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Abstract. This paper aims to investigate whether micro-facial move-
ment sequences can be distinguished from neutral face sequences. As
a micro-facial movement tends to be very quick and subtle, classifying
when a movement occurs compared to the face without movement can be
a challenging computer vision problem. Using local binary patterns on
three orthogonal planes and Gaussian derivatives, local features, when in-
terpreted by machine learning algorithms, can accurately describe when
a movement and non-movement occurs. This method can then be applied
to help aid humans in detecting when the small movements occur. This
also differs from current literature as most only concentrate in emotional
expression recognition. Using the CASME II dataset, the results from
the investigation of different descriptors have shown a higher accuracy
compared to state-of-the-art methods.

Keywords: micro-movement detection, facial analysis, random forests,
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1 Introduction

Detecting micro-facial movements (MFMs) is a new and challenging area of
research in computer vision that has been inspired by work done by psychologists
studying micro-facial expressions (MFEs) [7, 12]. Facial expressions have strong
scientific evidence suggesting they are universal rather than culturally defined
[6]. When an emotional episode is triggered, there is an impulse that cannot be
controlled which may induce one of the 7 universal facial expressions (happy, sad,
anger, fear, surprise, disgust or contempt). When a person consciously realises
that this facial expression is happening, the person may try to suppress the facial
expression. Doing this can mask over the original facial expression and cause a
transient facial change referred to as a MFE. The speed of these MFEs are high,
typically less than 1/5th of a second. During experiments [6] where videos were
recorded at 25 frames per second (fps), MFEs have been found to last 1/25th of
a second.

MFEs are not so straightforward that they can be interpreted as an emotion
and require the context of when the movement occurred to understand whether
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the movement can be classed as an MFE or as an MFM. Both can be coded
objectively using the Facial Action Coding System (FACS) [5], which defines
muscle movements and intensity on the face with no emotional interpretation.

The process of detecting normal facial expressions in computer vision usually
involves preprocessing, feature extraction and classification. Methods such as
Support Vector Machines (SVM) or Random Forests (RF) [21, 26] are used to
classify and recognise an emotion. This process is similar for MFEs and MFMs,
however the features used must be descriptive enough to detect a movement
has occurred, because large movements of normal facial expressions usually have
more descriptive features making them easier to detect.

Due to the problems described above, this paper extracts local features from
image sequences using local binary patterns on three orthogonal planes (LBP-
TOP) and Gaussian derivatives (GDs) to accurately determine that a micro-
movement has occurred on a face within the dataset compared with an image
sequence where no movement occurs (neutral expression). Using these features,
two classifiers, SVM and RF, are investigated in how they classify the move-
ments. From the results, a human interpreter would be able to see any move-
ments they may miss, and it can help in interpreting what the movements may
mean in the context of the situation.

The remainder of this paper is divided into the following sections; Section
2 discusses related work and approaches in current literature. Section 3 and 4
describe our investigation of detecting micro-facial movement against a neutral
face and the results from experiments respectively. Finally, section 5 concludes
this paper.

2 Related Work

Previous work in this field is limited, with current literature focusing on recog-
nising what emotion has occurred, and not when a movement occurs.

Pfister et al. [15] use temporal interpolation with multiple kernel learning
and RF classifiers on their own spontaneous micro-expression corpus (SMIC
dataset) [11]. The authors classify a MFE into positive or negative categories
depending on two annotators labelling based on subjects’ self reported emotions.
Polikovsky et al. [16] introduce another new dataset recorded at 200 frames per
second (fps) and the face images are divided into regions created from manually
selected points. Motion in each region is then calculated using a 3D-Gradient
orientation histogram descriptor. Shreve et al. [19] propose an automatic method
of detecting macro- and micro-expressions in long video sequences by utilising
the strain on the facial skin as a facial expression occurs. The magnitude of the
strain is calculated using the central difference method over the dense optical
flow field observed in regions of the face. Wang et al. [23, 24] use discriminant
tensor subspace analysis and extreme learning machine as a novel way of recog-
nising faces and MFEs. The authors take a grey-scaled facial image and treat
it as a second order tensor and adopt two-sided transformations to reduce di-
mensionality. Further, they use a tensor independent color space model to show
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performance of MFE recognition in a different colour space compared with RGB
and grey-scale.

Local Binary Pattern (LBP) features [14] form labels for each pixel in an
image by thresholding a 3x3 neighbourhood of each pixel with the centre value.
The result is a binary number where if the outside pixels are equal to or greater
than the centre pixel, it is assigned a 1, otherwise 0. The amount of labels will
therefore be 28 = 256 labels. This operator was extended to use neighbourhoods
of different sizes [13]. Using a circular neighbourhood and bilinearly interpolating
values at non-integer pixel coordinates allow any radius and number of pixels in
the neighbourhood. The grey-scale variance of the local neighbourhood can be
used as the complementary contrast measure.

As a further extension to local binary patterns (LBP) as a static texture de-
scriptor, Zhao et al. [27] take the LBP in three orthogonal planes, these planes
being the spatial and temporal planes (XY, XT ,YT). Originally for dynamic
texture recognition, it was used alongside volume LBP to recognise facial expres-
sions. However, unlike dynamic textures, the recognition of facial expressions was
done by dividing the facial expression image sequence into blocks and computing
the LBP for each block in each plane. These LBP features were then concate-
nated to form the final LBP-TOP feature histogram. The LBP-TOP histogram
provides a robustness to pose and illumination changes, and as the images are
split into blocks, the local features of the face better describe facial expressions
than a global description of the whole face would.

The Gaussian function is a well-known algorithm and is usually referred to
being a normal distribution. Ruiz-Hernandez et al. [18] use the second order
derivative to extract blobs, bars and corners to eventually use the features to
detect faces in a scene. GDs also provide a powerful feature set with scale and
rotation invariant image description. However, when processing higher order
derivatives, the feature selection becomes more sensitive to noise, and computa-
tionally expensive.

Classification in this area is well established. Random Forests [2] are an en-
semble learning method used for classification. It uses many decision trees to find
an average balance of votes to decide where a feature should be classified. As a
supervised learning method, RF will require training from processed images from
a dataset. Support Vector Machines [4] is another supervised learning algorithm
which finds the optimal separating hyperplane to decide where to classify data.
Both RF and SVM have been used in facial expression recognition [15, 21, 25, 27]
and also in other methods such as physical rehabilitation [10] and bioinformatics
[20].

The investigation of this paper does not attempt to recognise MFEs as most
others, and treats the problem as detecting whether a MFE has occurred com-
pared with a sequence of images that does not contain any movement. These
two classes can then be classified using RF and SVM. The potential application
of this is to aid a person in detecting when the micro-movement has occurred,
and then use this to interpret potential emotion.
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3 Method

This section describes a method of differentiating between a MFM and a neutral
expression. Normalisation is described by automatically using the centre point
of the two eyes and affine transformation to rotate each face from CASME II
[25], and then cropping each image to just the face itself. Finally, LBP-TOP and
GD features are obtained and classified into either a MFM or neutral expression
using RF and SVM.

3.1 Normalisation

Normalisation is applied to all sequences so that all the faces are in the same
position based on a constant reference point, in this case, the midpoint between
the eyes. Once the midpoint has been obtained, affine transformation is used to
rotate the face so that all faces line up horizontally based on this point. The face
of the sequences then needs to be cropped to remove the unnecessary background
in each image.

To calculate the midpoint of the eyes, first the centre of both eyes are ob-
tained automatically by using a Viola-Jones Haar cascade detector [22] to detect
both the left and right eyes separately. Closed eye Haar detectors are available,
however as the dataset does not include closed eyes, this has not been imple-
mented. This creates a bounding box around both eyes which the centre point
of an eye can then be extracted

(Cx, Cy) =

(
W

2
+ x,

H

2
+ y

)
(1)

where C is the centre of the eye, W is the width of the bounding box, and H
is the height and x and y are the pixel locations of the top-left corner of the
bounding box for the eye. Once the centre points are found for both the left and
the right eye, this paper computes the midpoint of the eyes

(Mx,My) =

(
LCx +RCx

2
,
LCy +RCy

2

)
(2)

where M is the midpoint between the eyes and LC and RC are the centres of
the left and right eye respectively. Using the calculated points, it can be worked
out how to apply affine transformation to all images. First the distance between
the eyes in Eq. 3 is found and then the angle between the eyes is calculated in
Eq. 4

(Dx, Dy) = (|RCx − LCx|, |RCy − LCy|) (3)

θ =
arctan(Dx, Dy)180

π
(4)

where D is the distance between the eyes and θ is the angle between the eyes.
Using the extracted points, affine transform is used to align the eyes horizontally,
ready to be processed.
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3.2 Processing Images

Feature extraction begins by grey scaling each image sequence and dividing each
image into 9x8 non-overlapping blocks, as proposed by Zhao et al. [27] as their
best performing block size (see Fig. 1). This sequence then has a GD operator
applied with σ (the standard deviation) being changed from 1-7 in each iteration
once the whole database has been processed.

Fig. 1. Images are split into 9x8 blocks so each can be processed separately and obtain
local features that are concatenated to form the overall global feature description.

A Gaussian function is used as a blurring filter to smooth an image, lowering
the high frequencies denoted as

G(x, y;σ) = e−
x2+y2

2σ2 (5)

To extract features such as blobs and corners from the face images, the first and
second order derivatives [17] of the Gaussian function is calculated. The first
order GD is defined as

Gx(x, y;σ) =
∂G(x, y;σ)

∂x
= − x

σ2
G(x, y;σ) (6)

Gy(x, y;σ) =
∂G(x, y;σ)

∂y
= − y

σ2
G(x, y;σ) (7)

where σ is the scaling element of the GD. The second order GD is defined as

Gxx(x, y;σ) =

(
x2

σ4
− 1

σ2

)
G(x, y;σ) (8)

Gyy(x, y;σ) =

(
y2

σ4
− 1

σ2

)
G(x, y;σ) (9)

Gxy(x, y;σ) =
xy

σ4
G(x, y;σ) (10)
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the first and second order derivative features are then summed together to get
the final GD feature and form a stronger feature representation of blobs, corners
and other important features. LBP-TOP is then applied as follows: each block
has the standard LBP operator applied [13] with α being the centre pixel and
P being neighbouring pixels with a radius of R

LBPP,R =

P−1∑
p=0

s(gp − gα)2p (11)

where gα is the grey value of the centre pixel and gp is the grey value of the p-th
neighbouring pixel around R. 2p defines weights to neighbouring pixels and is
used to convert the binary string pattern into a decimal. The sign function to
determine the binary values assigned to the pattern is

s(x) = {1,x≥0
0,x<0 (12)

where if x is greater than or equal to 0 then s(x) is 1, otherwise 0. After the
image has been assigned LBPs, the histogram can be calculated

Hi =
∑
x,y

I{fl(x, y) = i}, i = 0, ..., n− 1 (13)

where fl(x, y) is the image labelled with LBPs. Completing this task on only
the XY plane would be suitable for static images, however calculating the XY,
XT and YT planes is required to gain a spatio-temporal view of the sequence of
images, as expressions are much better described in the temporal domain than
still frames [1]. Each plane has been divided into blocks and the LBP histograms
extracted to be concatenated into the final feature histogram to be used in
classification. For this method, the radius R was set to 3 and the neighbouring
points P was set to 8. Fig. 2 shows a representation of creating the LBP-TOP
features.

Fig. 2. LBP is calculated on every block in all three planes. Each plane is then con-
catenated to obtain the final LBP-TOP feature histogram.
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3.3 Classification

Two popular data classification methods, SVM and RF, will be used to classify
between micro-movement and neutral faces within the whole of the CASME
dataset. The results of the experiment will compare MFMs against neutral face
sequences.

A RF model is constructed by using the bootstrap method to randomly gen-
erate a number of decision trees (ntree), which are each provided with randomly
selected samples of the training input and then all decision trees are combined
into a decision forest. For each bootstrap, a random sample of the training data
is used which determines the size of an un-pruned classification tree (mtry, de-
fault 3). Voting from all trees is used for classification, with the highest voted
choice within the data to be selected.

The selected data is taken from the CASME II dataset and consists of micro-
movement and neutral face sequences. The RF will determine the accuracy based
on correctly classified labels against incorrectly classified labels. RF requires one
parameter, ntree, which sets the number of trees to grow. In this experiment
the number of trees was set to 300. The software used to implement RF was
randomForest Toolbox for Matlab [9].

SVM attempts to find a linear decision surface (hyperplane) that can separate
the two classes and has the largest distance between support vectors (elements
in data closest to each other across classes). If a linear surface does not exist,
then the SVM maps the data into a higher dimensional space where a decision
surface can be found. The kernel selected for SVM is the radial basis function
(RBF) and will use the same movement and neutral data as RF to determine
the accuracy based on the correctly classified labels against incorrectly classified
labels.

There are two main parameters that will be selected: Parameter c is a user-
defined parameter that controls the trade-off between model complexity and
empirical error in SVM. In addition, the parameter γ determines the shape of the
separating hyperplane in the RBF kernel. Selection of the optimised parameters
was undertaken according to the method by Hsu et al. [8]. The classifier was
trained on one subset (training data) and accuracy is tested with the introduction
of the second subset (testing). The optimisation process was repeated for each
of the possible parameter in exponential steps for both c and γ between 2−10 to
210 and 2−3 to 23 respectively. The software used to implement SVM is libSVM
Toolbox for Matlab [3].

4 Experimental Results

To test this method’s performance, combinations of image planes are used with
temporal and spatial mixes. The testing data is set up to 50%, therefore if 30%
is training the remaining 70% is used for testing. No data within the training set
is used for testing to ensure all testing data is unseen. Each plane is tested using
100-fold cross-validation. Other literature [15, 25, 27] use leave-one-subject-out
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evaluation with data. This paper uses more or equal testing than training to
describe the robustness of this method compared to others in the literature.
The dataset being used is the CASME II recorded at 200 fps with 35 Chinese
participants with a mean age of 22.03 years.

Table 1. All results using the SVM classifier. Each plane used the the combination of
LBP-TOP and GD features. The training percentage is displayed for each plane from
10% to 50%.

Plane σ
10% Train.

Accuracy (%)
20% Train.

Accuracy (%)
30% Train.

Accuracy (%)
40% Train.

Accuracy (%)
50% Train.

Accuracy (%)
XT 1 51.20 47.10 43.30 39.90 36.20
XY 1 51.10 46.90 43.10 39.10 35.10

XTYT 1 51.90 47.90 44.20 40.00 36.80
YT 1 51.00 46.90 43.10 39.40 35.80

All Planes 1 52.50 48.70 44.80 40.90 37.50

XT 2 52.40 48.80 44.80 41.10 36.90
XY 2 52.10 48.10 44.30 40.20 36.40

XTYT 2 53.20 49.80 46.80 43.60 40.90
YT 2 52.50 48.80 45.10 41.30 37.70

All Planes 2 53.70 51.30 48.80 46.30 43.90

XT 3 52.30 48.50 44.60 41.00 37.20
XY 3 52.30 48.30 44.50 40.70 37.10

XTYT 3 53.20 50.20 47.50 44.70 41.70
YT 3 52.60 48.70 45.50 41.60 38.50

All Planes 3 54.20 52.00 50.10 48.30 46.20

XT 4 52.30 48.20 44.40 40.90 36.90
XY 4 52.40 48.30 44.60 40.70 37.10

XTYT 4 53.30 50.20 47.40 44.30 41.20
YT 4 52.40 48.70 45.30 41.90 38.50

All Planes 4 54.30 52.30 50.20 48.40 46.60

XT 5 49.82 46.33 42.47 39.56 36.21
XY 5 50.62 46.45 42.74 39.12 35.65

XTYT 5 51.51 47.36 44.03 40.18 37.00
YT 5 50.00 46.12 42.94 40.20 36.56

All Planes 5 52.28 48.26 44.32 40.62 36.40

XT 6 49.89 45.64 42.59 39.03 35.70
XY 6 50.47 46.04 42.47 38.66 35.02

XTYT 6 51.08 47.17 43.64 39.78 36.37
YT 6 49.84 45.86 42.38 38.95 36.11

All Planes 6 52.24 48.08 44.02 39.91 36.26

XT 7 49.62 45.40 41.87 38.27 34.93
XY 7 50.30 46.02 42.26 38.47 34.73

XTYT 7 50.81 46.79 43.36 39.43 36.13
YT 7 49.75 45.87 42.53 39.25 36.43

All Planes 7 52.14 48.01 43.91 39.83 36.09

For both RF and SVM the σ value for GDs goes from 1 − 7. In RF the
accuracy increases until the 5th value, where it peaks and begins to decrease,
indicating that when σ = 5 the accuracy is at its highest. In SVM, the accuracy
decreases as the σ value increases.
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Table 2. All results using the RF classifier. Each plane used the the combination of
LBP-TOP and GD features. The training percentage is displayed for each plane from
10% to 50%. The results for RF are significantly higher than SVM with results starting
to plateau and decrease when σ = 6.

Plane σ
10% Train.

Accuracy (%)
20% Train.

Accuracy (%)
30% Train.

Accuracy (%)
40% Train.

Accuracy (%)
50% Train.

Accuracy (%)

XT 1 59.00 63.00 65.60 67.00 70.60
XY 1 51.20 49.30 48.10 46.30 44.50

XTYT 1 57.60 61.20 63.80 66.00 68.00
YT 1 56.60 59.00 60.50 62.70 65.30

All Planes 1 55.80 57.60 58.60 60.00 60.70

XT 2 66.80 73.70 77.20 80.70 82.30
XY 2 51.80 49.80 48.20 45.60 43.90

XTYT 2 66.10 72.20 75.90 79.30 81.60
YT 2 64.90 70.70 75.00 77.70 80.30

All Planes 2 61.30 66.40 69.50 71.20 74.00

XT 3 74.30 82.80 85.90 88.50 90.10
XY 3 52.90 50.80 49.40 48.30 46.20

XTYT 3 73.90 81.80 85.40 87.90 89.20
YT 3 72.30 80.20 84.30 86.50 88.00

All Planes 3 68.10 74.70 78.60 81.30 83.80

XT 4 79.40 86.80 89.20 91.30 92.40
XY 4 53.10 51.70 50.10 48.40 46.60

XTYT 4 78.50 86.10 88.50 90.90 91.70
YT 4 77.80 84.60 87.40 89.00 90.80

All Planes 4 70.60 78.10 81.70 84.80 86.70

XT 5 78.80 86.50 89.50 91.20 92.50
XY 5 53.30 51.50 49.80 47.10 45.40

XTYT 5 79.30 86.70 89.20 91.40 92.60
YT 5 78.30 85.70 88.70 90.60 92.20

All Planes 5 71.70 79.00 82.50 84.80 87.30

XT 6 78.60 85.70 88.70 90.80 91.80
XY 6 52.80 50.60 48.30 46.90 44.50

XTYT 6 78.30 86.10 88.70 90.90 92.00
YT 6 78.40 84.90 87.60 90.00 91.40

All Planes 6 70.30 77.30 80.40 84.30 86.40

XT 7 75.40 83.00 85.90 88.40 89.80
XY 7 52.70 50.20 48.30 45.40 42.80

XTYT 7 77.40 83.90 87.10 89.10 90.60
YT 7 77.60 83.90 87.20 88.80 90.20

All Planes 7 69.20 75.60 79.00 81.00 84.00

Table 3. All results using the SVM classifier when using only LBP-TOP features. The
training percentage is displayed for each plane from 10% to 50%.

Plane
10% Train.

Accuracy (%)
20% Train.

Accuracy (%)
30% Train.

Accuracy (%)
40% Train.

Accuracy (%)
50% Train.

Accuracy (%)
XT 52.4 48.8 46.1 43 40.9
XY 51.9 48.1 43.9 40.1 36.7

XTYT 53.6 51.1 48.8 46.7 44.2
YT 53.1 50.6 47.9 45 43.1

All Planes 54.2 52.2 50.2 48.3 46.3
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Table 4. All results using the RF classifier when using only LBP-TOP features. The
training percentage is displayed for each plane from 10% to 50%.

Plane
10% Train.

Accuracy (%)
20% Train.

Accuracy (%)
30% Train.

Accuracy (%)
40% Train.

Accuracy (%)
50% Train.

Accuracy (%)
XT 60.4 64.3 66.6 69.4 71.4
XY 50.9 48.1 46 43.3 41.4

XTYT 58.8 61.7 63.3 65.5 67.8
YT 56.8 58.7 60.6 62.3 64

All Planes 56 57.8 58.5 59.6 59.9

Table 1 shows the results from the SVM experiment and Table 2 shows
results from the RF experiment. SVM and RF results vary considerably with
the highest accuracy for SVM was 54.3% with training set to 10%. The accuracy
gradually decreased as training increased. As the data is high-dimensional and
values lie close together, SVM struggles to separate the data beyond chance. As
RF uses a bootstrap method it is able to generate many classifiers (ensemble
learning) and aggregate results to handle the data more appropriately, only
ever choosing random samples and ignoring irrelevant descriptors. This gave the
highest accuracy of 92.6% in the XTYT plane with a standard deviation (STD)
of 1.78.

By removing the spatial information and just using the temporal planes, clas-
sification results for RF are higher. In SVM the results did not vary considerably
across planes, and the highest result was for all planes (54.3%, STD: 0.56) and
the lowest being the XY plane alone (34.73%, STD: 2.6).

The highest results were found to be when the σ value was set to 5. Fig. 3
shows the gradual increase in accuracy as training is increased in all planes with
a temporal element. A decrease was shown in just the XY plane, supporting that
as more training is introduced, the XY plane acts as noise to any movement.
This can also be seen when all planes are used and the accuracy is pushed lower
than just the temporal planes.

SVM and RF were also used to classify the image sequences using only LBP-
TOP features. The results in Table 3 show that all of the planes perform no
much better than chance, if not lower, with accuracy decreasing as the amount
of training data is introduced. SVM appears to perform similar to results with
GD, and separating the features is difficult. Table 4 shows the results from RF
using only LBP-TOP features. The accuracy for detecting movement increased
significantly compared with SVM, however the highest result was lower than
when combined with GDs at 71.4% when using 50% training and 50% testing
data in the XT plane.

To the best of our knowledge, there has not been any results from purely
detecting MFM when comparing with neutral faces and so a benchmark for
comparing our results could not be found. Most previous work focuses on de-
tecting the movements and classifying into distinct emotional categories and
therefore include automatic interpretation based on the FACS equivalent muscle
movements (i.e. happy would be movement in AU12).



Micro-Facial Movements 11

Fig. 3. Using RF, the accuracy of all planes where σ = 5. Notice XY decreases as
training increases due to the lack of temporal information.

5 Conclusion

This paper shows that the combination of LBP-TOP and GD features, clas-
sification with RF can perform significantly better than SVM when detection
micro-movement against neutral, with a highest accuracy of 92.6%. The stan-
dard deviation of results is low indicating mean accuracies are consistent using
cross-validation. This paper also shows that combining the higher order GD and
LBP-TOP can represent the subtle temporal movement of the face well with
RF. However, the features are unable to be split by the SVM hyperplane be-
yond chance.

When using spatial XY planes alone or combined with temporal planes, de-
tection accuracy decreases, suggesting the XY plane is introducing noise to sub-
tle movement. Our method specifically detects micro-movement against neutral
faces, which has yet to become a well established method. Most current research
detects the MFEs to then classify them into emotion categories.

Future work will look into how the data is represented for MFMs and MFEs,
including exploring further methods of temporal feature selection and extrac-
tion for micro-movements and how best to discriminate clearly when a subtle
movement occurs. Other work includes exploring unsupervised learning meth-
ods of classifying movement and non-movement instead of using supervised and
computationally expensive methods that require training.
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