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Abstract. An open issue in multiple view geometry and structure from
motion, applied to real life scenarios, is the sparsity of the matched key-
points and of the reconstructed point cloud. We present an approach that
can significantly improve the density of measured displacement vectors
in a sparse matching or tracking setting, exploiting the partial infor-
mation of the motion field provided by linear oriented image patches
(edgels). Our approach assumes that the epipolar geometry of an image
pair already has been computed, either in an earlier feature-based match-
ing step, or by a robustified differential tracker. We exploit key-points
of a lower order, edgels, which cannot provide a unique 2D matching,
but can be employed if a constraint on the motion is already given. We
present a method to extract edgels, which can be effectively tracked given
a known camera motion scenario, and show how a constrained version
of the Lucas-Kanade tracking procedure can efficiently exploit epipolar
geometry to reduce the classical KLT optimization to a 1D search prob-
lem. The potential of the proposed methods is shown by experiments
performed on real driving sequences. 1

1 Introduction

Most methods for finding image-to-image correspondences by tracking or match-
ing are applied on selected key-points, i.e., image locations which are unique in
appearance and can easily be re-identified. While providing a coarse outline of
the motion structure in a scene, a drawback of this approach is that the feature
points are distributed sparsely, and cannot produce a dense 3D point cloud.

A natural next step is to consider a scenario where the relative motion be-
tween the camera and the scene/object already has been determined with high
accuracy, e.g., by means of sparse feature matching and windowed bundle adjust-
ment, and is represented by the epipolar structure. After this step, it is possible
to increase the density of the motion field, aiming for a dense 3D reconstruc-
tion. This can be done by stereo matching on rectified image pairs, and gives
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Fig. 1. Close up of an image patch showing a situation where the GETT keypoints
strongly outnumber GFTT. Left: GFTT. Right: GETT

generally very good results in the case of sideways camera motion and relatively
small rotations, but it is not a feasible approach for a general motion, such as
forward/backward camera motion combined with significant rotations.

As an alternative, we instead extract edge pixels that are likely to track well
given a known epipolar geometry, and perform a local search for the correspon-
dence only on the physically plausible segment of the epipolar line. To do this,
we modify the Kanade-Lucas-Tomasi (KLT) tracker to only operate along the
epipolar line, thus allowing to also track several edge points (Fig. 1). Relevant
applications of this method include:

– densification of the partial reconstruction for object detection in the context
of autonomous robots.

– increase of the density of the reconstructed 3D point cloud as a final step of
a multi-view structure from motion.

To summarize, this paper presents two novel contributions:

– We extract edgels that are likely to track well under the given relative motion.
These edge points are called Good Edgels To Track (GETT).

– We densify the motion field by tracking these new edgel features, using a
modified version of the KLT tracker that can deal with the aperture problem,
given that the epipolar geometry is known.

2 Related Work

Many applications in computer vision, e.g., structure from motion and visual
odometry, have as an initial step the computation of optical flow. This can be
done in two ways: computing a global optical flow for the whole image plane [13,
7] or by sparsely computing the displacement of a limited number of (feature)
points in the image. The first approach provides a dense flow field, but has a
high computational complexity. The sparse approach is more computationally
efficient, but the sparsity of the motion field can be a limiting factor when a
dense reconstruction is desired. The sparsity is a consequence of applying these
methods only on selected feature points, with a structure in their surroundings
that allows them to be re-identified in subsequent images [10, 22, 24, 1]. Such
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feature points can be found on a second image, depicting a slightly modified ver-
sion of the same scene, either by matching or by tracking procedures. Matching
procedures extract feature points in both images, and try to match the most
similar pairs using a specifically designed descriptor [6, 17, 21, 3, 18]. Tracking is
instead implemented generally as a search, in the second image, for a point that
minimizes a cost function which measures the difference between small patches
of the image surrounding the two points. The most common approach to track-
ing is based on the Lucas-Kanade tracker [19], which approximately minimizes
a cost function calculated as the sum of the squared differences in the intensities
of the pixels belonging to the patches. The KLT tracker has been shown to work
reliably only on “corner points”, known as Good Features to Track (GFTT),
and although efforts have been made to improve the performance of the tracker
on said points [2, 8, 23], not many papers in the literature deal with the spar-
sity of such features. GFTT-points can be identified by a structure tensor with
large values for both its eigenvalues [22]. The 2D motion of these points can be
identified, in both directions, with a gradient descent method on the matching
criterion (e.g. the SSD). A natural next step would be to track points having only
one large eigenvalue for their structure tensor. Intuitively, these points lie mainly
on linear edges. At these points, however, a local analysis can only provide the
motion component in a direction perpendicular to the edge, corresponding to
the eigenvector for the largest eigenvalue of the structure tensor. This is the
well-known aperture problem.

A framework for matching edgels is proposed in [16], and is shown to outper-
form matching based on, e.g., SIFT or SURF, when a planar object is tracked.
The limitation to planar objects restricts, however, the application of this ap-
proach. Another attempt to solve the aperture problem is made in [4], by jointly
tracking edge points and nearby corner points with a method that combines the
KLT tracker and the global Horn-Schunck method. In this framework, the mo-
tion of corner points helps in solving for the second degree of freedom of nearby
edge points thanks to a regularization term inserted in the optimization process.
A similar, but more generalized approach is taken in [26] where a semi-global
matching method is adapted to work exclusively on fractions of the epipolar line.
Also in this case, a regularization term is included in the optimization process
to allow the matching of weaker points (edgels or even pixels lying on planar,
textureless areas). The optimization problem is, however, NP-hard and non par-
allelizable so the dynamic programming approach used to solve it takes several
seconds to compute.
In [15] the authors propose a method to obtain a dense optical flow which does
not include a regularization term allowing each point to be treated individually.
In this approach a Delaunay triangulation is performed over the motion field gen-
erated by a sparse matching framework to produce a prior on the motion field
for all the points in the convex hull of the sparse features. This information is
then used in combination with the estimated epipolar geometry and the trifocal
tensor to steer a maximum-a-posteriori estimate for the best matching candi-
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date for each pixel while also cutting down the number of possible candidates
significantly

In our work, a different approach is taken. Corner points are often sufficient
in number to produce a useful inter-frame motion estimate, which can be made
even more accurate by the means of a global or local bundle adjustment, but
are just too sparse to produce a dense reconstruction. Hence, there is no need
to include edgels at this early stage. In most cases, including them at this stage
would just make the egomotion estimate more computationally complex without
a significant gain in accuracy and robustness. Instead, if we are only interested
in making the motion flow in an image pair denser, the corresponding epipolar
geometry is already available to a high degree of accuracy, and it is possible
to formulate the KLT tracker as a 1-dimensional problem by constraining its
optimization procedure exclusively on an epipolar line. Thus, edgels that are
not parallel to the corresponding epipolar line can be tracked. We refer to this
modified version of the KLT tracker as Epipolar KLT.

The idea of epipolar KLT has recently been proposed by Trummer et al
[25], applied to the scenario of a camera mounted on a robotic arm for which
the motion parameters are known. That work, however, does not fully exploit
this tool for the tracking of specifically extracted edgels and, in fact, they re-
ject the idea of completely constraining the tracker to the epipolar lines due
to possible uncertainty in the epipolar geometry. Instead, they formulate a bi-
ased 2-dimensional tracker that favors steps in the direction of the epipolar line
and reduces the freedom in the perpendicular direction with empirically chosen
weights. Not completely trusting the epipolar geometry can be reasonable in
high precision applications, but there is no reason to ignore already established
camera poses when just aiming at making the motion field denser.

3 Methods

3.1 Background

The KLT tracker The classical KLT tracker has been repeatedly derived in
literature, and we will only present parts of the derivation which are of interest
for our modifications. For a complete derivation, see [19, 2, 5] among others. Let
W ′J be a small window in the second image around a feature point, I(x) and
J (x), respectively intensity value of the first and second images at position x. In
the simplest case, the change in the position of a point from I to J consists in a
2D translation, represented by the 2 values of the translation vector v. Also, in
practice, the inverse warping function is often used since it makes the procedure
computationally more efficient. The expression for the cost function is:

G(∆v) :=
∑

x′
i∈W ′

J

(I(x′i − (v +∆v)− J (x′i))
2 (1)

to be minimized w.r.t. ∆v. To solve the equation, a first order Taylor expansion
is needed. Let xi = x′i− (v +∆v), setting, then, the first order derivative of the
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Fig. 2. Schematics of some geometric entities involved in two view geometry.

cost function to zero to find the stationary point we obtain:∑
x′
i∈W ′

J

∇I(xi)∇I(xi)
T∆v =

∑
x′
i∈W ′

J

(I(xi)− J (x′i))∇I(xi) (2)

In matrix form we can write it as A∆v = b. Solving for ∆v, the update rule
for the iteration scheme is v = v + ∆v, and x′i = xi + v. The procedure is
repeated until convergence or until some breaking criterion is met (for example,
when the displacement is smaller than a threshold).

Epipolar Geometry This section contains a short review of the geometrical
entities involved in epipolar geometry which are necessary to derive our algo-
rithms. A more complete presentation is made, e.g., in [11]. With reference to
Figure 2, for a given image pair I and J produced by two cameras, or the
same camera in two different positions, having their center of projection in CoP
and CoP′ respectively, we can make the following observations (assuming lens
distortion is absent or the images are rectified):

1. The projection of CoP in the image plane of J is the epipole ep.

2. For every 3D point Pk observed by both the cameras, the projection of the
Pk in J , p′k, must lie on a line in J , given as the projection of the optic ray
through pk in I, i.e., the 3D line connecting CoP and pk, onto J . This line
is the epipolar line generated by pk in J .

3. All the epipolar lines on an image plane, for a certain camera pair, meet in
the corresponding epipole, ep.

Given the images I and J , the corresponding epipolar geometry is represented
by the fundamental matrix F The epipolar line in J corresponding to a point of

pixel coordinates x in I is given by ẽ = Fx̃ =
[
e1 e2 e3

]>
, where x̃ is the column

vector of the homogeneous pixel coordinates of the point x and ẽ is the dual
homogeneous coordinates of the epipolar line. The 2-dimensional unity vector

representing the direction of the epipolar line is then ê =
[
e2 −e1

]T
/
√
e21 + e22.
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Epipolar KLT We now have all the tools to derive the Epipolar KLT. Given
an initialization on the epipolar line for the translation vector (i.e. v such that
x+v lies on ẽ), we can substitute ê in (1) to obtain a 1-dimensional cost function

G(α) :=
∑

x′
i∈W ′

J

(I(x′i − (v + αê))− J (x′i))
2 (3)

to be minimized w.r.t. the scalar value α.
After the first order Taylor expansion and solving for the stationary point, we

obtain the following expression to be iteratively minimized to converge toward
the solution:

α
∑

x′
i∈W ′

J

∇I(xi)∇I(xi)
T ê =

∑
x′
i∈W ′

J

(I(xi)− J (x′i))∇I(xi). (4)

In matrix form we can write the last expression as

αA ê = b, (5)

which is an over-determined 2 equation system. By pre-multiplying both sides
by êT (i.e. projecting the 2D problem on the direction of the epipolar line), we
project the system into one dimension: αêTAê = êTb. Solving for α, the update
rule for the iteration scheme is v = v+αê and x′i = xi +v. The procedure is
repeated until convergence or until some breaking criterion is met (for example,
when the displacement is smaller than a threshold).

3.2 Good Edgels To Track

As already mentioned, assuming a static scene and a reliable estimate of the
relative camera motion between two frames, we can track two different kinds of
features:

– Corner features
– Edge features non parallel to the motion

Similarly to the case of corner features, edge features are identified from the
eigenvalues of their structure tensor: they are associated with a structure tensor
with at least one eigenvalue over a certain threshold. However, not all edge
features are useful for our method: edges parallel to the their own epipolar line
cannot be tracked reliably.

Let ∇Iu(x) and ∇Iv(x) be the horizontal and vertical gradient of the image
calculated in x respectively. The structure tensor T (x) for the point x is:

T (x) =

[
∇Iu(x)2 ∇Iu(x)∇Iv(x)

∇Iu(x)∇Iv(x) ∇Iv(x)2

]
. (6)

Given a pixel x, its structure tensor T and its corresponding epipolar line ẽ in
the matching image, its score in the GETT sense is

score(x) = êTT (x) ê, (7)
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where ê is the unit vector representing the direction of the epipolar line in J
for x. Note that the value of the score is bounded by the larger and smaller
eigenvalues of the structure tensor and corresponds, intuitively, to measuring
the structure tensor along the direction of the optimization process.

3.3 Epipolar KLT Initialization

To assure convergence to a reasonable solution it is critical to initialize the
tracker on the epipolar line. In our tests we assume that no prior information on
the depth of the points is available. We therefore assume that every point has
an infinite depth, in this case we can find a starting point on the epipolar line
that is also a hard limit for our procedure as only one of the 2 segments of the
epipolar line defined by this point is physically reasonable.

Let K be the intrinsic parameter matrix for the camera and R the inter-
camera rotation between the 2 views. For a point x̃ ∈ I in homogeneous coordi-
nates, its infinity projection on J is given by

start(x̃) = KRK−1x̃. (8)

We refer to this initialization procedure as initialization at infinity.
Depending on the scene structure and the camera motion, this initialization

can fail, in particular if the scene has large variation in depth and the transla-
tional motion component is significant relatively to the rotational component.
This is the case for most driving sequences, such as those offered by the KITTI
dataset [9], where this initialization is sensitive to repeating patterns and large
displacements. This simple initialization, however, works in practice for the ma-
jority of the points. To increase the number of good matches, we do however
perform an initialization in multiple steps as outlined in Algorithm 2. The de-
tails are given below.

4 Experiments

We tested our algorithm against the OpenCV 2 standard KLT implementation.
For a fair comparison, the epipolar constraint has been imposed to the output
of the standard tracker to reduce outliers. Both trackers have been fed with the
same parameters in term of windows size (5×5), pyramid level (2nd level) and
termination criteria (maximum 10 iterations, minimum displacement length of
0.1 pixels ). The two testing schemes are outlined in Algorithms 1 and 2.

4.1 Implementation Details

In this subsection we go into the details of the testing scheme outlined in Algo-
rithm 2.

2 http://opencv.org
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Fig. 3. Sample tracking output image from Sequence 1. Top: Tracking performed on
GFTT with the standard KLT procedure. Bottom: Tracking performed on GETT
with the epipolar KLT.
Algorithm 1 Testing pseudocode for standard KLT procedure

1: procedure TrackGoodFeaturesToTrack(I, J,K,R, t)
2: p← extractGoodFeaturesToTrack(I)
3: q ← standardKLT (I, J, p)
4: r ← standardKLT (J, I, q)
5: corr ← {(pi, qi)|‖pi − ri‖ < τ}
6: corr ← epipolarF ilter(corr, F )
7: return corr
8: end procedure

Extraction of corners and edges We extract the corner and edge keypoints
respectively according to the classical GFTT scheme and the hereby presented
GETT scheme. The procedure works in the following way:

1. Extract the structure tensor for each pixel in the image.
2. Calculate the GFTT and GETT score for each pixel. The following steps are

computed independently for GFTT and GETT points.
3. An Non-Maximum Suppression (NMS) filter is applied to the score images

to obtain a better distribution of the keypoints. A sliding window is applied
to each score image suppressing all the points which are not a local maximum.
The window size is set at the same size of the tracking window at the lowest
pyramid level.

4. A threshold τ is computed as a fraction of the highest score found in the
image and the points with a score > τ are used as keypoints.

Tracker initialization The first initialization is given by the initialization at
infinity presented in Section 3.3.
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Algorithm 2 Testing pseudocode for our approach

1: procedure TrackMixedFeatures(I, J,K,R, t)
2: F ← K−T [t]xRK

−1

3: p← extractCornersEdges(I, F )
4: startp ← KRK−1p
5: q ← epipolarKLT (I, J, p, startp, F )
6: startq ← KRTK−1q
7: r ← epipolarKLT (J, I, q, startq, F

T )
8: corr ← {(pi, qi)|‖pi − ri‖ < τ}
9: clusters← clusterize(p)

10: cMEAN ← clustermeans(clusters, corr)
11: startp ← moveStartingPoints(startp, cMEAN )
12: q ← epipolarKLT (I, J, p, startp, F )
13: corr ← {(pi, qi)}
14: cMEAN ← clustermeans(clusters, corr)
15: corr ← filterOutliers(corr, cMEAN )
16: return corr
17: end procedure

Tracking The tracking is done with the Epipolar KLT in Section 3.1, including
a pyramidal coarse-to-fine scheme similar to the one presented in [5]. At the end
of the tracking procedure, features presenting a large error (see [8]) or that moved
on the wrong segment of the epipolar line are rejected as outliers.

Backtracking As suggested in [12] , a backtracking step is performed to further
remove outliers. Features are tracked backwards from image J to image I and
when the procedure converges to a point different from the original feature, the
feature is considered an outlier. Note that this step is proven particularly useful
in the case of repeating patterns due to the naivety of the initialization.

Clusterization and tracker reinitialization The tracks surviving the first
two steps are in general of good quality, but are not dense due to the naive
initialization step performed. Therefore, we compute a new initialization based
on region-wise local mean displacement for the available tracks. The image is
subdivided in macro-regions (in our tests we use a 3×7 grid to determine the
regions) and the mean displacement along the epipolar line is robustly computed
for each region, based on the available data of the surviving tracks belonging to
the region. The displacement mean for each cluster of the image is robustly com-
puted using the algorithm presented in [14]. This method works on 1-dimensional
data, it orders the data and determines the mean giving the maximum amount
of inliers, using a sliding window. The region-wise mean so computed is then
used to reinitialize the tracker by moving the starting position of the tracker,
away from the infinity projection of the feature, along the epipolar line.

Outlier removal The last tracking step has proven to provide a much higher
inlier ratio than the initialization at infinity, making a new backtracking step
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Method Sequence 1 Sequence 2 Sequence 3 Total

GETT + EpiKLT 3542 ± 464 4439 ± 848 4603 ± 484 4196 ± 779

GFTT + KLT 2537 ± 425 3593 ± 881 3908 ± 551 3347 ± 874

Table 1. Average number of features extracted over the 3 sequences ± standard devi-
ation

Method Sequence 1 Sequence 2 Sequence 3 Total

GETT + EpiKLT 1700 ± 324 1656 ± 470 2121 ± 373 1818 ± 448

GFTT + KLT 509 ± 250 412 ± 238 909 ± 337 610 ± 352

Table 2. Average number of features tracked over the 3 sequences± standard deviation

unnecessary. To remove the remaining outliers, we perform a filtering based on a
re-computed region based mean, and remove points that do not behave according
to the majority of the points in the region ( we assume a Gaussian distribution
and set the filter threshold at twice the standard deviation for the region).

Note that this complicated procedure is only necessary when no prior in-
formation on the depth structure of the scene is known. For image sequences,
features can in general be tracked more than once, thus providing a depth esti-
mate and a better initialization of the tracker. For new features, even accounting
for reasonable depth discontinuities, the initialization can be performed by using
the already available depth information of similar nearby points.

4.2 Results

We tested our method on sequences extracted from the KITTI dataset [9], con-
sisting of driving scenes recorded by a calibrated stereo setup. Each of the ex-
tracted sequences consists of 199 image pairs and present different settings:

– Sequence 1 shows an urban scenario: mainly buildings on the sides of the
road.

– Sequence 2 is set in a suburban scenario. Mostly trees surround the road
– Sequence 3 also has a suburban setting and shows a variety of buildings,

vegetation and parked cars on the side of the road.

In our tests, we disregard the stereo information, focusing on a monocular sce-
nario and making use of the given camera calibration. To show the robustness of
the method, we do not use the ground truth egomotion provided with the KITTI
dataset, we take instead the estimates produced by an implementation of [20].
The approach consists in a matching procedure performed on FAST keypoints
[24] and BRIEF descriptors [6], the epipolar geometry estimation is made robust
with RANSAC, and stabilized with a windowed bundle adjustment.

Tables 1 and 2 show, as expected, the higher density of GETT compared
to GFTT which, combined with a better inlier ratio granted by the proposed
tracking procedure, allows to sensibly increase density of the motion field. Notice
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Fig. 4. Distribution of extracted GFTT (top-left) and GETT (bottom-left:). Dis-
tribution of successfully tracked GFTT (top-right) and GETT (bottom-right)

that, as shown in Figure 4 and 3 the increase in density is particularly evident
in areas of the image closer to the camera and on the road plane. This is a
very desirable feature for many applications since closeby objects are generally
of more interest and can be measured more precisely.

5 Conclusions

In this work we presented a complete framework for the extraction and tracking
of edge elements in an image pair. Such edge elements would normally suffer
from the aperture problem and cannot be tracked successfully. By exploiting a
known estimate of the epipolar geometry of the scene, our algorithm allows to
extract and successfully track specific edgels that are likely to behave well with
the given egomotion. We have shown that such keypoints (GETT ) consistently
outnumber the standard GFTT in different settings, have a higher inlier ratio
when tracked with the procedure we presented and are also more uniformly
spread on the image plane. These are all very desirable qualities that allow to
produce a much denser point cloud in any structure from motion application.
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