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Abstract. In this paper, we propose a first-person localization and nav-
igation system for helping blind and visually-impaired people navigate
in indoor environments. The system consists of a mobile vision front end
with a portable panoramic lens mounted on a smart phone, and a re-
mote GPU-enabled server. Compact and effective omnidirectional video
features are extracted and represented in the smart phone front end,
and then transmitted to the server, where the features of an input im-
age or a short video clip are used to search a database of an indoor
environment via image-based indexing to find both the location and the
orientation of the current view. One-dimensional omnidirectional pro-
files, which capture rich vertical lines and additional features in both
HSI and HSI gradient space, are used in the database modeling step
for constructing the model of an indoor environment from its panoramic
video sequences. In the navigation step, the same type of features of a
short video clip, are used as key words for searching in the database in
order to provide candidate of the possible locations of the user and then
estimate the orientation of the current view. To deal with the high com-
putational cost in searching a large database for a realistic navigation
application, data parallelism and task parallelism properties are identi-
fied in the database indexing steps, and computation is accelerated by
using multi-core CPUs and GPUs. Experiments on synthetic data and
real data are carried out to demonstrate the capacity of the proposed
system with respect to real-time response and robustness.

Keywords: Panoramic Vision, Mobile and Cloud Computing, Blind
Navigation

1 Introduction

Localization and navigation in indoor environments such as school buildings, mu-
seums etc., is one of the critical tasks a visually-impaired person faces for living a
convenient and normal social life[5].Despite a large amount of research havebeen
carried out for robot navigation in robotic community[6], and several assistive
systems are designed for blind people[14][10][1], efficient and effective portable
solutions for visually impaired people are still not available. In this paper, we
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Fig. 1: One testing environment and some sample omnidirectional images. The
red line in the map is the modeled path, and the dark blue line as well as the
light blue line are the testing paths

intend to build an easy-to-use and robust localization and navigation system for
visually-impaired people. Currently, the main stream solutions for localization
are based on GPS signals; however, in an indoor environment these methods are
not applicable since GPS signals are unavailable or inaccurate. Pose measure-
ments using other onboard sensors such as gyroscopes, pedometers, or IMUs,
are not precise enough to provide user heading information and instructions for
moving around for a visually impaired person.

To provide an alternative solution to GPS-based navigation system, RFID
sensors and mobile robot based systems were developed by Kulyukin et al[8]
and Cicirelli et al[3]. Although these passive RFID tags can integrate local nav-
igation measurements to achieve global navigation objectives, the system relies
heavily on the distribution of RFID sensors and the specially designed robot.
In our method, no extra sensors or infrastructure need to be installed in the
environment, and no other complex devices are required except a daily-used
smart phone (such as an iPhone) and a compact lens. Another existing solution
proposed by Legge et al[9] uses a handheld sign reader and widely distributed
digitally-encoded signs to give location information to the visually impaired.
Again, this method also requires attaching new tags to the environment, and it
can only recognize some specific locations. Our proposed system does not have
any requirements for changing the environment, and the viewer can be localized
in the entire interiors of a building instead just of a few individual locations.

In contrast to previsou methods[8][9], our system has the following character-
istics that make it an appropriate assistive technology for the visually impaired
navigation in the indoor context. (a) No extra requirements are needed on hard-
ware except a daily-used smart phone and a portable lens, which is simple,
inexpensive and easy to operate. No extra power supply is needed either. (b) A
cloud computing solution is utilized. Only compact features of a video clip are
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needed to be processed in the front end and then be transmitted to a server,
which guarantees a real-time solution while saving a lot of bandwidth. Different
from transmitting an original image or a video clip, which will cost a lot of mo-
bile traffic and may need a long communication time, our method only transfers
essential scene features, usually less than one percent of the original data and
thus has very low communication cost and little transmitting time. (c) The sys-
tem is scalable. Majority of localization and navigation algorithms are executed
in the cloud server part, and the databases are stored in the cloud part too. This
efficiently makes good use of the storage and computation power of the server
and do not occupy too much of smart phone’s resources. It also indicates that
the solution can scale up very well for a large database. (d) Parallelism in both
data and tasks can be explored, since data parallelizing can be applied in both
spatial and temporal dimensions of the video data, the localization algorithms
can be accelerated by using multi-core GPUs, and thus significantly reducing
computational time. One example of our testing environments is shown in Fig.
1. The map in the middle is a indoor floor plan of a campus building. The red
line in the map is the path for modeling this environment, and the dark blue
line as well as the light blue line are the paths used for testing. Some sample
omnidirectional images are shown around the map, and their geo-locations are
attached to the floor plan.

The organization of the rest part of the paper is as follows. Section 2 dis-
cusses related work. Section 3 explains the main idea of the proposed solution and
describes the overall approach. Section 4 illustrates the calibration and prepro-
cessing procedure. Section 5 discusses localization by indexing as well as issues
in paralleling process. Section 6 gives a conclusion and points out the possible
future work.

2 Related Work

Appearance-based localization and navigation has been studied extensively in
computer vision and robotics communities using a large variety of different meth-
ods and camera systems. Outdoor localization in the urban environment with
panoramas captured by a multicamera system (with 5 side cameras) mounted
on the top of a vehicle is proposed by Murillo et al[13]. Another appearance
approach based Simultaneous Localization and Mapping (SLAM) on large scale
road database, which is obtained by a car-mounted sensor array as well as GPS,
is proposed by M. Cummins and P. Newman[4]. These systems deal with out-
door environment localization with complex camera systems. In our work, we
focus on the indoor environment with simple but effective mobile sensing devices
(smart phone + lens) to serve the visually-impaired community by providing a
robust and easy-to-use panoramic mobile navigation system.

Visual nouns based orientation and navigation system for blind people was
proposed by Molina et al[11][12], which aligns images captured by a regular
camera into panoramas, and extracts three kinds of visual nouns features (sig-
nage, visual text, and visual-icons) to give location and orientation instructions
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Fig. 2: System diagram

to the visually-impaired people using visual noun matching and PnP localiza-
tion methods. In their work, obtaining panoramas from images requires several
capture actions and relatively large computation resources. Meanwhile, sign de-
tection and text recognition procedures face a number of technical challenges
in a real environment, such as illumination changes, perspective distortion, and
poor image resolution. In our paper, an omnidirectional lens GoPano[7] is used
to capture panorama images in real time, and only one shot is needed to capture
the entire surroundings rather than multiple captures. No extra image alignment
process is required, and no sign detection or recognition are needed.

Another related navigation method in indoor environments is proposed by
Aly and Bouguet[2] as part of the Google street view service, which uses six
photos captured by professionals to construct an omnidirectional image of each
viewpoint inside a room, and then estimates the camera pose and moving pa-
rameters between successive viewpoints. Since their inputs are unordered images,
they construct minimal spanning tree among complete graph of every viewpoint
to select triples for parameter estimations. In our method, since we use sequential
video frames, we do not need to find such spatial relationships between images,
and thus we can skip these procedures. Therefore we reduce the computation
cost and pursue a real-time solution.

Representing and compressing omnidirectional images into compact rota-
tional invariant features was investigated by Zhu et al[17], which uses the Fourier
transform of the radial principle components of each omnidirectional image to
represent the image. In our paper, based on the observation that an indoor
environment usually includes a great number of vertical lines, we explore the
omnidirectional features of these vertical lines in both the HSI space and the
HSI gradient (G-HSI) space of an omnidirectional image, instead of using origi-
nal RGB space only in [17], and generate one-dimensional omnidirectional HSI
and G-HSI projections (profiles). Then we use the Fourier transform components
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(a) (b)

Fig. 3: Smart phone GUI and omnidirectional lens

of these projections as the representation of omnidirectional image to reduce fea-
ture size and obtain rotation-invariant features and then find both the viewer’s
location and heading direction.

3 Overview of Our Approach

The hardware of the system is designed with two components: the smart phone
front end part and the server part. The system diagram is shown in Fig. 2. The
front end part consists of a smart phone and an omnidirectional lens, which
mounts on the phone with a case. In our implementation, we use an iPhone and
a GoPano lens, which is shown in Fig. 3.

The software of the system includes two stages: the modeling stage and the
query stage. In the modeling stage, the developer of the database (the model)
carries the mobile phone and moves along the corridors, covering and recording
the video into a database. Geo-tags(e.g. physical location of current frame ) are
manually labeled. The indexing and localization of a new image frame is related
to a frame in the database. To reduce the storage need, we do some preprocessing
to the data, which will be discussed in Section 4. In the second stage, a visually
impaired user can walk into the area covered in the above modeling stage and
take a short video clip. The smart phone extracts video features and sends
them to the server via wireless connections. The server receives the query and
search the image candidates in the database, and returns the localization and
orientation information to the user.

Using all the pixels in images of even a short video clip to represent a scene is
too expensive for both communication and computation, and the data are also
not invariant to environment variables such as illumination, user heading orienta-
tion, and other environment factors. Therefore, we propose a concise and effective
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Fig. 4: Work flow of modeling and querying stages

representation for the omnidirectional images by using a number of robust one-
dimensional omnidirectional projections (omni-projections) for each panoramic
scene. We have observed that an indoor environment often has plenty of vertical
lines (door edges, pillar edges, notice boards, windows, etc.), and features along
vertical lines can be embedded inside of the proposed omni-projection repre-
sentations, so these features can be extracted and be used to estimate viewer’s
locations. Also new extracted features of an input image are used as query keys
to localize and navigate in the environment represented by the database.

Because different scenes may have similar omni-projection features, using
a single frame may cause false indexing results. We adopt a multiple frame
querying mechanism by extracting a sequence of omni-projection features from a
short video clip, which can greatly reduce the probability of false indexing. When
database scales up for a large scene, it is very time consuming to sequentially
match the input frame features with all the images in the database of the large
scene. So we use GPGPU to parallelize the query procedure and accelerate the
querying speed.

3.1 System diagram

While the system server is running, a user can send a query with new captured
video frames, and the corresponding location is searched in the database. Since
frames in the database are tagged with geo-location information, the system can
provide the location information to the user. Currently, only physical locations
relative to the floor plan are tagged, however in the future more information can
be added, such as doorplate, offices’ name, locations of daily-used facilities(e.g.
telephones) etc.
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We build a scenes database with the method offline before the users use the
system. We call the process of building database as modeling stage, and the
process of using database in real time as querying stage.

In the modeling stage, we first traverse all the desired paths and locations in
an indoor environment and capture the original panoramic video of the scene.
Then we perform un-warping to obtain the cylindrical representations of the
omnidirectional images, convert the images to HSI color space and carry out a
number of other preprocessing operations (such as gradient operations). After
that, we project the images’ columns to obtain the omni-projection curves for
each frame (for both H, S, I and gradients of them). All the curves are normalized.
Finally we do the FFT transform to the curves and store the main components
of the FFT amplitude curves and phase curves in the database.

In the querying stage, we first obtain normalized projection curves to the
frames. Then we again carry out FFT transform to the curves and compute
their FFT amplitude and phase curves. Using the amplitude curves, which are
rotation-invariant, we search the frames in the database and find the closest
matching frames. Using the phase curves of the omni-directional images, we can
also estimate the relative rotation angle between a new frame and the matched
frame in the database. The work flow of the modeling and querying stages in
our system is shown in Fig. 4.

3.2 Cloud and parallel processing

Both the modeling procedure and querying procedure could be very time con-
suming, so they will be executed in the cloud server part, where parallel process-
ing can be applied to accelerate the procedures. The basic idea of multi-frames
indexing is to use a sequence of new captured video frames to query pre-built
video frame database to increase the success rate. In our system, we do not
directly compare the pixel values of the frames; instead, we extract rotational
invariant features from the FFT of HSI or HSI gradient curves, which are ob-
tained by projecting the region of interest of the image frame. Even with this
preprocessing step to reduce the size of the input data, the computational cost
of multi-frame query in the database would be high if the database is large.

One strategy is to partition input video into individual frames and query
the database with each frame. For every input query frame, a straightforward
approach is to compare each frame with all the frames one-by-one. Then after all
the queries return their matching candidates, which for example, top 5 matches
for each frame, an aggregation step of the most consistent sequence of matches
can be obtained by considering that both the input and the matched sequences
are temporal sequences. In this way the querying process could have three lev-
els of parallelisms. First, instead of comparing input frames sequentially to the
database, these frames are independent of each other, we can process them in
parallel. Second, for every comparison, we can use multiple threads to compare
each input frame with multiple database frames simultaneously, rather than
comparing with them one-by-one. Third, some of the operations in obtaining
rotation-invariant projection curves, such as the Fourier transform algorithm
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(a)

(b)

(c)

Fig. 5: (a) Original video frame and its parameters; (b) geometry relationship
between the original and un-warped images; and (c) un-warped omnidirectional
image

can take advantage of the parallel processing. For doing this, the original omni-
projection curves will be sent from the front end to the server, which is still
efficient in communication due to their low dimensionality.

Parallel acceleration is necessary in the query procedure. Without paral-
lel speed up, the time consumed in one single query operation take hundreds
of milliseconds on our current experimental database (with several thousand
frames), and it would be multiplied if the scale increases. After using parallel
acceleration, this time is reduced to several milliseconds and greatly improves
the performance of the query response. Details will be provided in Section 5.

4 Calibration and Preprocessing

The original frames captured by the GoPano lens and smart phone camera is a
fish-eye-like distorted image, which is shown in Fig. 5(a), and has to be rectified.
Fig. 5(c) shows the un-warped image in a cylindrical projection representation,
which has planar perspective projection in the vertical direction and spherical
projection in the horizontal direction. For achieving this, a calibration procedure
is needed to obtain all the required camera parameters.
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Assuming that the camera is held up-right and the lens’s optical axis is
horizontal, the relationship between the original image and un-warped image
can be illustrated in Fig. 5(b)[16][15].

Define the original pixel coordinate system as XiOiYi, the un-warped image
coordinate system is XeOeYe, and the original circular image center is (Cx, Cy).
Then a pixel (xe, ye) in the un-warped image and corresponding pixel (xi, yi) in
the original image has the following relationship.{

xi = (r − ye)cos(xe ∗ 2π
W ) + Cx

yi = (r − ye)sin(xe ∗ 2π
W ) + Cy

(1)

This un-warping process is applied to every frame in the database and all
the input query frames. Since the un-warped images still have distortion in the
vertical direction (radial direction in the original images) due to the nonlinearity
of the GoPano lens, we perform an image rectification step using a calibration
target with known 3D information to correct the radial direction so that the
projection in the vertical direction of the un-warped cylindrical images is a linear
perspective projection. By doing this, the effective focal length in the vertical
direction is also found. From this point on, we assume the image coordinates
(u, v) are rectified, and the u direction (horizontal direction) represents the 360-
degree panoramic view, and the v direction (vertical direction) is perspective.

To represent a scene, six omni-projection curves are extracted from the un-
warped images. Three of them are from HSI channels of an original RGB image,
and the rest three are from the HSI gradient channels. The gradient of a pixel
in an image can be calculated

∇f(u, v) =
δf

δu
du+

δf

δv
dv (2)

where δf
δu is gradient in the u direction, and δf

δv is gradient in the v direction.

The magnitude of the pixel gradient is the L-2 norm of the ( δfδu ,
δf
δv ). In practice,

since we mainly focus on the vertical lines in the images as our features, we only
use the horizontal gradient. A linear normalization is applied to all the curves
here to make sure that curves are at the same scale.

Suppose a cylindrical image is I(u, v), the curve c(u) generated by projecting
the ROI can be formalized as following:

c(ut) =

1/2∗H+T∑
i=1/2∗H−T

I(ut, i), t = 0, 1, 2, ...,W − 1 (3)

where W and H are image width and height, T is half projection height, and
I(ut, i), t = 0, 1, 2, ...,W −1 are the horizontal directions (from 0 to 360 degrees).
Therefore the curve c(u) = c(ut) is an omnidirectional projection curve (or omni-
projection curve). With all the six curves, we can store each and every of them
into the database, and use them to compare with the new input curves to find
the optimal location for the new input frame.
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5 Localization by Indexing

Localization is essential to visually-impaired people, since not only it provides
the position and orientation of the user, but also it can supply additional infor-
mation of the environment, e.g. locations of doors, positions of doorplates, etc.
When the database scale increases, using key features to do the indexing is nec-
essary in order to obtain real-time performance without losing too much index
accuracy. Meanwhile, sequential search is not practical when database scales is
up significantly, therefore parallel searching is explored in this paper.

5.1 Overall indexing approach

We use the major components of FFT transform of a number of feature curves
as the keys to do the indexing in this paper. Define an omni-projection curve as
c(u), u = 0, 1, 2, ...,W − 1, where W is the curve length in pixel. If the camera
rotates around the vertical axis, it will cause a circular shift of the cylindrical
representation of the omnidirectional image, which then corresponds to a circular
shift to the signal c(u). If an omnidirectional image has a circular shift of u0 to
the right, this is equivalent to rotating the camera coordinate around z axes for
Φ = −2πu0/N [17]. Suppose the signal after a right circular shift u0 is c′(u), we
have the following equation:

c′(u) = c(u− u0) (4)

Suppose the DFT of c(u) is defined as ak, the DFT of c′(u) is defined as bk,
then {

ak =
∑W−1
u=0 x(u)e−je2πku/W , u = 0, 1, ...,W − 1

bk = ake
−je2πku0/W , u = 0, 1, ...,W − 1

(5)

To find the optimal rotation angle (i.e. amount of the circular shift), the
problem is equivalent to finding the maximal value of the circle correlation func-
tion(CCF).

CCF (u0)

W−1∑
u=0

c(n) ∗ c(u− u0) (6)

where u0 = 0, 1, ...,W − 1.
According to the correlation theorem, we can calculate CCF (u0) as

CCF (u0) = F−1{a∗(k)b(k)} (7)

We only carry out this task after the optimal match is found, since it is
meaningless to find the shifted angle if the location is not matched correctly.
By using the principle components of original feature’s FFT transform, we can
control the data amount sent to the server and reduce the amount of memory
needed to store database in the server too. Real data experiment is shown in the
following section.
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(a) (b)

(c)

Fig. 6: (a) An example of a query image and its matched result in a database; (b)
the matching scores with database frames and the estimated heading differences
between the query and database frames; (c) overall matching results of all the
test database frames without and with temporal aggregation

5.2 Real data experiment

In the first experiment, one example of indexing a new query frame on a 862
frames database has been shown in Fig. 6, (a) and (b). Fig. 6(a) shows the input
frame, the target frame, and the shifted version of the input image after find-
ing the heading angle difference. In Fig. 6(b), the first plot shows the searching
results of the input frame with all the frames in the database using hue (red),
saturation (green) and intensity (blue). We found that the information of inten-
sity feature performs the best. The correlation curve is shown on the bottom
right, showing that the heading angle difference can be found after obtaining
the correct match.

Because of different scenes may have very similar omni-projection curve fea-
tures, query with only one single frame may cause false matches, as shown in
Fig. 6(c)’s top curve. In this figure, the horizontal axis is the index of input
frames (of a new sequence) and the vertical axis is the index of database frames
(of the old sequence). Both sequences cover the same area. The black curve
shows the ground truth matching result, and the red curve on the top curve
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(a)

(b)

(c)

Fig. 7: (a) Matching results near the starting point of the loop; (b) matching
results in the middle of the loop; (c) a pair of mismatching results

shows the matched results by our system. There are a few mismatches around
frame 150, 500, and 600 due to the scene similarities. This leads us to design a
multiple-frame approach: if we use a short sequence of input frames instead of
just one single frame to perform the query, a consistent match results for all the
input frames will yield a much more robust result. Another situation where the
feature we selected is prone to fail is when either the camera used to capture
training data or testing data has large non-perpendicularity in position. This
can be solved by offering the users proper training as well as further algorithm
optimization in the future. Fig. 6(c)’s below curve shows the testing results with
temporal aggregation, where for every frame, its nearby 25 frames’ querying re-
sults are aggregated and the median index value is used as the final result. As
we can see from the curve, temporal aggregation can reduce the mismatching
rate and generate more robust results.
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Fig. 8: Time usage with and without GPU acceleration: Red without GPU; Green
with GPUs. Curves with squares are experiments using 1024 threads while curves
with asterisks are experiments using 2048 threads

In the second experiment,the entire floor of a building is modeled, as shown
in Fig. 1. We first capture a video sequence of the entire floor as the train-
ing database, whose path is shown as the red line. We then capture two other
short databases(along the dark blue line and the light blue line) as the testing
databases. Some sample omnidirectional images used in the modeling process
are shown around the map in Fig. 1, and their geo-locations are attached to the
floor map too. Fig. 7 shows matching results using the two test databases against
the large scale database. Fig. 7(a) shows the results using the frames near the
starting and ending position. Starting point and ending point are pointed out
for visualization purpose. Fig. 7(b) shows the results using frames in the middle
of the loop. The black line is the ground truth, and the dashed black line is the
tolerance bound with the accuracy within 2 meters. Because it is inevitable to
avoid scene similarity, there are some mis-matching results. For example, in Fig.
7(c), the first image is the best matched result and the second one is the original
query image, however they are images of two totally different locations.

If using only a single CPU to search sequentially, the amount of time con-
sumed would increase proportional to the number of frames in the database.
Therefore we use GPUs to do the query in parallel, so that we can search all
the frames and compare an input frame to multiple database frames at the
same time, which will greatly reduce the time used. Fig. 8 shows the time used
with and without many-core GPUs for a database with the number of images
changed from 1000 frames to 8000 frames. In the single CPU version, the time
spent increases from 20 ms to 160 ms, whereas using a many-core GPU (Kepler
K20 chip), the time is significantly reduced ( from 1.13 ms to 8.82 ms). Note
that the current test only has a database with a few thousand frames. With a
larger database of an indoor scene, the time spending on a single CPU will be
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prohibitive, whereas using multi-core CPUs/GPUs, the time spending can be
greatly reduced. Instead, since we can apply tens of thousands of threads in one
or multiple GPUs, the acceleration rate has potential to improve.

6 Conclusion and Discussion

In this paper we have proposed a mobile panoramic system to help the visually
impaired people to localize and navigation in indoor environments. We use a
smart phone with panoramic camera and high performance server architecture
to ensure the portability and mobility of the user part and take advantage of
the huge storage as well as high computation power of the server part. An image
indexing mechanism is used to find the rough location of an input image (or a
short sequences of images), and a pose and moving direction estimation algo-
rithm is applied to refine the localization result and guide the user to a desired
location. To improve the query speed and ensure a real time performance, we
use multi-core GPUs to parallelize the query procedure. The experiment results
on current database shows that the system can achieve both accurate and fast
query performance.

There are a few issues we will be dealing with in the future. First, a large
scale scene database, for example, multiple floors of an entire building, or a
number of buildings on campus, will be build and used to create more testing
environments. Second, hierarchical and context-based methods can be used to
avoiding searching the entire database for every query. For example we can use
GPS or WiFi to obtain rough location information and localize the user in the
nearby places before we search the database around those locations. Third, user
interface in communicating the localization and navigation information to a blind
user, as well as implementation of the front end algorithms on the mobile phone
should be optimized to make it more natural for the user to use.
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