detection score in the future and
hence will be neglected. On the contrary, for Ut−1(q) > 0, we can obtain a higher ac-
cumulation score by adding it to the next frame. Our online filtering algorithm achieves
the lowest time complexity O(W ×H) for one step, and so it has an overall complex-
ity O(W × H × T ) for the whole video. Based on the observation that calculation of
Ut(p) in Eq. 2 only relies on input Mt(p) and accumulated detection score in previous
frame Ut−1(q), we then implement an iterative filtering algorithm with the memory
cost O(W ×H).

Algorithm 1 Online Filtering Algorithm

1: Calculate M1(p) based on input I1;
2: U1(p)←M1(p),∀p;
3: for t← 2 to n do
4: Calculate Mt(p) based on input It;
5: for all p ∈ [1,W ]× [1, H] do
6: q′ ← argmax‖p−q‖≤R Ut−1(q);
7: Ut(p)← max {Ut−1(q

′), 0}+Mt(p);
8: end for
9: Release the space of Ut−1(·) and Mt−1(·);

10: Calculate Ũt(·) based on Ui(·);
11: for all p ∈ [1,W ]× [1, H] do
12: M ′t(p)←Mt(p)× Ũt(p);
13: end for
14: end for
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To ensure that M ′t ∈ [−1, 1], accumulated map Ut will be normalized to Ũt that
satisfying Ũt ∈ [0, 1]. The technical details will be discussed in experiments. The radius
R can be chosen by users to satisfy different requirements. When slow motion constraint
can be satisfied, a smaller R is preferred. Otherwise, larger R is utilized to handle the
effect of fast camera motion.

Multi-class label prediction. Our proposed method can be easily applied to multi-
class pixel labeling. In such a case, each pixel has a prediction of multi-class distri-
bution. Instead of working on a single prediction map, we can separate K different
prediction maps Mt(·, k) for different classes, where K is the number of classes. Sim-
ilarly, we accumulate detection scores separately via K different accumulated maps
Ut(·, k).

3.3 Spatio-Temporal Filtering by Appearance Tracking

One limitation of our spatio-temporal filtering in Sec. 3.2 is that it only takes the pre-
diction map into consideration while does not leverage extra information such as the
appearance of the target. To mitigate this problem, we can incorporate tracking into our
framework by adding the weight of the edge in the trellis. By measuring the visual sim-
ilarity between two neighboring vertices in the trellis, we defineWti(pi,pi+1) as the
weight of the edge connecting two vertices.

Instead of only summing up vertex scores in a path, the accumulated score now
sums all the edge scores and vertex scores. For each spatio-temporal trajectory P =
{Gti(pi)}, we introduce an energy function E(P) that accumulates not only the detec-
tion scores, but also the tracking scores.

E(P) = −U(P)− λ · Ea(P) (3)

The first term U(P) =
∑T
ti=1Mti(pi) represents the accumulated detection s-

core while the second term Ea(P ) =
∑T−1
ti=1Wti(pi,pi+1) stands for the accumulated

visual similarity measure thus is the tracking score. Intuitively, the energy E(P ) is min-
imized with presence of higher accumulated detection and appearance score, where λ
is referred as appearance weight which will be further discussed in the experiments.

Lemma 2. Et(p) resulted from Eq. 4 is the minimum accumulated energy tracing back
from Gt(p).

Et(p) =

{
−Mt(p) t = 1

min
{
min‖p−q‖≤R{Et−1(q)− λ · Wt(q,p)}, 0

}
−Mt(p) t > 1

(4)

In order to calculate the minimum energy tracing back from Gt(p) (denoted by
Et(p)) with high efficiency, we design a similar algorithm, as shown in Algorithm 2.

The correctness of Lemma 2 and Algorithm 2 have been proved in supplemen-
tary materials. In our implementation, we setWti(pi,pi+1) = K(hti(pi), hti(pi+1)),
where ht(p) is intensity histogram of local patch centered at p at the t−th frame It.
The similarity is measured by K(h, h∗) = b − ‖h− h∗‖. Here, the bias b is to ensure
discriminative score of appearance similarity, where histograms h and h∗ should be
normalized before calculation.
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Algorithm 2 Energy Minimization

1: Calculate M1(p) and h1(p) based on input I1;
2: E1(p)← −M1(p), ∀p;
3: for t← 2 to n do
4: Calculate Mt(p) and ht(p) based on input It;
5: for all p ∈ [1,W ]× [1, H] do
6: q′ ← argmin‖q−p‖≤R {Et−1(q)− λ ·K(ht−1(q), ht(p))};
7: Et(p)← Et−1(q

′)− λ ·K(ht−1(q
′), ht(p))−Mt(p);

8: end for
9: Release the space of Et−1(·), ht−1(·), and Mt−1(·);

10: end for

4 Experiments

The evaluation of our online filtering algorithm is composed of three different exper-
iments. In Sec. 4.1, we show temporal consistency of video saliency can be utilized
to discover video event in an unsupervised way. This helps to detect salient object in
videos, which achieves higher accuracy in UCF101 Dataset 1 [31]. In Sec. 4.2, we
illustrate that our appearance tracking version achieves superior performance when de-
tecting actions (walking pedestrians) at UIUC-NTU Youtube Walking Dataset 2 [35].
In Sec. 4.3, we demonstrate that when combined with Exemplar-SVMs, our spatio-
temporal filter can achieve excellent performances when localizing complex actions
with large intra-class variations.

4.1 Unsupervised Video Event Discovery via Saliency Map Filtering

In this experiment, we show that video saliency maps can be improved by proposed fil-
tering algorithm. In addition, the refined saliency map can be utilized to discover video
event in an unsupervised way. Discovering events based on accumulated saliency par-
allels the theory that selective visual attention results from competition among multiple
responses in visual cortex [36, 5].

Method. We leverage a Phase Discrepancy method [43] to generate motion saliency
map. This method works well with slow moving background, but will output noisy
saliency map when applied to fast moving background, changes in lighting condition,
and camera zooming. Since values of saliency map ranges from 0 to 1, we therefore
introduce a further step to generate discriminative prediction scores Mt. That is, Mt is
normalized by Mt ∼ N (0, 1). In this experiment, we fix the radius to R = 3 pixels.

We use UCF101 Dataset [31] for test, which provides fully annotated bounding
boxes for 25 action categories. For this experiment, more than 2000 video sequences
from 15 categories have been tested.

Results. We provide qualitative results of our filtering method first, as shown in Fig-
ure 4. The video sequences are quite challenging: saliency maps generated by baseline

1 http://crcv.ucf.edu/data/UCF101.php
2 http://www.cs.dartmouth.edu/˜dutran/projects/event/
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Fig. 4: Qualitative results on UCF101 Dataset. Four sequences are (a) “pole vault”, (b) “skiing”,
(c) “diving”, and (d) “long jump”. In general, the four sequences represent four challenges in
saliency map generation: (a) fast movement, (b) noisy saliency map, (b) several saliency regions,
and (d) fast camera motion. For each video sequence, we visualize original saliency map as well
as refined map obtained from our spatio-temporal filter. Note our filter is able to refine saliency
map via long-term temporal consistency.

Fig. 5: Quantitative comparison of localization accuracy on UCF101 Dataset. (a) Comparison
between our filter and baseline method. We use Phase Discrepancy method [43] as our baseline.
On average, our filter improves about 2% of absolute accuracy compared to the baseline method.
(b) Comparison in localization accuracy (%) among our filter, (temporal) mean filter, and (tempo-
ral) exponential filter. To highlight the difference, we utilize relative change as our measurement
(“our/base” stands for “our filter vs. baseline method”, “m/base” stands for “mean filter vs. base-
line method”, and “e/base” stands for “exponential filter vs. baseline method”). In this test, we
fix the temporal window of size 10 for both mean filter and exponential filter.
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method [43] are frequently overwhelmed by noise. In such situations, existing causal
linear filters cannot work well, since their performance are largely determined by few
previous frames. However, our filter deals with this difficulty by treating all previous
frames equally and selectively accumulating scores. The refined saliency maps, are
shown to have higher quality.

To further illustrate the strength of our saliency filter, we provide a qualitative com-
parison. Since this dataset does not provide groundtruth mask for motion saliency, we
take a further step to localize salient object in videos. That is, we evaluate the saliency
of a region Ω by summing up the discriminative scores at every pixel:

∑
p∈ΩMt(p).

We evaluate the localization accuracy in each frame by PASCAL metric (shown in
Figure 5(a)). On average, our filter achieves 1.76% improvements in accuracy (6.20%
of relative improvements). To show the difference between our filter and classic lin-
ear causal filters (e.g. mean filter and exponential filter), we also compare the relative
change of localization accuracy (shown in Figure 5(b)). Although the quantitative eval-
uation of saliency filtering is conducted indirectly (via localization accuracy), improve-
ments in localization accuracy still illustrate effectiveness of our filtering method to
some extent. Note that performance of salient object detector varies between different
action categories. For actions like “long jump” and “diving”, in which actor moves hor-
izontally or vertically, baseline detector is able to output valid saliency map. But actor’s
tiny scale in “cliff diving” and actor’s fast movement in “pole vault” greatly affect the
quality of saliency map. Even in such scenarios, our proposed filtering algorithm still
contributes to accuracy improvements.

Finally, our online filtering algorithm can run at 67 fps with binary classification
setting when input size is 320 × 240 pixels, radius is 3 using C++ Implementation,
where the experiments are conducted on a computer with Intel(R) Core(TM) i5-4570
CPU and 8GB RAM. Note that we do not take into account I/O delays and the time for
generating baseline saliency map.

4.2 Walking Pedestrian Detection

In this experiment, we show that our online spatio-temporal filtering can benefit objec-
t/action localization in video sequences by appearance modeling and tracking.

Method. Following [35], a walking pedestrian detector was previously trained by
SVM with TUD-Motion Pairs [40] Dataset, while features of HOG [9], IMHd2, and
Self-Similarity [37] are combined in the training step. We use UIUC-NTU Youtube
Walking Dataset for testing, which consists of 27 video sequences (25 short videos of
100-150 frames and 2 long videos of 800-900 frames) of catwalk models. This data-set
is challenging since catwalk models are frequently exposed to occlusions, changes in
lighting conditions and cluttered background.

We first generate dense detection maps using our SVM classifier on 15 different
scales. Then, we take detection maps as input for our spatio-temporal filtering. To lo-
calize walking pedestrian, we report our filtering result by the region Ω(p) centered at
pixel p with maximum refined prediction score in each frame. To take scale changes
into consideration, we modify the distance metric a little: ‖p− q‖ + ‖δp − δq‖ ≤ R,
where δp corresponds to the scale order of region Ω(p). For our appearance tracking
version, a simple color histogram h is used to calculate appearance score and we fix
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Fig. 6: Quantitative comparison on NTU-UIUC Youtube Walking Dataset. (a) Comparison of
four online tracking algorithms, detection baseline, OPD algorithm and our spatio-temporal fil-
tering method (“STF” for original version and “a-STF” for appearance tracking version). Our pro-
posed filtering method improves 12-14% of accuracy compared to baseline detector and achieves
superior performance over online tracking algorithms. (b) Averaged localization accuracy (%) of
appearance tracking version over different appearance weights λ. The y-coordinate is localization
accuracy, while the x-coordinate represents appearance weight λ. Three different appearance
adaptation ratios ru are used in the test.

radius R to 2. In addition, we introduce a ratio ru in Eq. 5 to set appearance score
dynamically for appearance adaptation and better tracking.

Wti(pi,pi+1) = K(Hti(pi), hti(pi+1))

Hti+1
(pi+1) = ru ·Hti(pi) + (1− ru) · hti+1

(pi+1)
(5)

Such a strategy brings certain improvements in our test. However, achieving mini-
mum energy minp Et(p) under Eq. 5 turns out to be intractable in polynomial time. We
attempt to minimize the energy by updating dynamic appearance Ht.

For comparison, detection baseline, OPD algorithm [35] as well as four online track-
ing algorithms (L1APG [3], ASLA [15], TLD [16], and IVT [28]) are utilized. We
report the region with maximum prediction score in each frame as baseline detection
result. Note that OPD algorithm utilizes both past and future prediction maps to local-
ize walking pedestrian, which is an omniscient (non-causal) method. For each of four
trackers, we report tracking accuracy based on maximum score under SRE defined in
[41], so the result is comparatively independent of initialized bounding box.

Results. The evaluation is based on averaged localization accuracy of each frame
under PASCAL metric. Figure 6(a) compares localization accuracy of four online track-
ing algorithms, baseline detector, OPD algorithm [35], and two versions of our spatio-
temporal filtering method. In general, baseline detector fails to localize walking pedes-
trian due to challenging testing sequences with cluttered background. By utilizing tem-
poral consistency, our filter can improve localization to about 12-14% compared to
baseline result. For roughly one-third of video sequences, tracking algorithms fail to
capture the target even in the first 30 frames due to catwalk models’ fast walking. It
is worth noting that OPD [35] achieves higher accuracy by taking both past and future
data, while our filter is a causal method and can be implemented in real-time.
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Fig. 7: Plots of localization accuracy of baseline detector, our spatio-temporal filtering method,
and appearance tracking version with visualized snapshots. In the visualized snapshots, local-
ization results are represented by bounding boxes of different colors (“orange” for groundtruth,
“green” for baseline, “blue” for our filter, and “red” for our appearance tracking version).

Figure 6(b) illustrates the performance of proposed filtering method with differ-
ent λ, the parameter to balance between detection score and visual similarity. When
baseline detector outputs reasonable detection map, small λ is enough to refine detec-
tion map. But when baseline detector fails frequently to provide valid detection results,
larger weight λ is preferred as appearance tracking can help throughout filtering pro-
cess. For all 27 video sequences, our appearance tracking achieves better performance
compared to our original version that does not utilize appearance tracking (shown in
Figure 7).

4.3 UCF Sports Action Detection

In this experiment, we show that our filtering with Exemplar-SVMs [21] can beat state-
of-the-art action detection approaches on more complex actions (with large intra-class
variations).

Method. We evaluate our action detection method on the UCF Sports dataset, which
consists of 150 video clips from broadcast television channels with 10 different action
categories (e.g., “diving”, “golf swinging”, “kicking”). Two action categories, “diving”
and “horse riding”, are evaluated, since they are representative. For action “diving”,
athlete is moving fast vertically with various shapes and poses. But for all athletes,
appearances are quite similar. For action “horse riding”, athlete is moving horizontally
with various appearances and poses.

Following the training-testing splits proposed by [18], we train our Exemplar-SVMs
for each category using two-thirds of video frames and test on remaining one-third
frames. TUD MotionPairs [40] is chosen as negative set, which consists of 196 image
pairs taken from city district. To better adapt this negative set to our action detection
task, we add 40 examples from Google search engine with similar background configu-
ration as our positive samples. Intuitively, these additional negative samples enhance the
generalization of our trained model. Half of training frames are used to train individual
exemplar while remaining frames are utilized for calibration. In total, 270 exemplars
are trained for action “diving” and 240 for action “horse riding” with HOG feature.
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Action detection is based on the localization scheme. For each frame, the maximum
score corresponded region is selected as our action detection results. For our filtering
framework, we generate a collection of prediction maps with different aspect ratios and
scales with interpolated discriminative scores based on sparse outputs of Exemplar-
SVMs.

We compare our method with three state-of-the-art approaches. [18] implemented
figure-centered model trained by latent SVM with HOG feature. [34] and [23] imple-
mented structured output learning with both static feature HOG and motion feature
HOF and HOMB [27] and both results are smoothed in a spatio-temporal scheme over
entire video.

Results. As shown in Table 1, our method achieves more than 5% accuracy over
Lan’s and Tran’s methods on two categories of UCF Sports Dataset and also approxi-
mates Nataliya’s method when detecting “diving” action.

Note that [18] built a figure-centered model for each action, while [34] and [23]
utilized motion feature like HOF and implemented spatio-temporal smoothing over en-
tire video. However, our method filters the detection map with only HOG feature in
use. We attribute the improved localization results to the unique training mechanism
and our filtering method. More specifically, the Exemplar-SVMs help to address large
intra-class variations in sports actions. When Exemplar-SVMs fail to work well, on-
line spatio-temporal filtering can still improve the localization results a little bit (see
Table 1).

Category
Method

Lan[18] Tran[34] Nataliya[23] Exemplar Exemplar+OSTF

Horse Riding 21.75 68.06 20.30 73.59 73.59
Diving 42.67 36.54 52.37 48.33 50.19

Table 1: Quantitative comparison of action localization accuracy on UCF Sports Dataset. The
averaged localization accuracy is evaluated based on PASCAL metric (intersection divided by
the union of detection and ground truth). The five columns are methods of [18], [34], [23], our
Exemplar-based action detection, and our Exemplar-based action detection with online spatio-
temporal refinement. In both categories, our final version (corresponding to the rightmost column)
shows excellent performances when performin action localization.

As illustrated in Figure 8, our detection method performs better localization result-
s compared to current localization methods. Note that [18] tends to miss detect target
action and leads to false alarm detections due to background clutter. Also, the tempo-
ral consistency is not well addressed by its figure-centered model. Compared to Lan’s
method, [34] produces more stable detection results temporally. However, the bound-
ing boxes produced by Tran’s method are generally much smaller than the groundtruth
bounding boxes. This can be contributed to its smoothing mechanism via maximum
path algorithm. When smoothing in the spatio-temporal domain, only very confident
regions are selected. Our method, however, is more robust to background clutter and
intra-class variations due to our unique training mechanism. In the “horse riding” se-
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quence, the target is never lost while in the “diving” sequence, the target is only tempo-
rally miss detected.

Fig. 8: Visualization of action localization of our Exemplar-based method, methods of [18] and
[34]. In the visualized snapshots, localization results are represented by bounding boxes of differ-
ent colors (“green” for groundtruth, “yellow” for Lan’s method, “white” for Tran’s method, and
“red” for our Exemplar-based version (without online spatio-temporal filtering).

5 Conclusions

In this paper, we have introduced a novel spatio-temporal filtering method to improve
per-pixel prediction map by accumulating detection score along spatio-temporal trajec-
tories. To search maximum accumulated detection score, we have proposed an online
filtering algorithm with the lowest time complexity and small memory cost. We have
extended the online filtering algorithm to enable multi-channel processing and incor-
porate appearance information. With refined prediction map, we have shown that our
method can benefit streaming video analysis tasks like human body recognition, salien-
cy detection, and specific action detection.

Our online filtering algorithm only assumes the temporal dependence between video
frames, with which many real-world video sequences share. As our filtering can perfor-
m in real-time, the refined prediction map can benefit other tasks like multiple object
detection and tracking, which will be our future work.
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