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1 École de Technologie Supérieure, Université du Québec, Montreal, Canada
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Abstract. Still-to-video face recognition (FR) is an important function
in several video surveillance applications like watchlist screening, where
faces captured over a network of video cameras are matched against ref-
erence stills belonging to target individuals. Screening of faces against
a watchlist is a challenging problem due to variations in capturing con-
ditions (e.g., pose and illumination), to camera inter-operability, and
to the limited number of reference stills. In holistic approaches to FR,
Local Binary Pattern (LBP) descriptors are often considered to repre-
sent facial captures and reference stills. Despite their efficiency, LBP
descriptors are known as being sensitive to illumination changes. In this
paper, the performance of still-to-video FR is compared when differ-
ent passive illumination normalization techniques are applied prior to
LBP feature extraction. This study focuses on representative retinex,
self-quotient, diffusion, filtering, means de-noising, retina, wavelet and
frequency-based techniques that are suitable for fast and accurate face
screening. Experimental results obtained with videos from the Choke-
point dataset indicate that, although Multi-Scale Weberfaces and Tan
and Triggs techniques tend to outperform others, the benefits of these
techniques varies considerably according to the individual and illumina-
tion conditions. Results suggest that a combination of these techniques
should be selected dynamically based on changing capture conditions.

Keywords: Illumination Normalization, Local Binary Patterns, Face
Screening, Still-to-Video Face Recognition, Video Surveillance.

1 Introduction

In watchlist screening applications, systems for still-to-video FR are increasingly
employed to automatically detect the presence of target individuals of interest
for enhanced public security. Accurate and timely responses are required to rec-
ognize faces captured under semi-controlled or uncontrolled conditions, as found
at various security checkpoint entries, inspection lanes, portals, etc. Under these
conditions, face captures incorporate variations due to ambient illumination,
pose, expressions, occlusion, scale, resolution and blur [3,21], and the perfor-
mance of FR systems tend to deteriorate. Despite these challenges, it is generally
possible to exploit spatiotemporal information extracted from video streams to
improve system robustness and accuracy [11,5].
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Recent developments in image analysis and recognition have shown that the
Local Binary Patterns (LBP) [14] provide a simple yet powerful approach to rep-
resent faces for human computer interaction, biometric recognition, surveillance
and security, etc. [2,16]. LBP is a gray-scale invariant texture operator which
labels each pixel of an image by thresholding its neighborhood pixels with the
intensity value of the center pixel. The resulting LBP labels can be regarded as
local primitives such as curved edges, spots, flat areas, etc. The histogram of
these labels over facial image can be then used as a face descriptor. Given its
discriminative power, tolerance to monotonic grey-scale changes, and computa-
tional efficiently, LBP has become a well-established technique in FR3, and has
inspired many recent extensions and new research on related methods.

However, it is well known that LBP and other variants are sensitive to se-
vere illumination changes. Variations in facial appearance caused by changes in
ambient illumination conditions play an important role in the performance of
any FR system applied to video surveillance. It has been shown that face images
of different individuals appear more similar than images of the same individual
under severe illumination variations [18].

Several techniques have been proposed in the literature for illumination in-
variant FR [17]. Zou et al. [25] presented a survey of techniques to manage vari-
ations in face appearance due to illumination changes using passive and active
approaches. Passive approaches focus on the visible spectrum images, where face
appearance has been altered by illumination variations, while active ones employ
active imaging techniques to capture face images under consistent illumination
conditions, or images of illumination invariant modalities.

Among passive techniques, some are specialized at either the pre-processing,
the feature extraction, or the classification level [18]. At the pre-processing level,
normalization techniques seek to transform facial images such that facial varia-
tions induced by illumination are removed. These approaches can be adapted for
use with any FR algorithm. Techniques at the feature extraction level seek to
achieve illumination invariance by using features or representations that are sta-
ble under different illumination conditions. However, some empirical studies have
shown that no descriptor can ensure illumination invariant FR in the presence
of severe illumination changes. Finally, classification level techniques compen-
sate for the illumination based on the type of face model or classifier employed
for FR. Assumptions regarding the effects of illumination on the face model or
classifier are employed in counter measures to obtain illumination invariance.

In this study, the performance of several illumination normalization tech-
niques is compared for representation of face captures in still-to-video FR sys-
tems using LBP descriptors, as seen in many watchlist screening applications.
This empirical study focuses on passive techniques applied at the pre-processing
level, and compares representative retinex, self-quotient, diffusion, filtering, means
de-noising, retina, wavelet and frequency-based techniques in term of ROC and
Precision Recall performance. The benefits of these approaches are assessed us-

3 See LBP bibliography at http://www.cse.oulu.fi/MVG/LBP_Bibliography

http://www.cse.oulu.fi/MVG/LBP_Bibliography
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ing faces captured in the Chokepoint video data set, with individuals walking
through an array of cameras located above different portals.

The rest of this paper is organized as follows. Section 2 describes the appli-
cation focus of this paper which is face screening in video surveillance. Then,
Section 3 gives an introduction to the popular LBP approach to face recogni-
tion. Section 4 discusses different methods for illumination normalization. The
experimental results are presented in Section 5 while a conclusion is given in
Section 6.

2 Face Screening in Video Surveillance

Watchlist screening is an important application for decision support in video
surveillance systems. It involves still-to-video FR according to the following
steps [4]. During enrollment to a watchlist, the segmentation process isolates
the regions of interest (ROIs) from reference still images (mugshots) that were
previously captured under controlled conditions. Features are extracted and as-
sembled into a discriminant and compact ROI patterns to design facial mod-
els4. These features are often image-based (e.g., LBP descriptors) or pattern
recognition-based (e.g., PCA projections).

During operations, a video stream is captured using some video surveillance
camera, and segmentation isolates the ROIs corresponding to faces captured in
successive frames. A tracker is often initialized when an emergent ROI is detected
far from other faces, and a track is defined to follow the movement or expression
of distinct faces across consecutive frames using appearance, position and motion
information. Features are extracted into ROI pattern for matching against the
facial models of individuals enrolled to the watchlist. A positive prediction is
produced if a matching score surpasses an individual-specific threshold. Finally,
the decision function combines the tracks and classification predictions in order
to recognize the most likely individuals in the scene.

Systems for still-to-video FR are typically modeled in terms of independent
detection problems, each one implemented using a template matcher or classifier.
These individual-specific detectors are designed with reference face samples from
target and non-target individuals (from a cohort or the background model). The
advantages of modular architectures with individual-specific detectors include
the ease with which face models may be added, updated and removed from the
systems, and the possibility of specializing pre-processing, feature extraction,
matching and decision thresholds to each specific individual [6,15].

The performance of state-of-the-art FR systems applied to video surveillance
is limited by the difficulty in capturing and recognizing facial regions from video
streams under semi-controlled and uncontrolled capture conditions (e.g., at in-
spection lanes, portals and checkpoint entries, in cluttered free-flow scenes at

4 A facial model of an individual is defined as a set of one or more reference ROI pat-
terns (used for a template matching system), or parameters estimated from reference
ROI patterns (for a classification system).
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airports or casinos). In particular, performance is severely affected by the varia-
tions in ambient illumination, pose, expression, occlusion, scale, resolution, blur
and ageing. Still-to-video FR is particularly challenging because very few refer-
ence samples are typically available for system design, and because of camera
inter-operability – ROIs captured with still cameras (during enrollment) have dif-
ferent properties than those captured with video cameras (during operations).
In pattern recognition literature, the situation where only one reference sample
is available for system design are often referred to as a “single sample per per-
son” (SSPP) or “one sample training” problem. Techniques specialized for SSPP
in FR include multiple face representations, synthetic face generation, and en-
larging the training set using auxiliary set [1]. Note that the still-to-video FR
systems from the literature assume that the single face reference is consistent
and representative of individuals captures in operational conditions.

3 LBP-based Face Recognition

The LBP texture analysis operator, introduced by Ojala et al. [14], is defined
as a gray-scale invariant texture measure, derived from a general definition of
texture in a local neighborhood. It is a powerful means of texture description
and among its properties in real-world applications are its discriminative power,
computational simplicity and tolerance against monotonic gray-scale changes.

The original LBP operator forms labels for the image pixels by thresholding
the 3×3 neighborhood of each pixel with the center value and considering the
result as a binary number. Fig. 1 shows an example of an LBP calculation.
The histogram of these 28 = 256 different labels can then be used as a texture
descriptor.

7 1 12

2 5 5

5 3 0

1 0 1

0 1

1 0 0

Threshold

Pattern: 01001101
LBP = 64 + 8 + 4 + 1 = 77

=

Fig. 1: The basic LBP operator.

The operator has been extended to use neighborhoods of different sizes. Using
a circular neighborhood and bilinearly interpolating values at non-integer pixel
coordinates allow any radius and number of pixels in the neighborhood. The
notation (P,R) is generally used for pixel neighborhoods to refer to P sampling
points on a circle of radius R. The calculation of the LBP codes can be easily
done in a single scan through the image. The value of the LBP code of a pixel
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(xc, yc) is given by:

LBPP,R =

P−1∑
p=0

s(gp − gc)2
p, (1)

where gc corresponds to the gray value of the center pixel (xc, yc), gp refers to
gray values of P equally spaced pixels on a circle of radius R, and s defines a
thresholding function as follows:

s(x) =

{
1, if x ≥ 0;
0, otherwise.

(2)

Another extension to the original operator is the definition of the so called uni-
form patterns. This extension was inspired by the fact that some binary patterns
occur more commonly in texture images than others. A local binary pattern is
called uniform if the binary pattern contains at most two bitwise transitions
from 0 to 1 or vice versa when the bit pattern is traversed circularly. In the
computation of the LBP labels, uniform patterns are used so that there is a sep-
arate label for each uniform pattern and all the non-uniform patterns are labeled
with a single label. This yields to the following notation for the LBP operator:
LBPu2

P,R. The subscript represents using the operator in a (P,R) neighborhood.
Superscript u2 stands for using only uniform patterns and labeling all remaining
patterns with a single label.

Each LBP label (or code) can be regarded as a micro-texton. Local primitives
which are codified by these labels include different types of curved edges, spots,
flat areas etc. The occurrences of the LBP codes in the image are collected
into a histogram. The classification is then performed by computing histogram
similarities. For an efficient representation, facial images are first divided into
several local regions from which LBP histograms are extracted and concatenated
into an enhanced feature histogram.

It is known that LBP is sensitive to severe illumination changes. As a con-
sequence, several attempts have been made to overcome this sensitivity. For
instance, Tan and Triggs [19] developed a very effective preprocessing chain for
compensating illumination variations in face images. It is composed of gamma
correction, difference of Gaussian (DoG) filtering, masking (optional) and equal-
ization of variation. This approach has been very successful in LBP-based face
recognition under varying illumination conditions. When using it for the original
LBP, the last step (i.e. equalization of variations) can be omitted due to LBPs
invariance to monotonic gray scale changes.

Aiming at reducing the sensitivity of the image descriptor to illumination
changes, a Bayesian LBP (BLBP) was developed by He et al.[7]. This opera-
tor is formulated in a Filtering, Labeling and Statistic framework for texture
descriptors. In the framework, the local labeling procedure, which is a part of
many popular descriptors such as LBP and SIFT, can be modeled as a proba-
bility and optimization process. This enables the use of more reliable prior and
likelihood information, and reduces the sensitivity to noise. The BLBP operator
pursues a label image, when given the filtered vector image, by maximizing the
joint probability of two images.
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Table 1: Illumination normalization techniques studied in this paper.
Family Specific Technique
Retinex Adaptive Single-Scale Retinex (ASSR), Large and Small-Scale Features (LSSF)

Self Quotient Multi-Scale Self Quotient (MSSQ)
Diffusion Isotropic Diffusion (ID), Modified Anisotropic Diffusion (MAD)

Filter Tan and Triggs (TT)
Gradient Multi-Scale Weberfaces (MSW)

Mean Denoising Adaptive Non Local Means (ANLM)
Retina Retina Modeling (RM)
Wavelet Wavelet Denoising (WD)

Frequency Homomorphic

Liao et al.[9] noticed that adding a small offset value for comparison in LBP-
like methods is not invariant under scaling of intensity values. The intensity scale
invariant property of a local comparison operator is very important for example
in background modeling, because illumination variations, either global or local,
often cause sudden changes of gray scale intensities of neighboring pixels si-
multaneously, which would approximately be a scale transform with a constant
factor. Therefore, a Scale Invariant Local Ternary Pattern (SILTP) operator
was developed for dealing with the gray scale intensity changes in complex back-
ground. Assuming linear camera response, The SILTP feature is invariant if the
illumination is suddenly changed from darker to brighter or vice versa. Besides,
SILTP is robust when a soft shadow covers a background region, because the
soft cast shadow reserves the background texture information but tends to be
darker than the local background region with a scale factor. A downside of the
methods mentioned above using one or two thresholds is that the methods are
not strictly invariant to local monotonic gray level changes as the original LBP.
The feature vector lengths of these operators are also longer.

In order to deal with strong illumination variations, Li et al. developed an
active approach combining near-infrared (NIR) imaging with local binary pat-
tern features and AdaBoost learning [8]. The invariance of LBP with respect to
monotonic gray level changes makes the NIR images illumination invariant. The
method achieved a verification rate of 90% at FAR=0.001 and 95% at FAR=0.01
on a database with 870 subjects.

4 Illumination Normalization

Changes in ambient illumination, and the resulting variations to facial appear-
ance, are known to significantly deteriorate the performance of FR systems.
Accordingly, several techniques have been proposed for illumination invariant
FR [17]. Zou et al. [25] presented a survey of techniques according to passive
and active approaches. Passive approaches focus on the visible spectrum im-
ages where face appearance has been altered by illumination variations. They
include illumination variation modelling, illumination invariant features, photo-
metric normalisation, and 3D morphable model techniques. In contrast, active
approaches employ active imaging techniques to obtain face images captured un-
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der consistent illumination condition, or images of illumination invariant modal-
ities. Additional devices (optical filters, active illumination sources or specific
sensors) are usually involved to actively obtain different modalities of face images
that are insensitive to or independent of illumination change. Those modalities
include 3D face information and face images in those spectra other than visible
spectra, such as thermal infrared image and near-infrared hyperspatial image.

Passive approaches fall under three main types of techniques to produce il-
lumination invariant facial images – those applied at the pre-processing, feature
extraction and classification levels [18]. Pre-processing techniques seek to pro-
duce (prior to feature extraction) facial images without facial variations caused
by illumination. They compensate for the illumination within any FR system,
since no prior assumptions influence feature extraction or classification proce-
dures. They may also be computationally simple, and effective at achieving illu-
mination invariant FR. Feature extraction techniques seek to compensate for ap-
pearance variations in facial images using descriptors or representations that are
stable under different illumination conditions. However, different empirical stud-
ies with LBP, Gabor wavelet-based features, and other descriptors have shown
that none of these can ensure illumination invariant FR given severe illumination
changes [10]. Classification-level techniques compensate for illumination changes
according to the type of face model or classifier employed in the FR system.
First, some assumptions regarding the effects of illumination on face models or
classification procedure are made, and then based on these assumptions, counter
measures are undertaken to obtain illumination invariant face models or illumi-
nation insensitive classification procedures. Managing the effects of illumination
at the feature extraction level is debatable, while classification level techniques
may impose difficult requirements on design data. Although they may provide
the more efficient approach to illumination invariant FR, large training set must
usually be acquired under a number of lighting conditions and are, furthermore,
also computationally expensive.

In this paper, we focus our empirical study on passive techniques for illumi-
nation normalization at the pre-processing level. Table 1 presents the specific
techniques from the literature that are considered in our study. A more detailed
description of these techniques may be found in [18]. They are selected because
they are the newer and more representative techniques from different families,
e.g., retinex, diffusion, wavelet, frequency-based techniques.

5 Experimental Analysis

5.1 Dataset and Experimental Protocol:

To compare the performance achieved by a still-to-video FR system using dif-
ferent illumination normalization techniques prior to LBP, Chokepoint video
dataset [24] has been employed. An array of three cameras is installed above
several portals (natural choke points for pedestrian traffic) to capture 25 indi-
viduals walking through in a natural way. Videos are challenging for still-to video
FR since faces are captured under semi-controlled conditions, with changes in
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Fig. 2: Examples of face images obtained after illumination normalization is ap-
plied to ROIs in stills and videos from individuals ID03 and ID04.

illumination, pose, scale, blur and occlusion. All 48 video sequences from the
center camera, in both entering and leaving cases of Chokepoint have been con-
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sidered. Cameras have a frame rate of 30 fps and the image resolution is 800 x
600 pixels.

Prior to experiments, 5 persons are randomly selected as target watchlist
individuals, where just one reference still image (high-quality neutral mug-shot)
is available to design each face model. These reference stills are used a priori to
design templates for this FR system. The remaining people are assumed to be
unknown (non-target individuals, and reflect the universal background model).
Enrollment of each target individual involves isolating a ROI from the reference
still image using the Viola-Jones face detection algorithm, and converting the
ROI into grey scale, and then cropping it to a common size of 48x48 pixels to
limit processing time. For each watchlist individual, the 11 illumination normal-
ization techniques selected for this study (see Table 1) are used to represent the
reference ROI using the INface Toolbox5 [23,22]. At this level, 12 representations
of one ROI are created in which 11 represent the normalized ROI in terms of
illumination and 1 represents the original ROI (without application of illumina-
tion normalization techniques). These representations are shown for individual
ID03 and ID04 of Chokepoint in Figure 2.

A division into 3x3 = 9 uniform non-overlapping patches of 16x16 pixels is
performed on each ROI representations after illumination normalization. With
patch-based methods, facial ROIs are divided into several overlapping or non-
overlapping regions called patches, and then features are extracted locally from
each patch for recognition purposes. Some specialized decision fusion techniques
have been introduced in [20,13] for patch-based FR. In this paper, 59 LBP fea-
tures are extracted from each patch, normalized to range between 0 and 1, and
assembled into a ROI pattern of 531 features for matching. The latter are then
stored as a template into a gallery. The enrollment phase produces a template
gallery with 12 different templates per watchlist person (the original image plus
11 normalized images).

During the testing or operational phase, frames undergo the same process-
ing steps as for enrollment. For each normalization technique, an ROI pattern
extracted from a video frame is compared with the corresponding template of
the 5 watchlist individuals. Template matching is performed with the Euclidian
distance, and produces matching scores.

To assess the transaction-level performance, receiver operating characteristic
(ROC) space is considered. A ROC curve displays the proportion of target ROIs
that are correctly detected as individual of interest over the total number of
target ROIs in the sequence, the true positive rate (tpr), as a function of the
proportion of non-target (imposter) ROI detected as individual of interest over
the total number of non-target ROIs, the false positive rate (fpr). The area
under ROC curve (AUC) provides a global scalar measure that can be inter-
preted as the probability of classification over the range of tpr and fpr. The
precision-recall (PROC) space is also considered to measure the performance in
imbalanced data situation. Recall is the tpr and precision is computed as fol-
lows pr = TP/(TP + FP ). The AUPR measures system performance based on

5 http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/INFace/

http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/INFace/
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Table 2: Average pAUC(5%) performance (with standard deviation) for each
watchlist individual with illumination normalization techniques.

Illumination Normalisation
ID # of Watchlist Individuals

ID03 ID04 ID07 ID09 ID12 Average

Entering Videos
No Normalization 0.66±0.04 0.96±0.01 0.72±0.02 0.84±0.03 0.91±0.02 0.82±0.02
Adaptive Single Scale Retinex 0.65±0.04 0.90±0.01 0.54±0.02 0.76±0.05 0.90±0.01 0.75±0.02
Large and Small Scale Features 0.72±0.06 0.89±0.03 0.69±0.02 0.89±0.03 0.92±0.03 0.82±0.03
Multi Scale Self-Quotient 0.69±0.04 0.88±0.03 0.67±0.05 0.87±0.02 0.93±0.02 0.81±0.03
Isotropic Diffusion 0.69±0.06 0.86±0.03 0.70±0.01 0.90±0.01 0.97±0.01 0.82±0.02
Modified Anisotropic Diffusion 0.74±0.05 0.85±0.03 0.74±0.02 0.80±0.03 0.94±0.02 0.81±0.03
Tan & Triggs 0.74±0.03 0.86±0.03 0.71±0.02 0.88±0.04 0.92±0.03 0.82±0.03
Multi Scale Weberfaces 0.82±0.02 0.83±0.03 0.73±0.03 0.88±0.05 0.91±0.03 0.83±0.03
Adaptive Non-Local Means 0.71±0.02 0.89±0.02 0.66±0.03 0.69±0.04 0.84±0.03 0.76±0.02
Retina Modeling 0.73±0.05 0.85±0.03 0.69±0.02 0.90±0.03 0.91±0.05 0.82±0.03
Wavelet Denoising 0.66±0.03 0.89±0.02 0.54±0.03 0.83±0.02 0.87±0.01 0.76±0.02
Homomorphic 0.62±0.04 0.94±0.01 0.73±0.02 0.81±0.05 0.91±0.01 0.80±0.02

Leaving Videos
No Normalization 0.67±0.08 0.91±0.03 0.79±0.02 0.91±0.02 0.94±0.02 0.84±0.03
Adaptive Single Scale Retinex 0.73±0.03 0.89±0.02 0.66±0.01 0.89±0.02 0.92±0.01 0.82±0.01
Large and Small Scale Features 0.78±0.03 0.94±0.02 0.54±0.02 0.94±0.02 0.96±0.01 0.83±0.02
Multi Scale Self - Quotient 0.74±0.03 0.82±0.07 0.74±0.02 0.92±0.01 0.93±0.02 0.83±0.03
Isotropic Diffusion 0.82±0.03 0.83±0.05 0.75±0.02 0.91±0.02 0.95±0.01 0.85±0.02
Modified Anisotropic Diffusion 0.78±0.02 0.89±0.02 0.64±0.02 0.93±0.01 0.94±0.01 0.83±0.01
Tan & Triggs 0.80±0.03 0.93±0.01 0.61±0.03 0.97±0.01 0.96±0.01 0.85±0.01
Multi-Scale Weberfaces 0.85±0.03 0.92±0.01 0.73±0.02 0.95±0.01 0.95±0.01 0.88±0.01
Adaptive Non-Local Means 0.74±0.04 0.94±0.02 0.71±0.02 0.86±0.01 0.95±0.01 0.84±0.02
Retina Modeling 0.77±0.03 0.93±0.01 0.55±0.03 0.96±0.01 0.96±0.01 0.83±0.01
Wavelet Denoising 0.71±0.02 0.91±0.02 0.66±0.02 0.87±0.01 0.92±0.01 0.81±0.01
Homomorphic 0.65±0.03 0.90±0.02 0.78±0.01 0.87±0.02 0.91±0.01 0.82±0.01

targets ROI patterns given an imbalance between target (minority) and non-
targets (majority) proportions. In trajectory-level analysis, a tracking module is
employed to regroup ROIs captured for a same person over successive frames.
Hence, ROIs of persons in the scene are regrouped. In this paper, we show the
matching scores linked to ROI patterns of each person appearing in the scene
w.r.t each face model.

5.2 Results and discussion:

Results in Tables 2 and 3 present the average transaction-level performance
(pAUC(5%) and AUPR) for each watchlist individual obtained by applying the
11 illumination normalization techniques over all entering and leaving videos of
Chokepoint. Based on overall results, MSW and TT techniques tend to outper-
form the others with both entering and leaving videos.

It can however be observed that the results vary significantly according to
the watchlist individual and to capturing conditions (sequence and portals). For
instance, with individual ID04, applying illumination normalization decreases
system performance compared to the results without any normalization (see
Figure 3(c) and (d)). In contrast, with individual ID03, the pAUC(5%) and
AUPR are significantly higher when normalization are applied, specially with the
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Table 3: Average AUPR performance (with standard deviation) for each watch-
list individual with illumination normalization techniques.

Illumination Normalisation
ID # of Watchlist Individuals

ID03 ID04 ID07 ID09 ID12 Average

Entering Videos
Without Normalization 0.06±0.01 0.64±0.07 0.16±0.03 0.30±0.08 0.60±0.08 0.35±0.05
Adaptive Single Scale Retinex 0.09±0.03 0.28±0.03 0.06±0.08 0.17±0.04 0.46±0.07 0.21±0.05
Large and Small Scale features 0.18±0.06 0.40±0.04 0.14±0.03 0.51±0.08 0.63±0.01 0.37±0.04
Multi Scale Self-Quotient 0.12±0.05 0.45±0.07 0.15±0.02 0.31±0.04 0.57±0.09 0.32±0.05
Isotropic Diffusion 0.13±0.04 0.31±0.05 0.11±0.01 0.35±0.05 0.74±0.05 0.33±0.04
Modified Anisotropic Diffusion 0.13±0.04 0.34±0.07 0.17±0.02 0.28±0.06 0.68±0.09 0.32±0.05
Tan & Triggs 0.16±0.06 0.37±0.05 0.16±0.02 0.59±0.10 0.64±0.10 0.38±0.06
Multi-Scale Weberfaces 0.25±0.07 0.37±0.05 0.19±0.03 0.58±0.10 0.57±0.11 0.39±0.07
Adaptive Non-Local Means 0.11±0.04 0.51±0.06 0.14±0.02 0.07±0.01 0.53±0.07 0.27±0.04
Retina Modeling 0.22±0.07 0.32±0.05 0.16±0.02 0.63±0.09 0.66±0.10 0.40±0.06
Wavelet Denoising 0.08±0.02 0.37±0.05 0.06±0.01 0.14±0.02 0.32±0.06 0.19±0.03
Homomorphic 0.05±0.01 0.65±0.06 0.18±0.04 0.18±0.05 0.47±0.08 0.30±0.04

Leaving Videos
Without Normalization 0.19±0.06 0.43±0.07 0.23±0.03 0.57±0.08 0.66±0.07 0.42±0.06
Adaptive Single Scale Retinex 0.14±0.02 0.26±0.06 0.11±0.01 0.41±0.04 0.58±0.03 0.30±0.03
Large and Small Scale features 0.22±0.03 0.49±0.07 0.07±0.01 0.67±0.06 0.71±0.06 0.43±0.04
Multi Scale Self-Quotient 0.11±0.01 0.31±0.09 0.19±0.04 0.59±0.05 0.66±0.04 0.40±0.04
Isotropic Diffusion 0.26±0.05 0.27±0.07 0.21±0.03 0.58±0.06 0.65±0.07 0.40±0.05
Modified Anisotropic Diffusion 0.16±0.03 0.29±0.04 0.08±0.01 0.60±0.07 0.61±0.08 0.35±0.04
Tan & Triggs 0.29±0.05 0.35±0.05 0.10±0.01 0.81±0.04 0.78±0.05 0.47±0.04
Multi-Scale Weberfaces 0.39±0.05 0.34±0.05 0.18±0.03 0.79±0.04 0.78±0.05 0.50±0.04
Adaptive Non-Local Means 0.22±0.05 0.58±0.09 0.17±0.04 0.37±0.04 0.69±0.03 0.41±0.05
Retina Modeling 0.23±0.03 0.38±0.05 0.09±0.02 0.75±0.06 0.68±0.06 0.43±0.04
Wavelet Denoising 0.09±0.01 0.37±0.08 0.09±0.01 0.30±0.03 0.46±0.06 0.26±0.03
Homomorphic 0.10±0.02 0.41±0.08 0.18±0.02 0.44±0.07 0.54±0.08 0.33±0.05

MSW technique (see Figure 3(a) and (b)). Figure 4 displays face representations
of individuals ID03 and ID04.

Figures 5 and 6 present an example of trajectory-level analysis with target
and non-target ROIs over time when compared to the template for ID03 and
ID04 individuals, respectively. They show matching scores along with measures
of brightness and sharpness [12] with MSW and TT normalization associated
with each ROI captures in Chokepoint video6. In Figure 5, the performance
of the FR system that uses MSW normalization yields the best target vs non-
target discrimination, although this tends to vary along with brightness and
sharpness measures. In Figure 6, the scores are already very high for individual
ID04, and normalization only improves non-target scores. This reduced the tar-
get vs non-target discrimination, and the overall ROC and Precision-Recall space
performance. In this last case, there is no benefit to applying a normalization
technique.

In most cases, there is at least one normalization technique that provides
an improvement over the case without normalization. Given the diversity of ap-
proaches, results suggest that the scores obtained from a set of normalization
techniques could be combined through fusion to achieve a higher level of accu-

6 The used Chokepoint video is: P1E − S1 − C2 (portal entering 1 sequence 1 and
camera 2)
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(a) ROC curves, ID03 (b) Precision-Recall curves, ID03

(c) ROC curves, ID04 (d) Precision-Recall curves, ID04

Fig. 3: Transaction-level performance obtained with individuals ID03 and ID4
after using different illumination techniques.

racy and robustness. Since there is a correlation between brightness and scores
achieved through normalization, a combination of these techniques should be
selected dynamically based on changing capture conditions.

6 Conclusion

The popular LBP-based approach to face analysis is known to be sensitive to
severe illumination changes. Based on this observation, our study investigated
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Fig. 4: Face representations of individuals ID03 and ID04. (a)LBP projection
of the original ROI of ID03. (b) The original ROIs of ID03 (mug-shot and 3
from video captures). (c) Normalization of ROIs for ID03 using Multi-Scale
Weberfaces. (d) LBP projection of the MSW normalized images of ID03. (e)LBP
projection of the original ROI of ID04. (f) The original ROIs of ID03 (mug-shot
and 3 from video captures). (g) Normalization of ROIs for ID04 using Multi-Scale
Weberfaces. (h) LBP projection of the MSW normalized images of ID04.

the effect on performance of representative passive illumination normalization
techniques for representation of face captures in watchlist screening with LBP.
Watch-list screening is an important application for decision support in video
surveillance systems.

Extensive experimental analysis on videos from the benchmark Chokepoint
dataset indicated that the benefit of different techniques varies considerably
according to the individual and illumination conditions. This suggests that a
combination of these techniques should be selected dynamically based on chang-
ing capture conditions. Overall, the Multi-Scale Weberfaces and Tan and Triggs
techniques tend to provide the most interesting results compared to other tech-
niques.

Techniques in this study compensate for illumination changes at the pre-
processing level, and may be computationally simple and effective at achieving
illumination invariant FR. However, a common challenges among all theses tech-
niques is that performance depends heavily on their implementation, and on the
suitable selection of their parameters that must be set empirically. In this study,
results were produced using default setting from the authors of respective tech-
niques.
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Fig. 5: Trajectory-level analysis for individual ID03 – matching scores and bright-
ness and sharpness levels over time.

Fig. 6: Trajectory-level analysis for individual ID04 – matching scores and bright-
ness and sharpness levels over time.
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22. Štruc, V., Pavešić, N.: Gabor-based kernel partial-least-squares discrimination fea-
tures for face recognition. Informatica (Vilnius) 20(1), 115–138 (2009)
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